BBK DW9937S Service Manual

SERVICE MANUAL
DW9937S
Ver 0.0
PREFACE
INDEX
FEATURES FRONT PANEL&REAR PANEL REMOTE CONTROL
.................................................................................................................
BLOCK DIAGRAM
BLOCK DIAGRAM
.............................................................................................................
EXPLODED VIEW
EXPLODED VIEW
......................................................................................................................
PARTS SPECIFICATIONS
SST39VF16 0 ............................................................................................................................... 6
M13S128168A ............................................................................................................................
TSB41AB1 TVP5146 CS4360
CS5333 ......................................................................................................................................... 15
74HC/HCT14 ............................................................................................................................. 17
74ALVT16373 ...................................................................................................................... 18
MM1313 ............................................................................................................................................ 19-30
MAX4051 .......................................................................................................................................... 31-50
FSDM07652RB ................................................................................................................................ 51-70
LP2995
PQXXXEZ02Z .......................................................................................................................... 72
TUNER .............................................................................................................. 73
..................................................................................................................................
...................................................................................................................... 9
........................................................................................................................................ 13
................................................................................................................
........................................................................................................................
1 2 3
4
5
7
8
71
SCHEMA
TIC DIAGRAM&PCB SILKSCREEN
MAIN BOARD SCHEMATIC AND PCB LAYOUT
AV BOARD SCHEMATIC ..................................................................................................... 85-95
KEY BOARD SCHEMATIC .......................................................................................................
POWER BOARD SCHEMATIC ........................................................................................... 97
VCR MODLE 98-100
PARTSLIST
MAIN BOARD .............................................................................................................................. 101-102
MAIN PANEL BOARDKEY
POWER BOARD .............................................................................................................. 105-107
AV BOARD 108-110
............................................................................
.........................................................................................................................
......................................................................................................................
....................................................................................................................................
74-84
96
103-104
1
2
3
BLOCK DIAGRAM
POWER SUPPLY
Power board Video signal(s) Main pannel board
Audio signal(s)
Control signal(s)
wake up signal
Power on/off signal
VCR
VCR CVBS signal
HC4052
VCR L&R audio signals
MSP3415
CD4052
AV Channel
VMM1313
Switch
audio Signals outputs (except mixed L/R Audio) (except CVBS )
CVBS &mixed Audio inputs Video inputs Audio outputs Video outputs
key matrix
µPD16316
VFD-DISP
Video ADC
5146
DNM8602
Audio ADC
CS5333
CS4360
Audio
DVD L&R audio signals
DVD CVBS signal
Main board
4
AV board
EXPLODED VIEW
55
FUNCTIONAL BLOCK DIAGRAM
A19 - A
0
CE# OE#
WE#
X-Decoder
Address Buffer & Latches
Control Logic
16 Megabit Multi-Purpose Flash
SST39VF160Q / SST39VF160
Advance Information
16,777,216 bit
EEPROM Cell Array
Y-Decoder
I/O Buffers and Data Latches
DQ15 - DQ
V
0
DDQ
329 ILL B1.2
A15 A14 A13 A12 A11 A10
A19
WE#
A18 A17
1 2 3 4 5 6
A9
7
A8
8 9
NC
10 11
NC
12
NC
13
NC
14
NC
15 16 17
A7
18
A6
19
A5
20
A4
21
A3
22
A2
23
A1
24
Standard Pinout
T op Vie w
Die Up
SST39VF160Q
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
329 ILL F01.2
A16 V V DQ15 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 V DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 OE# V CE# A0
FIGURE 1: PIN ASSIGNMENTS FOR 48-PIN TSOP PACKAGES
123456
A
A3 A7 NC WE# A9 A13
B
A4 A17 NC NC A8 A12
C
A2 A6 A18 NC A10 A14
D
A1 A5 NC A19 A11 A15
E
A0 DQ0 DQ2 DQ5 DQ7 A16
F
CE# DQ8 DQ10 DQ12 DQ14 V
G
OE# DQ9 DQ11 V
H
V
DQ1 DQ3 DQ4 DQ6 V
SS
SST39VF160Q
DD
DQ13 DQ15
DDQ
SS
329 ILL F02.4
DDQ SS
DD
SS
A15 A14 A13 A12 A11 A10
A19
WE#
A18 A17
NC
NC NC NC NC
A9 A8
A7 A6 A5 A4 A3 A2 A1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Standard Pinout
T op Vie w
Die Up
SST39VF160
123456
A
A3 A7 NC WE# A9 A13
B
A4 A17 NC NC A8 A12
C
A2 A6 A18 NC A10 A14
D
A1 A5 NC A19 A11 A15
E
A0 DQ0 DQ2 DQ5 DQ7 A16
F
CE# DQ8 DQ10 DQ12 DQ14 NC
G
OE# DQ9 DQ11 V
H
V
DQ1 DQ3 DQ4 DQ6 V
SS
SST39VF160
DD
DQ13 DQ15
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
329 ILL F01a.0
SS
329 ILL F02a.0
A16 NC V
SS
DQ15 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 V
DD
DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 OE# V
SS
CE# A0
FIGURE 2: PIN ASSIGNMENTS FOR 48-PIN TFBGA
6
ESMT



