Baumer SXC10, SXC20, SXC21, SXC40, SXC80 User Manual

...
Baumer SXC v1
User's Guide for CameraLink® Cameras with Truesense Imaging Sensors
Table of Contents
1. General Information ................................................................................................. 6
2. General safety instructions ..................................................................................... 7
3. Intended Use ............................................................................................................. 7
4. General Description ................................................................................................. 7
5. Camera Models ......................................................................................................... 8
5.1. SXC – Cameras with C-Mount ............................................................................... 8
5.2. SXC-F – Cameras with F-Mount ............................................................................ 9
6. ProductSpecications .......................................................................................... 10
6.1.  Sensor Specications .......................................................................................... 10
6.1.1.  Quantum Efciency for Baumer SXC Cameras ............................................ 10
6.1.2. Shutter ........................................................................................................... 10
6.1.3. Readout Modes ..............................................................................................11
6.2. Timings ................................................................................................................. 13
6.2.1. Free Running Mode ....................................................................................... 13
6.2.2. Trigger Mode ................................................................................................. 14
6.3. Field of View Position ........................................................................................... 18
6.4. Process- and Data Interface ................................................................................ 19
6.4.1. Pin-Assignment CameraLink
®
Interface ........................................................ 19
6.4.2.  Pin-Assignment Power Supply and Digital IOs ............................................. 19
6.4.3. LED Signaling ................................................................................................ 19
6.5. Environmental Requirements ............................................................................... 20
6.5.1.  Temperature and Humidity Range ................................................................. 20
6.5.2. Heat Transmission ......................................................................................... 20
6.5.3. Mechanical Tests ........................................................................................... 21
7. Software .................................................................................................................. 22
7.1.  Baumer GAPI ....................................................................................................... 22
8. Camera Functionalities .......................................................................................... 23
8.1. Image Acquisition ................................................................................................. 23
8.1.1. Image Format ................................................................................................ 23
8.1.2. Pixel Format .................................................................................................. 24
8.1.3. Exposure Time............................................................................................... 26
8.1.4. Look-Up-Table ............................................................................................... 27
8.1.5.  Region of Interest (ROI) ................................................................................ 27
8.1.6. Partial Scan Readout .................................................................................... 27
8.1.7.  Binning........................................................................................................... 29
8.1.8.  Brightness Correction (Binning Correction) ................................................... 30
8.2.  Color Adjustment – White Balance ...................................................................... 30
8.2.1.  User-specic Color Adjustment ..................................................................... 30
8.2.2.  One Push White Balance .............................................................................. 30
8.3. Analog Controls .................................................................................................... 31
8.3.1.  Black Level .................................................................................................... 31
8.3.2.  Gain ............................................................................................................... 31
8.4. Pixel Correction .................................................................................................... 32
8.4.1.  General information ....................................................................................... 32
8.4.2. Correction Algorithm ...................................................................................... 32
8.4.3. Defectpixellist ................................................................................................ 33
8.5. Process Interface ................................................................................................. 33
8.5.1.  Digital IOs ...................................................................................................... 33
8.5.2. Trigger Input .................................................................................................. 35
8.5.3. Trigger Source ............................................................................................... 35
8.5.4. Debouncer ..................................................................................................... 36
8.5.5. Flash Signal ................................................................................................... 36
8.6. User Sets ............................................................................................................. 37
8.7.  Factory Settings ................................................................................................... 37
9. CameraLink
®
........................................................................................................... 38
9.1.  Channel Link and LVDS Technology .................................................................... 38
9.2. Camera Signals ................................................................................................... 38
9.2.1. Serial Communication ................................................................................... 38
9.2.2. Camera Control ............................................................................................. 39
9.2.3. Video Data ..................................................................................................... 39
9.3. Chip and Port Assignment ................................................................................... 39
9.4. CameraLink
®
Taps ................................................................................................ 40
9.4.1.  Tap Conguration .......................................................................................... 40
9.4.2.  Tap Geometry ................................................................................................ 42
10. Cleaning .................................................................................................................. 43
11. Transport / Storage ................................................................................................ 43
12. Disposal .................................................................................................................. 44
13. Warranty Notes ....................................................................................................... 44
14. Lens Mounting ........................................................................................................ 44
15. Support .................................................................................................................... 45
16. Conformity .............................................................................................................. 46
16.1. CE ...................................................................................................................... 46
16.2.  FCC – Class B Device ....................................................................................... 46
General Information1.
Read  these  manual  carefully  and  observe  the  notes  and  safety  instruc­tions!
Thank you for purchase a camera of the Baumer family. This User´s Guide describes how 
to connect, set up and use the camera.
Keep the User´s guide store in a safe place and transmit them to the eventually following 
users. Please also note the provided technical data sheet.
Target group for this User´s Guide
This  User's  Guide  is  aimed  at  experienced  business  users,  which  want  to  integrate  camera(s) into a vision system. 
Copyright
Any duplication or reprinting of this documentation, in whole or in part, and the reproduc­tion of the illustrations even in modied form is permitted only with the written approval of  Baumer. This document is subject to change without notice.