M13S128168A
45
45



;(
  
    




   
  
  




 



45-45



  
2
2



 

  

  

  

  

  

       

 


 
 
 

 
                    
66 PIN TSOP(II) (400mil x 875mil) (0.65 mm PIN PITCH)





































 




























Elite Semiconductor Memory Technology Inc.
7
Publication Date : Nov. 2002
Revision : 0.2
Revision : 0.2
     
SLLS423D – JUNE 2000 – REVISED SEPTEMBER 2002
description (continued)
required for normal network operation regardless of the state of the PHY-LLC interface. When the interface is in the reset or disabled state and LPS is again observed active, the PHY initializes the interface and returns it to normal operation.
When the PHY-LLC interface is in the low-power disabled state, the TSB41AB1 automatically enters a low-power mode if the port is inactive (disconnected, disabled, or suspended). In this low-power mode, the TSB41AB1 disables its internal clock generators and also disables various voltage and current reference circuits depending on the state of the port (some reference circuitry must remain active in order to detect new cable connections, disconnections, or incoming TPBIAS, for example). The lowest power consumption (the ultralow-power sleep mode) is attained when the port is either disconnected, or disabled with the port interrupt enable bit cleared. The TSB41AB1 exits the low-power mode when the LPS input is asserted high or when a port event occurs which requires that the TSB41AB1 become active in order to respond to the event or to notify the LLC of the event (for example, incoming bias is detected on a suspended port, a disconnection is detected on a suspended port, a new connection is detected on a nondisabled port, etc.). The SYSCLK output becomes active (and the PHY-LLC interface is initialized and becomes operative) within 7.3 ms after LPS is asserted high when the TSB41AB1 is in the low-power mode.
The PHY uses the C/LKON terminal to notify the LLC to power up and become active. When activated, the C/LKON signal is a square wave of approximately 163-ns period. The PHY activates the C/LKON output when the LLC is inactive and a wake-up event occurs. The LLC is considered inactive when either the LPS input is inactive, as described above, or the LCtrl bit is cleared to 0. A wake-up event occurs when a link-on PHY packet addressed to this node is received, or when a PHY interrupt occurs. The PHY deasserts the C/LKON output when the LLC becomes active (both LPS active and the LCtrl bit set to 1). The PHY also deasserts the C/LKON output when a bus reset occurs unless a PHY interrupt condition exists which would otherwise cause C/LKON to be active.
PHP package terminal diagram
SYSCLK
CTL0 CTL1
D0 D1 D2 D3 D4 D5 D6 D7
PD
LREQ
DGND
DGND
47 46 45 44 4348 42 40 39 3841
1 2 3 4 5 6 7 8 9 10 11 12
14 15
LPS
DGND
C/LKON
16
13
PHP PACKAGE
(TOP VIEW)
DDDVDD
DV
XO
XI
TSB41AB1
17 18 19 20
ISO
PC1
PC2
PC0
DD
PLLGND
PLLV
FILTER1
22 23 24
21
DD
CPS
DV
TESTM
FILTER0
RESET
37
SE
SM
36 35 34 33 32 31 30 29 28 27 26 25
AGND AV
DD
R1 R0 AGND TPBIAS TPA+ TPA– TPB+ TPB– AGND AV
DD
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
1.5 Functional Block Diagram
TVP5146
CVBS/
Pb/B/C
CVBS/
Y/G
CVBS/ Pr/R/C
CVBS/Y
VI_1_A VI_1_B
VI_1_C