Classicationofthesafetyinstructions
In the User´s Guide, the safety instructions are classied as follows:
Notice
Gives helpful notes on operation or other general recommendations.
Caution
Pi ctogram
Indicates a possibly dangerous situation. If the situation is not avoided, slight  or minor injury could result or the device may be damaged.
General safety instructions2.
Observe the the following safety instructions when using the camera to avoid any damage 
or injuries.
Caution
Provide adequate dissipation of heat, to ensure that the temperature does not exceed +60°C (+140°F).
The surface of the camera may be hot during operation and immediately  after use. Be careful when handling the camera and avoid contact over a 
longer period.
Caution
A power supply with electrical isolation is required for proper operation of the  camera. Otherwise the device may be damaged!
Intended Use3.
The camera is used to capture images that can be transferred over one CameraLink® interface to a PC.
Notice
Use the camera only for its intended purpose! For any use that is not described in the  technical documentation  poses dangers and will void the warranty. The risk has to be  borne solely by the unit´s owner.
General Description4.
1
2
3
4
5
No. Description No. Description
1 (respective) lens mount  4
CameraLink
®
 Base socket
2 Power supply 5 Signaling-LED
3 Digital-IO supply
Camera Models5.
SXC – Cameras with C-Mount5.1.
Camera Type
Sensor
Size
Resolution
Full
Frames
[max. fps]
Monochrome
SXC10 1/2" 1024 x 1024 120
SXC20 2/3" 1600 x 1200 68
SXC21 2/3" 1920 x 1080 64
SXC40 1" 2336 x 1752 32
SXC80 4/3" 3296 x 2472 16
Color
SXC10c 1/2" 1024 x 1024 120
SXC20c 2/3" 1600 x 1200 68
SXC21c 2/3" 1920 x 1080 64
SXC40c 1" 2336 x 1752 32
SXC80c 4/3" 3296 x 2472 16
Dimensions
26
36
16 x M3 d epth 6
UNC 1 /4-20
4 x M3 depth 6
52
52
36
26
36
36
54
36
26
Figure1►
Front and rear view of a
Baumer SXC camera.
Figure2►
Dimensions of a
Baumer SXC camera
5.2. SXC-F – Cameras with F-Mount
Camera Type
Sensor
Size
Resolution
Full
Frames
[max. fps]
Monochrome
SXC21-F 2/3" 1920 x 1080 64
SXC40-F 1" 2336 x 1752 32
SXC80-F 4/3" 3296 x 2472 16
Color
SXC21c-F 2/3" 1920 x 1080 64
SXC40c-F 1" 2336 x 1752 32
SXC80c-F 4/3" 3296 x 2472 16
Dimensions
26
36
26
36
16 x M3 depth 6
UNC 1/4-20
52
52
26
36
55
◄Figure3
Front view  of a Baumer 
SXC-F camera.
◄Figure4
Dimensions of a Baumer SXC-F camera.
10
ProductSpecications6.
6.1. SensorSpecications
6.1.1. QuantumEfciencyforBaumerSXCCameras
The  quantum  efciency  characteristics  of  monochrome  and  color  matrix  sensors  for  Baumer SXC cameras are displayed in the following graphs. The characteristic curves for  the sensors do not take the characteristics of lenses and light sources without lters into 
consideration, but are measured with an AR coated cover glass.
Values relating to the respective technical data sheets of the sensors manufacturer.
350 450 550 650 750 850 950 1050
Wave Length [nm]
Quantum Efficiency [%]
SXC (monochrome)
350 450 550 650 750 850 950 1050
Wave Length [nm]
Quantum Efficiency [%]
SXC (color)
6.1.2. Shutter
All cameras of the SX series are equipped with a global shutter.
Pixel
Active Area (Photodiode)
Storage Area
Microlens
Global shutter means that all pixels of the sensor are reset and afterwards exposed for a  specied interval (t
exposure
). 
For  each  pixel  an  adjacent  storage  area  exists.  Once  the  exposure time elapsed, the information  of  a  pixel  is  transferred  immediately  to  its  storage  area  and  read  out  from 
there.
Due to the fact that photosensitive surface gets "lost" by the implementation of the storage  area, the pixels are mostly equipped with microlenses, which focus the light to the pixels 
active area.
Figure5►
Quantum efciency for  Baumer SXC cameras.
Figure6►
Structure of an imaging sensor with global shut-
ter (interline).
11
6.1.3. Readout Modes
The Truesense Imaging sensors, employed in Baumer SXC cameras, are subdivided into 
four Taps.
Due to  Baumer's integrated calibration  technique, these taps are invisible within the re­corded images, but affect the operation and the rate of the readout process and therewith the readout time (t
readout
).
Quad Mode6.1.3.1.
On quad readout mode all four taps are read out simultaneously as displayed in the sub­sequent gure.
The data of all pixels of one tap are moved to the output register and afterwards trans-
fered to the memory.
Once the information have left the output register, the readout is done. 
This mode provides the full potential of the sensor and leads to the maximum frame rate.
Dual Mode6.1.3.2.
On  dual  readout  mode  two  taps  (Tap 0 + Tap 2 and Tap 1 + Tap  3)  are  combined. 
The data of all pixels of one tap are moved to the output register and afterwards trans-
fered to the memory.
Once the information have left the output register, the readout is nished. 
Due to the fact, that more data needs to be read out, the t
readout
is increased compared to
the quad readout mode.
It is considered:   t
readout(Dual Mode)
 ≈ 2 × t
readout(Quad Mode)
◄Figure7
Taps of the employed 
sensors.
◄Figure8
Quad Tap Readout Mode.
◄Figure9
Dual Tap Readout Mode.
12
Single Mode6.1.3.3.
In single readout mode all taps are combined as displayed in the subsequent gure.
The data of all pixels of the sensor are moved to the output register and afterwards trans-
fered to the memory.
Once the information have left the output register, the readout is done. 
Due to the fact, that the complete sensor needs to be read out, the readout time t
readout
is
increased compared to quad and dual readout mode.
It is considered:   t
readout(Single Mode)
 ≈ 4 × t
readout(Quad Mode)
Figure10►
Single Tap Readout Mode.
13
Timings6.2.
The image acquisition consists of two seperate, successively processed components.
Exposing the pixels on the photosensitive surface of the sensor is only the rst part of the  image acquisition. After completion of the rst step, the pixels are read out.
Thereby the exposure time (t
exposure
) can be adjusted by the user, however, the time need-
ed for the readout (t
readout
) is given by the particular sensor and image format.
Baumer  cameras  can  be  operated  with  two  modes,  the  Free Running Mode and the
Trigger Mode.
The cameras can be operated non-overlapped
*)
or overlapped. Depending on the mode
used, and the combination of exposure and readout time:
Non-overlapped Operation Overlapped Operation
Here the time intervals are long enough to process exposure and readout succes-
sively.
In this operation the exposure of a frame
(n+1) takes place during the readout of  frame (n).
Exposure
Readout
Exposure
Readout
6.2.1. Free Running Mode
In the "Free Running" mode the camera records images permanently and sends them to 
the PC. In order to achieve an optimal (with regard to the adjusted exposure time t
exposure
and image format) the camera is operated overlapped.
In case of exposure times equal to / less than the readout time (t
exposure
 ≤ t
readout
), the maxi­mum frame rate is provided for the image format used. For longer exposure times the frame rate of the camera is reduced.
Exposure
Readout
Flash
t
exposure(n)
t
flash(n)
t
flashdelay
t
flash(n+1)
t
readout(n+1)
t
readout(n)
t
exposure(n+1)
t
ash
= t
exposure
Notice
For the employment of partial scan, the camera needs to be stopped.
*) Non-overlapped means the same as sequential.
Image parameters:
Offset Gain
Mode
Partial Scan
Timings:
A - exposure time frame (n) effective B - image parameters frame (n) effective C - exposure time frame (n+1) effective D - image parameters frame (n+1) effective
14
6.2.2. Trigger Mode
After a  specied external event (trigger) has occurred, image acquisition  is started. De­pending on the interval of triggers used, the camera operates non-overlapped or over­lapped in this mode.
With regard to timings in the trigger mode, the following basic formulas need to be taken
into consideration:
Case Formula
t
exposure
< t
readout
(1) t
earliestpossibletrigger(n+1)
= t
readout(n)
- t
exposure(n+1)
(2) t
notready(n+1)
= t
exposure(n)
+ t
readout(n)
- t
exposure(n+1)
t
exposure
> t
readout
(3) t
earliestpossibletrigger(n+1)
= t
exposure(n)
(4) t
notready(n+1)
= t
exposure(n)
6.2.2.1. Overlapped Operation: t
exposure(n+2)
= t
exposure(n+1)
In overlapped operation attention should be paid to the time interval where the camera is unable to process occuring trigger signals (t
notready
). This interval is situated between two 
exposures. When this process time t
notready
has elapsed, the camera is able to react to
external events again.
After t
notready
 has elapsed, the timing of (E) depends on the readout time of the current im-
age (t
readout(n)
) and exposure time of the next image (t
exposure(n+1)
). It can be determined by the 
formulas mentioned above (no. 1 or 3, as is the case).
In case of identical exposure times, t
notready
remains the same from acquisition to acquisi-
tion.
Exposure
Readout
t
exposure(n)
t
readout(n+1)
t
readout(n)
t
exposure(n+1)
t
triggerdelay
t
min
Trigger
Flash
t
flash(n)
t
flashdelay
t
flash(n+1)
TriggerReady
t
notready
Image parameters:
Offset Gain
Mode
Partial Scan
Timings:
A - exposure time frame (n) effective B - image parameters frame (n) effective C - exposure time frame (n+1) effective D - image parameters frame (n+1) effective E - earliest possible trigger
15
Overlapped Operation: t6.2.2.2.
exposure(n+2)
> t
exposure(n+1)
If the exposure time (t
exposure
) is increased form the current acquisition to the next acquisi-
tion, the time the camera is unable to process occuring trigger signals (t
notready
) is scaled 
down.
This can be simulated with the formulas mentioned above (no. 2 or 4, as is the case).