VI_2_A VI_2_B
VI_2_C
VI_3_A VI_3_B
VI_3_C
VI_4_A
Protection
Detector
Analog Front End
ADC1
ADC2
ADC3
ADC4
Sampling Clock
Copy
M U X
Timing Processor
with Sync Detector
CVBS/Y/G
CVBS/Y
C
Y/G
Pb/B
Pr/R
VBI
Data
Slicer
Composite and S-Video Processor
Y/C
Separation
5-line
Adaptive
Comb
Gain/Offset
Y
C
Component
Luma
Processing
Chroma
Processing
Processor
Color
Space
Conversion
YCbCr
YCbCr
Host
Interface
Output
Formatter
Y[9:0]
C[9:0]
FSS
GPIO
XTAL1
XTAL2
PWDN
RESETB
AVID
DATACLK
FID
VS/VBLK
GLCO
HS/CS
DRDGDB
Figure 1–1. Functional Block Diagram
FSO
SCL
SDA
14
9
1.6 Terminal Assignments
VI_1_A
CH1_A18GND
CH1_A18VDD
PLL_A18GND
PLL_A18VDD
XTAL2
XTAL1
PFP PACKAGE
(TOP VIEW)
VS/VBLK/GPIO
HS/CS/GPIO
FID/GPIO
C_0/GPIO
C_1/GPIO
DGND
DVDD
C_2/GPIO
C_3/GPIO
C_4/GPIO
C_5/GPIO
IOGND
IOVDD
TVP5146
VI_1_B VI_1_C
CH1_A33GND
CH1_A33VDD CH2_A33VDD
CH2_A33GND
VI_2_A VI_2_B VI_2_C
CH2_A18GND
CH2_A18VDD A18VDD_REF
A18GND_REF
CH3_A18VDD
CH3_A18GND
VI_3_A VI_3_B VI_3_C
CH3_A33GND
CH3_A33VDD
79 78 77 76 7580 74 72 71 7073
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
22 23
24
VI_4_A
CH4_A33VDD
CH4_A33GND
25 26 27 28
SCL
AGND
DGND
CH4_A18VDD
CH4_A18GND
29
30 31 32 33
SDA
INTREQ
69 682167 66 65 64
34 35 36 37 38 39 40
DVDD
DGND
PWDN
RESETB
FSS/GPIO
63 62 61
IOVDD
AVID/GPIO
GLCO/I2CA
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
IOGND
DATACLK
C_6/GPIO/RED C_7/GPIO/GREEN C_8/GPIO/BLUE C_9/GPIO/FSO DGND DVDD Y_0 Y_1 Y_2 Y_3 Y_4 IOGND IOVDD Y_5 Y_6 Y_7 Y_8 Y_9 DGND DVDD
Figure 1–2. Terminal Assignments Diagram
10
15
TVP5146
1.7 Terminal Functions
Table 1–1. Terminal Functions
TERMINAL
NAME NUMBER
Analog Video
VI_1_A VI_1_B VI_1_C VI_2_A VI_2_B VI_2_C VI_3_A VI_3_B VI_3_C VI_4_A
Clock Signals
DATACLK 40 O Line-locked data output clock.
XTAL1 74 I
XTAL2 75 O External clock reference output. Not connected if XTAL1 is driven by an external single-ended oscillator.
Digital Video
C[9:0]/ GPIO[9:0]
D_BLUE 58 I Digital BLUE input from overlay device D_GREEN 59 I Digital GREEN input from overlay device D_RED 60 I Digital RED input from overlay device FSO 57 I Fast-switch overlay between digital RGB and any video
Y[9:0]
Miscellaneous Signals
FSS/GPIO 35 I/O
GLCO/I2CA 37 I/O
INTREQ 30 O Interrupt request
PWDN 33 I
RESETB 34 I Reset input, active low
80
1 2 7 8
9 16 17 18 23
57, 58, 59, 60, 63, 64, 65, 66,
69, 70
43, 44, 45, 46, 47, 50, 51, 52,
53, 54
I/O
VI_1_x: Analog video input for CVBS/Pb/B/C VI_2_x: Analog video input for CVBS/Y/G VI_3_x: Analog video input for CVBS/Pr/R/C VI_4_A: Analog video input for CVBS/Y
I
Up to 10 composite, 4 S-video, and 2 composite or 3 component video inputs (or a combination thereof) can be supported.
The inputs must be ac-coupled. The recommended coupling capacitor is 0.1 µF. The possible input configurations are listed in the input select register at I2C subaddress 00h (see
Section 2.11.1).
External clock reference input. It may be connected to an external oscillator with a 1.8-V compatible clock signal or a 14.31818-MHz crystal oscillator.
Digital video output of CbCr, C[9] is MSB and C[0] is LSB. Unused outputs can be left unconnected. Also, these terminals can be programmable general-purpose I/O.
O
For the 8-bit mode, the two LSBs are ignored.
Digital video output of Y/YCbCr, Y[9] is MSB and Y[0] is LSB.