Exposure
Readout
t
exposure(n)
t
readout(n+1)
t
readout(n)
t
exposure(n+1)
t
exposure(n+2)
t
triggerdelay
t
min
Trigger
Flash
t
flash(n)
t
flashdelay
t
flash(n+1)
TriggerReady
t
notready
Image parameters:
Offset Gain
Mode
Partial Scan
Timings:
A - exposure time frame (n) effective B - image parameters frame (n) effective C - exposure time frame (n+1) effective D - image parameters frame (n+1) effective E - earliest possible trigger
16
6.2.2.3. Overlapped Operation: t
exposure(n+2)
< t
exposure(n+1)
If the exposure time (t
exposure
) is decreased from the current acquisition to the next acquisi-
tion, the time the camera is unable to process occuring trigger signals (t
notready
) is scaled 
up.
When decreasing the t
exposure
such, that t
notready
exceeds the pause between two incoming
trigger signals, the camera is unable to process this trigger and the acquisition of the im-
age will not start (the trigger will be skipped).
Exposure
Readout
t
exposure(n)
t
readout(n+1)
t
readout(n)
t
exposure(n+1)
t
exposure(n+2
t
triggerdelay
t
min
Trigger
Flash
t
flash(n)
t
flashdelay
t
flash(n+1)
TriggerReady
t
notready
Notice
From a certain frequency of the trigger signal, skipping triggers is unavoidable. In gen­eral, this frequency depends on the combination of exposure and readout times.
Image parameters:
Offset Gain
Mode
Partial Scan
Timings:
A - exposure time frame (n) effective B - image parameters frame (n) effective C - exposure time frame (n+1) effective D - image parameters frame (n+1) effective E - earliest possible trigger F - frame not started / trigger skipped
17
6.2.2.4. Non-overlapped Operation
If the frequency of the trigger signal is selected for long enough, so that the image acquisi­tions (t
exposure
+ t
readout
) run successively, the camera operates non-overlapped.
Exposure
Readout
t
exposure(n)
t
readout(n+1)
t
readout(n)
t
exposure(n+1)
t
triggerdelay
t
min
Trigger
Flash
t
flash(n)
t
flashdelay
t
flash(n+1)
TriggerReady
t
notready
Image parameters:
Offset Gain
Mode
Partial Scan
Timings:
A - exposure time frame (n) effective B - image parameters frame (n) effective C - exposure time frame (n+1) effective D - image parameters frame (n+1) effective E - earliest possible trigger
18
6.3. Field of View Position
The typical accuracy by assumption of  the  root  mean  square  value  is  displayed  in  the  gures and the table below:
±x
R
±y
R
Photosensitive surface of the
sensor
Camera
Type
± x
M,typ
[mm]
± y
M,typ
[mm]
± x
R,typ
[mm]
± y
R,typ
[mm]
± β
typ
[°]
± z
typ
[mm]
(C-Mount)
± z
typ
[mm]
(F-Mount)
SXG10 0,11 0,11 0,11 0,11 0,51 0,025 -
SXG20 0,11 0,11 0,11 0,11 0,51 0,025 -
SXG21 0,11 0,11 0,11 0,11 0,51 0,025 0,05
SXG40 0,11 0,11 0,11 0,11 0,55 0,025 0,05
SXG80 0,11 0,11 0,11 0,11 0,47 0,025 0,05
Figure11►
Sensor accuracy of  Baumer SXC cameras.
19
Process- and Data 6.4. Interface
6.4.1. Pin-Assignment CameraLink® Interface
BaseCameraLink
®
1 GND 10 CC2+ 19 X3+
2 X0- 11 CC3- 20 SERTC-
3 X1- 12 CC4+ 21 SERTFG+
4 X2- 13 GND 22 CC1+
5 XCLK- 14 GND 23 CC2-
6 X3- 15 X0+ 24 CC3+
7 SERTC+ 16 X1+ 25 CC4-
8 SERTFG- 17 X2+ 26 GND
9 CC1- 18 XCLK+
6.4.2. Pin-Assignment Power Supply and Digital IOs
Notice
A power supply with electrical isolation is required for proper operation of the camera.  Otherwise the device may be damaged.
M8 / 3 pins M8 / 8 pins
1
4
3
8
5
7 3
1
4
2
6
1 brown Power V
CC
1 white Line 9
3 blue GND 2 brown Line 1
4 black NC 3 green Line 0
4 yellow GND
5 grey U
ext
6 pink Line 7
7 blue Line 8
8 red Line 2
6.4.3. LED Signaling
2
1
LED Signal Meaning
green Power on
yellow Readout active
green Transmitting
red (yellow in both) Conguration command processing
◄Figure7
LED positions on Baumer SXC 
cameras.
20
6.5. Environmental Requirements
6.5.1. Temperature and Humidity Range
*)
Temperature
Storage temperature -10°C ... +70°C ( +14°F ... +158°F)
Operating temperature* +5°C ... +60°C (+41°F ... +140°F)
Housing temperature
**)***)
max. +60°C (+140°F)
* For environmental temperatures ranging from (value A) to (value B), please pay atten­tion to the max. housing temperature. The values are listed in the table below:
Caution
Provide adequate dissipation of heat, to ensure that the temperature does not exceed +60°C (+140°F).
The surface of the camera may be hot during operation and immediately  after use. Be careful when handling the camera and avoid contact over a 
longer period.
Humidity
Storage and Operating Humidity 10% ... 90%
Non-condensing
T
6.5.2. Heat Transmission
It is very important to provide adequate  dissipation  of  heat,  to  ensure  that  the  housing  temperature does not reach or exceed +60°C (+140°F). As there are numerous possibili­ties for installation, Baumer do not speciy a specic method for proper heat dissipation,  but suggest the following principles:
operate the cameras only in mounted condition mounting in combination with forced convection may provide proper heat dissipation
*) Please refer to the respective data sheet. **)  Measured at temperature measurement point (T). ***)  Housing temperature is limited by sensor specications.
Figure12►
Temperature measure-
ment points of Baumer 
SXC cameras.
21
Mechanical Tests6.5.3.
Environmental Testing
Standard Parameter
Vibration, sinu­sodial
IEC 60068-2-6 Search for Reso-
nance
10-2000 Hz
Amplitude under­neath crossover frequencies
1.5 mm
Acceleration 1 g
Test duration 15 min
Vibration, broad band
IEC 60068­2-64
Frequency range 20-1000 Hz
Acceleration 10 g
Displacement 5.7 mm
Test duration 300 min
Shock IEC 60068-
2-27
Puls time 11 ms / 6
ms
Acceleration 50 g / 100 g
Bump IEC60068-2-
29
Pulse Time 2 ms
Acceleration 80 g
22
7. Software
7.1. BaumerGAPI
Baumer GAPI stands for Baumer “Generic Application Programming Interface”. With this API Baumer  provides an interface for optimal integration and  control of Baumer Gigabit  Ethernet (GigE) , Baumer CameraLink® and Baumer FireWire™ (IEEE1394) cameras. 
This software interface allows changing to other camera models or interfaces. It also al-
lows the simultaneous operation of Baumer cameras with Gigabit Ethernet, CameraLink
®
and FireWire™ interfaces. 
It provides interfaces to several programming languages, such as C, C++ and the .NET™ 
Framework on Windows
®
, as well as Mono on Linux® operating systems, which offers the 
use of other languages, such as e.g. C# or VB.NET.
Notice
There  is  currently  no  Baumer  GAPI  version  for  Linux  available  with  support  for  CameraLink®.
Notice
Please  note  the  extra  instructions  to  the  software  Baumer  GAPI.  Specically  for  CameraLink® Cameras, the "User´s Guide CLCong Tool".
23
Camera Functionalities8.
8.1. Image Acquisition
8.1.1. Image Format
A digital camera usually delivers image data in at least one format - the native resolution  of the sensor. Baumer cameras are able to provide several image formats (depending on  the type of camera).
Compared  with  standard  cameras,  the  image  format  on  Baumer  cameras  not  only  in­cludes resolution, but a set of predened parameter.
These parameters are:
▪ Resolution (horizontal and vertical dimensions in pixels) ▪ Binning Mode (see chapter 4.1.7)
Camera Type
Full frame
Binning 2x2
Binning 1x2
Binning 2x1
Monochrome
SXC10
SXC20
SXC21
SXC40
SXC80
Color
SXC10c
SXC20c
SXC21c
SXC40c
SXC80c
24
8.1.2. Pixel Format
On Baumer digital cameras the pixel format depends on the selected image format.
Denitions8.1.2.1.
RAW: Raw data format. Here the data are stored without processing.
Bayer: Raw data format of color sensors.
Color lters are placed on these sensors in a checkerboard pattern, generally  in a 50% green, 25% red and 25% blue array.
Mono: Monochrome. The color range of mono images consists of shades of a single
color. In general, shades of gray  or  black-and-white are synonyms for mono-
chrome.
RGB: Color model, in which all detectable colors are dened by three coordinates, 
Red, Green and Blue.
Red
Green
Blue
Black
White
The three coordinates are displayed within the buffer in the order R, G, B. 
BGR: Here the color alignment mirrors RGB.
YUV: Color model, which is used in the PAL TV standard and in image compression.
In YUV, a high bandwidth luminance signal (Y: luma information) is transmitted  together with two color difference signals with low bandwidth (U and V: chroma  information). Thereby U represents the difference between blue and luminance  (U = B - Y), V is the difference between red and luminance (V = R - Y). The third 
color, green, does not need to be transmitted, its value can be calculated from the other three values.
YUV 4:4:4 Here each of the three components has the same sample rate.
Therefore there is no subsampling here.
YUV 4:2:2 The chroma components are sampled at half the sample rate.
This reduces the necessary bandwidth to two-thirds (in relation to  4:4:4) and causes no, or low visual differences.
YUV 4:1:1 Here the chroma components are sampled at a quater of the
sample rate.This decreases the necessary bandwith by half (in  relation to 4:4:4).
Figure13►
Sensor with Bayer  Pattern.
Figure14►
RBG color space dis­played as color tube.
25
Pixel depth: In general, pixel depth denes the number  of  possible  different values for 
each color  channel. Mostly this will be 8 bit, which  means 28 different "col-
ors".