O
For the 8-bit mode, the two LSBs are ignored. Unused outputs can be left unconnected.
Fast-switch (blanking) input. Switching signal between the synchronous component video (YPbPr/RGB) and the composite video input.
Programmable general-purpose I/O Genlock control output (GLCO). Two Genlock data formats are available: TI format and real time control
(RTC) format. During reset, this terminal is an input used to program the I2C address LSB.
Power down input: 1 = Power down 0 = Normal mode
DESCRIPTION
16
11
Table 1–1. Terminal Functions (Continued)
TVP5146
TERMINAL
NAME NUMBER
Host Interface
SCL 28 I I2C clock input SDA 29 I/O I2C data bus
Power Supplies
AGND 26 I Analog ground. Connect to analog ground. A18GND_REF 13 I Analog 1.8-V return A18VDD_REF 12 I Analog power for reference 1.8 V CH1_A18GND
CH2_A18GND CH3_A18GND CH4_A18GND
CH1_A18VDD CH2_A18VDD CH3_A18VDD CH4_A18VDD
CH1_A33GND CH2_A33GND CH3_A33GND CH4_A33GND
CH1_A33VDD CH2_A33VDD CH3_A33VDD CH4_A33VDD
DGND
DVDD
IOGND 39, 49, 62 I Digital power return IOVDD 38, 48, 61 I Digital power. Connect to 3.3 V or less for reduced noise. PLL_A18GND 77 I Analog power return PLL_A18VDD 76 I Analog power. Connect to 1.8 V.
Sync Signals
HS/CS/GPIO 72 I/O
VS/VBLK/GPIO 73 I/O
FID/GPIO 71 I/O
AVID/GPIO 36 I/O
79 10 15 24
78
11 14 25
3
6 19 22
4
5 20 21
27, 32, 42,
56, 68
31, 41, 55,
67
I/O
I Analog 1.8-V return
I Analog power. Connect to 1.8 V.
I Analog 3.3-V return
I Analog power. Connect to 3.3 V.
I Digital return
I Digital power. Connect to 1.8 V.
Horizontal sync output or digital composite sync output Programmable general-purpose I/O
Vertical sync output (for modes with dedicated VSYNC) or VBLK output Programmable general-purpose I/O
Odd/even field indicator output. This terminal needs a pulldown resistor. Programmable general-purpose I/O
Active video indicator output Programmable general-purpose I/O
DESCRIPTION
121413151416151716
17
Philips SemiconductorsProduct specification
Hex inverting Schmitt trigger 74HC/HCT14
PIN DESCRIPTION
PIN NO. SYMBOL NAME AND FUNCTION
1, 3, 5, 9, 11, 13 1A to 6A data inputs 2, 4, 6, 8, 10, 12 1Y to 6Y data outputs 7 GND ground (0 V) 14 V
CC
positive supply voltage
Fig.1 Pin configuration. Fig.2 Logic symbol. Fig.3 IEC logic symbol.
FUNCTION TABLE
INPUT OUTPUT
nA nY
L
H
Notes
1. H = HIGH voltage level L = LOW voltage level
APPLICATIONS
Wave and pulse shapers
Astable multivibrators
Monostable multivibrators
Fig.4 Functional diagram. Fig.5 Logic diagram
(one Schmitt trigger).
H
L
17
Philips Semiconductors Product specification
74ALVT163732.5V/3.3V 16-bit transparent D-type latch (3-State)
LOGIC SYMBOL
47 46 44 43
1
1D0 1D1 1D2 1D3
1LE 1OE
1Q0 1Q1 1Q2651Q3
32
36 35 33 32
2D02D21 2D2 2D3
2LE 2OE
2Q0 2Q1 2Q2 2Q3
1413 1716
48
25 24
41 40 38 37
1D4 1D5 1D6 1D7
1Q4 1Q5 1Q6
30 29 27 26
2D4 2D5 2D6 2D7
2Q4 2Q5 2Q6 2Q7
98
2019 2322
1Q7
1211
SA00044
PIN DESCRIPTION
PIN NUMBER SYMBOL FUNCTION
47, 46, 44, 43, 41, 40, 38, 37, 36, 35, 33, 32, 30, 29, 27, 26
2, 3, 5, 6, 8, 9, 11, 12, 13,
14, 16, 17, 19, 20, 22, 23
1, 24 1OE, 2OE
48, 25 1LE, 2LE
4, 10, 15, 21, 28, 34, 39, 45 GND Ground (0V)
7, 18, 31, 42 V
1D0 – 1D7 2D0 – 2D7
1Q0 – 1Q7 2Q0 – 2Q7
CC
Data inputs
Data outputs
Output enable inputs (active-Low)