For RGB or BGR these 8 bits per channel equal 24 bits overall.
8 bit:
Byte 1 Byte 2 Byte 3
10 bit:
Byte 1 Byte 2
unused bits
12 bit:
Byte 1 Byte 2
unused bits
8.1.2.2. PixelFormatsonBaumerSXCCameras
Camera Type
Mono 8
Mono 10
Mono 12
Bayer RG 10
Bayer RG 12
Monochrome
SXC10
SXC20
SXC21
SXC40
SXC80
Color
SXC10c
SXC20c
SXC21c
SXC40c
SXC80c
◄Figure15
Bit string of Mono 8 bit and RGB 8 bit.
◄Figure17
Spreading of Mono 12
bit over two bytes.
◄Figure16
Spreading of Mono 10
bit over 2 bytes.
26
8.1.3. Exposure Time
On exposure  of the sensor, the inclination of photons  produces a charge  separation on 
the semiconductors of the pixels. This results in a voltage difference, which is used for signal extraction.
Light
Photon
Pixel
Charge Carrie
r
The signal strength is inuenced by the incoming amount of photons. It can be increased  by increasing the exposure time (t
exposure
).
On Baumer SXC cameras, the exposure time can be set within the following ranges (step size 1μsec):
Camera Type t
exposure
min t
exposure
max
Monochrome
SXC10 4 μsec 1 sec
SXC20 5 μsec 1 sec
SXC21 5 μsec 1 sec
SXC40 7 μsec 1 sec
SXC80 7 μsec 1 sec
Color
SXC10c 4 μsec 1 sec
SXC20c 5 μsec 1 sec
SXC21c 5 μsec 1 sec
SXC40c 7 μsec 1 sec
SXC80c 7 μsec 1 sec
Figure18►
Incidence of light causes charge separation on the semiconductors of the sensor.
27
Look-Up-Table8.1.4.
The Look-Up-Table (LUT) is employed on Baumer monochrome cameras. It contains 212 (4096) values for the available levels of gray. These values can be adjusted by the user.
Region of Interest (ROI)8.1.5.
With the ROI function it is possible to predene a so-called Region of Interest (ROI). This  ROI is an area of pixels of the sensor. On image acquisition, only the information of these 
pixels is sent to the PC. Therefore all the lines of the sensor need not be read out, which decreases the readout time (t
readout
). This increases the frame rate.
This function is employed, when only a region of the eld of view is of interest. It is coupled 
to a reduction in resolution.
The ROI is specied by four values:
▪  X  - x-coordinate of the rst relevant pixel ▪  Y  - y-coordinate of the rst relevant pixel ▪ Size X  - horizontal size of the ROI ▪ Size Y  - vertical size of the ROI
Start ROI
End ROI
8.1.6. Partial Scan Readout
For  the  readout  of  the  ROI,  the  vertical  subdivision  of  the  sensor  (see  2.1.3.  Readout Modes) is unimportant – only the horizontal subdivision is of note.
Both sensor halves are read out simultaneously as displayed in the subsequent gure.
The readout is line based, which means always a complete line of pixels needs to be read 
out and afterwards the irrelevant information is discarded.
Due to the fact, that the sensor halves are always read out symmetrically, the readout time 
t
readout
 is signicantly affected both by the size of the ROI and also by its position.
◄Figure19
Partial Scan: Parameters of the ROI.
◄Figure20
Partial Scan: Readout.
28
ROI
Pixel Information of Interrest
Discarted Pixel Information
Read out Lines
The most signicant reduction of the readout time – compared to a full frame readout in  dual mode – can be achieved if the ROI is positioned as follows:
within one of the sensor halves ▪ symmetrically spread to both sensor halves
For example, the readout time of the ROI's in the gures 21 and 22 is the same. 
On asymmetrically spread ROI's, the readout time  is  affected  by  the  bigger  part of the  ROI.
An example for this fact is shown in the gure below:
The ROI has the same size as in gure 21, but is not symmetrically spread to both sen-
sor halves. In this special case the time for the readout of the same number of pixels is
increased by 50%, caused only by ROI's position.
Figure21►
Partial Scan:
Read out Lines.
Figure22►
Partial Scan: Example  ROI's  with 
identical readout times.
Figure23►
Partial Scan:
Read out time linked
with position of the ROI.
29
8.1.7. Binning
On digital  cameras,  you  can  nd  several  operations  for  progressing sensitivity. One  of  them is the so-called "Binning". Here, the charge carriers of neighboring pixels are aggre­gated. Thus, the progression is greatly increased by the amount of binned pixels. By using  this operation, the progression in sensitivity is coupled to a reduction in resolution.
Baumer cameras support three types of Binning - vertical, horizontal and bidirectional.
In unidirectional binning, vertically or horizontally neighboring pixels are aggregated and 
reported to the software as one single "superpixel".
In bidirectional binning, a square of neighboring pixels is aggregated.
Binning Illustration Example
without
1x2
2x1
2x2
◄Figure24
Full frame image, no binning of pixels.
◄Figure25
Vertical binning causes
a vertically compressed 
image with doubled brightness.