Enable inputs (active-High)
Positive supply voltage
LOGIC SYMBOL (IEEE/IEC)
1OE 1LE 2OE 2LE
1D1 1D2 1D3 1D4 1D5 1D6 1D7 1D8 2D1
2D2 2D3 2D4 2D5 2D6 2D7 2D8
1 48 24 25
47 46 44 43 41 40 38 37 36
35 33 32 30 29 27 26
1EN C3 2EN C4
3D
4D
PIN CONFIGURATION
1
1OE
2
1Q0
1Q1
3
GND
4
1Q2
5 6
1Q3
7
V
CC
8
1Q4 1Q5
9
GND
10
1Q6
11
1Q7
12
2Q0
13
2Q1
14
GND
15 16
2Q2 2Q3
17 18
V
CC
2Q4
19 20
2Q5
21
GND
22
2Q6
23
2Q7
24
2OE
1
2
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25
SA00043
1LE 1D0 1D1 GND 1D2 1D3
V
CC
1D4 1D5
GND 1D6 1D7 2D0 2D1 GND 2D2
2D3 V
CC
2D4 2D5 GND
2D6 2D7 2LE
2
1Q1
3
1Q2
5
1Q3
6
1Q4
8
1Q5
9
1Q6
11
1Q7
12
1Q8
13
2Q1
14
2Q2
16
2Q3
17
2Q4
19
2Q5
20
2Q6
22
2Q7
23
2Q8
SW00010
18
2
C BUS Control 5-Input 2-Output AV Switch MM1313
MITSUMI
I
I2C BUS Control 5-Input 2-Output AV Switch
Monolithic IC MM1313
Outline
This IC is a 5-input 2-output AV switch with I2C control, developed for use in televisions. Two outputs enable it to support two screens or "picture-in-picture".
Features
1. Serial control by I2C bus.
2. 5-inputs, 2-outputs.
3. Video and audio system switches can be controlled independently.
4. 6dB amplifier built in to video system.
5. Built-in Y/C MIX circuit.
6. Slave address can be changed : 90H or 92H.
7. Audio muting possible by external pin.
8. Maintains high impedance even when I
9. Built-in 3 value discrimination function.
10.On-chip power ON reset function.
11.Two types of audio input impedance : 60kand 30kΩ. MM1313AD : 60k MM1313BD : 30k
12.Supports 2-screen or P-IN-P TV.
2
C BUS line (SDA, SCL) power supply is off.
Package
SDIP-42A (MM1313AD, MM1313BD)
Applications
1. Televisions
2. Other video equipment
19
MITSUMI
Equivalent Block Diagram
2
C BUS Control 5-Input 2-Output AV Switch MM1313
I
20
MITSUMI
Pin Function
2
C BUS Control 5-Input 2-Output AV Switch MM1313
I
Pin No.
Name
41 MTV-V
1 V1
7 V2
13 V3
27 STV
3 V1
9 V2
31 Y
5 V1-C
11 V2
29 C
42 MTV-L
2 V1
8 V2 14 V3 25 STV 40 MTV
4 V1 10 V2 16 V3 26 STV
-
-
-
-
-
IN1
-
IN1
-
-
-
-
-
-
Internal equivalent circuit diagram
Pin No.
Name
Internal equivalent circuit diagram
33 LOUT1
V
V
V
-
V
22 L
32 R
24 R
OUT2
OUT1
OUT2
Y
Y
36 BIAS
C
19 SCL
L L L
-
L
-
R R R R
-
R
34 VOUT1
23 V
OUT2
37 YOUT1
39 C
OUT1
20 SDA
6 S1
12 S2
21 ADR
28 Mute
21
MITSUMI
2
C BUS Control 5-Input 2-Output AV Switch MM1313
I
Absolute Maximum Ratings
Item Symbol Ratings Units
Storage temperature T
Operating temperature T
Power supply voltage V
Allowable power dissipation Pd 850 mW
Electrical Characteristics
Item Symbol
Operating power supply voltage
Current consumption I
V
OUT1 output
Voltage gain G
Frequency characteristics F
Differential gain DG
Differential phase DP
Input dynamic range D
V
OUT2 output
Voltage gain G
Frequency characteristics F
Differential gain DG
Differential phase DP
Input dynamic range D
YOUT1 output
Voltage gain
Frequency characteristics
Differential gain DGY TP2
Differential phase DPY TP2
(Ta=25°C, VCC=9V)
VCC 8910V
CC 38 VCC=9V, no signal, no load 40 52 mA
V1 TP1 Sine wave 1.0VP-P, 100kHz 5.5 6.0 6.5 dB
V1 TP1
V1 TP1
V1 TP1
V1 SG1~3 Maximum input for total higher 1.6 1.9 VP-P
V2 TP6 Sine wave 1.0VP-P, 100kHz 5.5 6.0 6.5 dB
V2 TP6
V2 TP6
V2 TP6
V2 SG1~3 Maximum input for total higher 1.6 1.9 VP-P
G
Y1 TP2
G
Y2 TP2
Y1 TP2
F
F
Y2 TP2