◄Figure26
Horizontal binning
causes  a  horizontally 
compressed image with doubled brightness.
◄Figure27
Bidirectional  binning 
causes both a hori-
zontally  and  vertically 
compressed image with quadruple brightness.
30
8.1.8. BrightnessCorrection(BinningCorrection)
The aggregation of charge carriers may cause an overload. To prevent this, binning cor­rection was introduced. Here, three binning modes need to be considered separately:
Binninig Realization
1x2 1x2 binning is performed within the sensor, binning correction also takes
place here. A possible overload is prevented by halving the exposure time.
2x1 2x1 binning takes place within the FPGA of the camera. The binning cor-
rection is realized by aggregating the charge quantities, and then halving 
this sum.
2x2 2x2 binning is a combination of the above versions.
Charge quantity
Binning 2x2
Super pixel
To tal charge quantity of the 4 aggregated pixels
8.2. Color Adjustment – WhiteBalance
This feature is available on all color cameras of the Baumer SXC series and takes 
place within the Bayer processor.
White balance means independent adjustment of the three color channels, red,
green and blue by employing of a correction factor for each channel.
User-specic8.2.1. Color Adjustment
The user-specic color adjustment in Baumer color cameras facilitates adjustment of the  correction factors  for each color gain. This way, the user  is able to adjust the amplica­tion of each color channel exactly to his needs. The correction factors for the color gains  
range from 1 to 4.
non-adjusted
histogramm
histogramm after
user-specific
color adjustment
One Push 8.2.2. WhiteBalance
Here, the three color spectrums are balanced to a single white point. The correction fac-
tors of the color gains are determined by the camera (one time).
non-adjusted
histogramm
histogramm after
„one push“ white
balance
Figure28►
Aggregation of charge carriers from four pixels in bidirectional binning.
Figure30►
Examples of histo­gramms for a non­adjusted image and for an image after user-
specic white balance..
Figure31►
Examples of histo­gramms for a non-ad­justed image and for an image after "one push" white balance.
31
Analog Controls8.3.
BlackLevel8.3.1.
On Baumer  cameras, the offset (or black level) is adjustable from 0  to 16 LSB (relating  to 8 bit).
Camera Type Step Size1LSB
Relating to
Monochrome
SXC10 14 bit
SXC20 14 bit
SXC21 14 bit
SXC40 14 bit
SXC80 14 bit
Color
SXC10c 14 bit
SXC20c 14 bit
SXC21c 14 bit
SXC40c 14 bit
SXC80c 14 bit
8.3.2. Gain
In industrial environments motion blur is unacceptable. Due to this fact exposure times are limited. However, this causes low output signals from the camera and results in dark
images. To  solve  this  issue,  the  signals  can  be  amplied  by  a  user-dened  gain  factor 
within the camera. This gain factor is adjustable from 1 to 20.
Notice
Increasing the gain factor causes an increase of image noise.
32
8.4. Pixel Correction
General information8.4.1.
A certain probability for abnormal pixels - the so-called defect pixels -  applies to the sen­sors of all manufacturers. The charge quantity on these pixels is not linear-dependent on 
the exposure time.
The occurrence of these defect pixels is unavoidable and intrinsic to the manufacturing and aging process of the sensors.
The operation of the camera is not affected by these pixels. They only appear as brighter  (warm pixel) or darker (cold pixel) spot in the recorded image.
Warm Pixel
Cold Pixel
Charge quantity
„Normal Pixel“
Charge quantity „Cold Pixel“
Charge quantity „Warm Pixel“
Correction Algorithm8.4.2.
On  monochrome  cameras  of  the  Baumer  SXC  series,  the  problem  of  defect  pixels  is  solved as follows:
Possible defect pixels are identied during the production process of the camera.  The coordinates of these pixels are stored in the factory settings of the camera (see 
4.4.3. Defectpixellist). Once the sensor readout is completed, correction takes place:
Before any other processing, the values of the neighboring pixels on the left and the 
right side of the defect pixel, will be read out Then the average value of these 2 pixels is determined Finally, the value of the defect pixel is substituted by the previously determined  average value
Defect Pixel Average Value Corrected Pixel
Figure32►
Distinction of "hot" and "cold" pixels within the recorded image.
Figure33►
Charge quantity of "hot" 
and "cold" pixels com­pared with "normal" pixels.
Figure34►
Schematic diagram of
the Baumer pixel 
correction.
33
Defectpixellist8.4.3.
As stated previously, this list is determined within the production process of Baumer cam­eras and stored in the factory settings (see 4.8.).
Process 8.5. Interface
Digital IOs8.5.1.
Cameras of  the Baumer SX series are  equipped with three input lines  and three output 
lines.
IO8.5.1.1. Circuits
Notice
Low Active: At this wiring, only one consumer can be connected. When all Output pins  (1, 2, 3) connected to IO_GND, then current ows through the resistor as soon as one  Output is switched. If only one output connected to IO_GND, then this one is only us-
able.
The other two Outputs are not usable and may not be connected (e.g. IO Power V
CC
)!