(Ta=25°C)
Measure ment pin
STG
OPR
CC 12 V
-
40~+125
-
20~+75
Conditions (unless otherwise indicated,
Measurement Circuit Figure 1)
Sine wave 1.0V
Vn-V : Staircase 1V
P-P
, 10MHz/100kHz-1.0 0 1.0 dB
P-P
°
C
°
C
Min. Typ. Max. Units
APL=10~90%
Vn-Y : Staircase (luminance signal) 1V
Vn-C : Chroma signal 0.3V
P-P
P-P
-
30 3 %
APL=10~90%
Vn-V : Staircase 1V
P-P
APL=10~90%
Vn-Y : Staircase (luminance signal) 1V
Vn-C : Chroma signal 0.3V
P-P
P-P
-
3 0 3 deg
APL=10~90%
Sine wave 100kHz
harmonic distortion factor < 1.0%
Sine wave 1.0V
10MHz/100kHz
Vn-V : Staircase 1V
P-P
P-P
-
1.0 0 1.0 dB
APL=10~90%
Vn-Y : Staircase (luminance signal) 1V
Vn-C : Chroma signal 0.3V
P-P
P-P
-
30 3 %
APL=10~90%
Vn-V : Staircase 1V
P-P
APL=10~90%
Vn-Y : Staircase (luminance signal) 1V
Vn-C : Chroma signal 0.3V
P-P
P-P
-
3 0 3 deg
APL=10~90%
Sine wave 100kHz
harmonic distortion factor < 1.0%
Vn-Y : Sine wave 1.0V
YIN1 : Sine wave 2.0V
-
Y : Sine wave 1.0VP
Vn
10MHz/100kHz
Y
IN1 : Staircase 2.0VP-P
10MHz/100kHz
Vn-Y : Staircase 1V
APL=10~90%
Y
IN1: Staircase 2VP-P
P-P
, 100kHz
P-P
, 100kHz-0.5 0 0.5
-
P
P-P
5.5 6.0 6.5
-
1.0 0 1.0
-
1.0 0 1.0
-
30 3 %
APL=10~90%
Vn-Y : Staircase 1V
APL=10~90%
IN1 : Staircase 2VP-P
Y
P-P
-
3 0 3 deg
APL=10~90%
dB
dB
22
MITSUMI
2
C BUS Control 5-Input 2-Output AV Switch MM1313
I
Item Symbol
D
Measure
ment pin
Y1 SG2 Maximum input for total higher 1.6 1.9
Input dynamic range
DY2 SG4 Maximum input for total higher 3.2 3.8
Output impedance Z
C
OUT1 output
Voltage gain
OYC150
C1 TP3
G G
C2 TP3
F
C1 TP3
Frequency characteristics
C2 TP3
F
Differential gain DG
Differential phase DP
C TP3
C TP3
D
C1 SG3 Maximum input for total higher 2.75 3.25
Input dynamic range
C2 SG5 Maximum input for total higher 5.5 6.5
D
Input impedance Z
Output impedance Z
OUT1 output
L
Voltage gain
Frequency characteristics F
Total higher harmonic distortion
Input dynamic range D
IC Vn
OC150
G
L11 TP4 b7=0, Sine wave 2.5VP-P, 1kHz
G
L12 TP4 b7=1, Sine wave 2.5VP-P, 1kHz
L1 TP4 Sine wave 2.5VP-P, 1MHz/1kHz
1 TP4 Sine wave 2.5VP
THDL
L1 SG6 Maximum input for total higher 2.6 2.8 Vrms
Output offset voltage VOFFL133
Input impedance Z
Output impedance Z
L
OUT2 output
Voltage gain G
Frequency characteristics F
Total higher harmonic distortion
Input dynamic range D
IL1 426078k
OL1 120
L2 TP7 Sine wave 2.5VP-P, 1kHz
L2 TP7 Sine wave 2.5VP-P, 1MHz/1kHz
THDL2 TP7 Sine wave 2.5VP
L2 SG6 Maximum input for total higher 2.6 2.8 Vrms
Output offset voltage VOFFL222
Output impedance Z
R
OUT1 output
Voltage gain
Frequency characteristics F
Total higher harmonic distortion
Input dynamic range D
OL2 120
R11 TP5 b7=0, Sine wave 2.5VP-P, 1kHz
G G
R12 TP5 b7=1, Sine wave 2.5VP-P, 1kHz
R1 TP5 Sine wave 2.5VP-P, 1MHz/1kHz
R1 TP5 Sine wave 2.5VP-P, 1kHz 0.03 0.1 %
THD
R1 SG7 Maximum input for total higher 2.6 2.8 Vrms
Output offset voltage VOFFR132
Input impedance Z
Output impedance Z
IR1 426078k
OR1 120
Conditions (unless otherwise indicated,
Measurement Circuit Figure 1)
Min. Typ. Max. Units
Vn-Y : Sine wave 100kHz
harmonic distortion factor < 1.0%
V
IN1 : Sine wave 100kHz
harmonic distortion factor < 1.0%
Vn-C : Sine wave 1.0V
CIN1 : Sine wave 2.0V
-
C : Sine wave 1.0VP
Vn
10MHz/100kHz
C
IN1 : Sine wave 2.0VP-P
10MHz/100kHz
IN1 : Staircase 2VP-P
C
APL=10~90%
C
IN1 : Staircase 2VP-P
APL=10~90%
P-P
, 100kHz
P-P
, 100kHz-0.5 0 0.5
-
P
5.5 6.0 6.5
-
1.0 0 1.0
-
1.0 0 1.0
-
30 3 %
-
3 0 3 deg
Vn-C : Sine wave 100kHz
harmonic distortion factor < 1.0%
CIN1: Sine wave 100kHz
harmonic distortion factor < 1.0%
-
C, CIN1 101520k
-
6.5-6.0-5.5
-
0.5 0.0 0.5
-
3.0 0 1.0 dB
-
P, 1kHz 0.03 0.1 %
Sine wave 1kHz
harmonic distortion factor < 0.5%
L
OUT1 pin DC difference during
SW switching
-
0.5 0.0 0.5 dB
-
3.0 0 1.0 dB
-
P, 1kHz 0.03 0.1 %
Sine wave 1kHz
harmonic distortion factor < 0.5%
OUT2 pin DC difference during
L
SW switching
-
6.5-6.0-5.5
-
0.5 0.0 0.5
-
3.0 0 1.0 dB
Sine wave 1kHz
harmonic distortion factor < 0.5%
R
OUT1 pin DC difference during
SW switching
P-P
V
dB
dB
V
P-P
dB
0 ±15 mV
0 ±15 mV
dB
0 ±15 mV
23
MITSUMI
SDA
SCL
t
BUF
P PS
tHD:STA tHD:DAT tHIGH tSU:DAT tSU:STA tSU:STD
tLOW
Sr
t
R tF
2
C BUS Control 5-Input 2-Output AV Switch MM1313
I
Item Symbol
Measure ment pin
ROUT2 output
Voltage gain G
Frequency characteristics F
Total higher harmonic distortion
Input dynamic range D
R2 TP8 Sine wave 2.5VP-P, 1kHz
R2 TP8 Sine wave 2.5VP-P, 1MHz/1kHz
THDR2 TP8 Sine wave 2.5VP
R2 SG7 Maximum input for total higher 2.6 2.8 Vrms
Output offset voltage VOFFR224
Output impedance Z
OR2 120
Crosswalk
V
OUT 1 CTV1 TP1 OUT 2 CTV2 TP2
V Y
OUT 1 CTY1 TP3
OUT 1 CTC1 TP6
C
L
OUT 1 CTL1 TP4 OUT 2 CTL2 TP5 Measurement Circuit Figure 2
L
R
OUT 1 CTR1 TP7 1kHz, 2.5VP-P
R
OUT 2 CTR2 TP8
Video I/O Pin Voltage
Input pin voltage V
VIP No signal, no load 4.6 4.9 5.2 V
VOP
V
Output pin voltage
V
SOP
Audio I/O Pin Voltage
Input pin voltage V
Output pin voltage V
AIP No signal, no load 4.0 4.3 4.6 V
AOP No signal, no load 3.9 4.2 4.5 V
Logic section (Refer to figure below)
Input voltage L V
Input voltage H V
Low level output voltage (SDA)
High level input current I
Low level input current I
Clock frequency f
Data transmission waiting time
SCL start hold time t
SCL low level hold time t
SCL high level hold time t
SCL start set-up time t
SDA data hold time t
SDA data set-up time t
SCL rise time t
SCL fall time t
SCL stop set-up time t
IL I
IH
VOL SDA for 3mA inflow 0.0 0.4 V
IH when SDA, SCL=4.5V impressed IL when SDA, SCL=0.4V impressed
SCL 100 kHz
BUF 4.7 µS
t
HD;STA 4.0 µS
LOW 4.7 µS
HIGH 4.0 µS
SU;STA 4.7 µS
HD;DAT 200 nS
SD;DAT 250 nS
R 1000 nS
F 300 nS
SU;STO 4.0 µS
Conditions (unless otherwise indicated,
Measurement Circuit Figure 1)
-
P, 1kHz 0.03 0.1 %
Min. Typ. Max. Units
-
0.5 0.0 0.5 dB
-
3.0 0 1.0 dB
Sine wave 1kHz
harmonic distortion factor < 0.5%
R
OUT2 pin DC difference during
switching
Measurement Circuit Figure 2 for SG1 input : 4.43MHz, 1V for SG2 input : 4.43MHz, 0.5V
VOUT1 pin, VOUT2 pin
No signal, no load
YOUT1 pin, COUT1 pin
No signal, no load
2
C logic low level discrimination value 0.0 1.5 V
2
I
Clogic high level discrimination value 3.0 5.0 V
P-P
P-P
4.1 4.4 4.7 V
3.3 3.6 3.9 V
-
-
0 ±15 mV
-
60-53 dB
-
60-53 dB
-
60-53 dB
-
60-53 dB
-
90-80 dB
-
90-80 dB
-
90-80 dB
-
90-80 dB
10 +10 µA 10 +10 µA
I2C BUS BUS Control Signal
24
MITSUMI
Measurement Circuit
Measurement Circuit 1
2
C BUS Control 5-Input 2-Output AV Switch MM1313
I
25
MITSUMI
Measurement Circuit 2 (Crosstalk measurement)
2
C BUS Control 5-Input 2-Output AV Switch MM1313
I
26
2
SDA
SCL
S
123456 78A123 8A P
S:Start Condition P:Stop Condition A:Acknowledge
C BUS Control 5-Input 2-Output AV Switch MM1313
MITSUMI
I
I2C BUS
The I2C BUS is a BUS system developed by Philips for internal use in equipment. Data transmission is carried out by the two SDA and SCL lines, in byte units, with the MSB first from start condition.
[Control Register]
The control register contains data sent from the master in order to determine the status of each switch.
S
Slave address
1001000/10
R/W
A
Control register 1
b7 b6 b5 b4 b3 b2 b1 b0
A
Control register 2
b7 b6 b5 b4 b3 b2 b1 b0
AP
Address byte Control data
The data format is set as shown in the figure above. The first 7 bits in the address byte are allocated to the slave address, and the remaining 1 bit is allocated to the read/write bit. The read/write bit is set at 0 when using as a control register. The MM1313 slave address can be selected as 90H/92H depending on the status of the ADR pin. When ADR pin is low it is 90H. The relationship between the control register bits and switch control is as shown below.
b7 b6 b5 b4 b3 b2 b1 b0
Audio
S/Comp
Video-Select Audio-Select
Gain Select
The control register bits are reset to 0 when power is applied. MM1313 control is carried out by the 3-byte structure of the 1 address byte and 2 control data bytes. The first byte in the control data is control data for output 1, and the remaining 1 byte is control data for output 2. All of the remaining data (fourth byte and after) are ignored. Refer to the separate tables for details on switch control.
27
2
Reset released
Reset status
Undefined
0.6V 4.3V 5.4V V
CC
C BUS Control 5-Input 2-Output AV Switch MM1313
MITSUMI
I
[Status Register]
The status register contains data for sending device status to the master.
S
A
Slave address R/W
Status register
NA P
1001000/11 b7b6b5b4b3b2b1b0
Address byte Status data
The data format is set as shown in the figure above. The first 7 bits in the address byte are allocated to the slave address, and the remaining 1 bit is allocated to the read/write bit. The read/write bit is set at 1 when using as a status register. The MM1313 slave address can be selected as 91H/93H depending on the status of the ADR pin. When the ADR pin is low it is 91H. However, the confirmation response after completion of the status register should be non-acknowledge. The status register output data as shown below.
b7 b6 b5 b4 b3 b2 b1 b0
P-ON S1 S1 S2 S2
RESET
OPEN SEL OPEN SEL
P-ON RESET : Returns 1 for power on reset. However once data read begins, 0 is returned next. S1/S2 OPEN : Returns 0 when the S1/S2 pin is not open, and returns 1 when the S1/S2 pin is open S1/S2 SEL : Returns 0 when the S1/S2 pin is not grounded, and returns 1 when the S1/S2 pin is grounded.
S1/S2 OPEN, SEL have 3-value discrimination, and the combinations are as shown below.
S1/S2 pin DC voltage S1/S2 OPEN S1/S2 SEL
0.8V or less 01
1.3V or more, 3.5V or less
00
4.5V or more 10
[Power On Reset]
Power on reset is built in to reset each control register to 0 when power is turned on. Power on reset threshold has hysteresis as shown in the figure below. The IC power on reset status can be discriminated by reading the status register P-ON RESET.
28
Loading...
+ 82 hidden pages