Output high active Output low active Input
Camera Customer Device
IO Power V
CC
U
ext
Pin
R
L
I
OUT
IO GND
Out (n) Pin
Camera Customer Device
IO Power V
CC
R
L
I
OUT
IO GND
Out
U
ext
Pin (Out1, 2, 3)
Out1 or Out2 or Out3
CameraCustomer Device
IO GND
DRV
IN1 Pin
IN GND Pin
UserDenable8.5.1.2. Inputs
The wiring of these input connectors is left to the user.
Sole exception is the compliance with predetermined high and low levels (0 .. 4,5V low,
11 .. 30V high).
The dened signals will have no direct effect, but can be analyzed and processed on the 
software side and used for controlling the camera.
The employment of a so called "IO matrix" offers the possibility of selecting the signal and 
the state to be processed.
On the software side the input signals are named "Line0", "Line1" and "Line2". 
(Input) Line0
state high
state low
(Input) Line1
state high
state low
(Input) Line2
state high
state low
Line0
Line1
Line2
IO Matrix
state selection
(software side)
◄Figure35
IO matrix of the  Baumer  SXC  on  input 
side.
34
Congurable8.5.1.3. Outputs
With this feature, Baumer offers the possibility of wiring the output connectors to internal 
signals, which are controlled on the software side.
Hereby on cameras of the SX series, 14 signal sources – subdivided into three categories 
– can be applied to the output connectors.
The rst category of output signals represents a loop through of signals on the input side,  such as:
Signal Name Explanation
Line0 Signal of input "Line0" is loopthroughed to this ouput
Line1 Signal of input "Line1" is loopthroughed to this ouput
Line2 Signal of input "Line2" is loopthroughed to this ouput
FrameGrabberLine0 Signal of input "FrameGrabberLine0" is loopthroughed to 
this ouput
FrameGrabberLine1 Signal of input "FrameGrabberLine1" is loopthroughed to 
this ouput
FrameGrabberLine2 Signal of input "FrameGrabberLine2" is loopthroughed to 
this ouput
FrameGrabberLine3 Signal of input "FrameGrabberLine3" is loopthroughed to 
this ouput
Within the second category you will nd signals that are created on camera side:
Signal Name Explanation
FrameActive The camera processes a Frame consisting of exposure
and readout
ExposureActive Sensor exposure in progress
TransferActive Image transfer via hardware interface in progress
ReadyForTrigger Camera is able to process an incoming trigger signal
TriggerOverlapped The camera operates in overlapped mode
TriggerSkipped Camera rejected an incoming trigger signal
Beside the 11 signals mentioned above, each output can be wired to a user-dened  signal ("UserOutput0", "UserOutput1", "UserOutput2") or disabled ("OFF").
OFF
Line0
Lin
e1
L
ine2
FrameGrabb
e
rLine0
FrameGrabberLine1
FrameGrabberLine
2
FrameGrabberLine3
FrameActive
Expos
ur
e
Active
Trigg
e
r
Skip
ped
Tr
a
n
s
f
e
rAct
iv
e
UserOutput0
U
s
e
r
O
utpu
t1
UserOutput2
I
n
t
e
r
n
a
l
S
i
g
n
a
l
s
L
o
o
p
t
h
r
o
u
g
h
e
d
S
i
g
n
a
l
s
(Output) Line 7
state high
state low
(Output) Line 8
state high
state low
(Output) Line 9
state high
state low
IO Matrix
state selection
(software side)
signal selection
(software side)
U
s
e
r
d
e
f
i
n
e
d
S
i
g
n
a
l
s
Se
que
ncerOu
t
0...2
T
riggerO
ver
l
a
ppe
d
T
r
iggerR
e
ady
Figure36►
IO matrix of the  Baumer SXC on output 
side.
35
8.5.2. Trigger Input
Trigger signals are used to synchronize the camera exposure and a machine cycle or, in  case of a software trigger, to take images at predened time intervals.
Trigger (valid)
Exposure
Readout
Time
A
B
C
Different trigger sources can be used here.
8.5.3. Trigger Source
p
h
o
t
o
e
l
e
c
t
r
i
c
s
e
n
s
o
r
t
r
i
g
g
e
r
s
i
g
n
a
l
p
r
o
g
r
a
m
m
a
b
l
e
l
o
g
i
c
c
o
n
t
r
o
l
e
r
o
t
h
e
r
s
s
o
f
t
w
a
r
e
t
r
i
g
g
e
r
H
a
r
d
w
a
r
e
t
r
i
g
g
e
r
Each trigger source has to be activated separately. When the trigger mode is activated,  the hardware trigger is activated by default.
Figure37▲
Trigger signal, valid for
Baumer cameras.
high
low
U
t0
4.5V
11V
30V
◄Figure38
Camera in trigger
mode: A - Trigger delay B - Exposure time
C - Readout time
Trigger Delay:
The trigger delay is a exible user-dened delay between the given trigger impulse and the image cap­ture. The delay time can be set between 0.0 μsec and 2.0 sec with a stepsize of 1 μsec. In the case of multiple triggers during the delay the triggers will be stored and delayed, too. The buffer is able to store up to 512 trigger signals during the delay. Your benets:
No need for a perfect
alignment of an external
trigger sensor
Different objects can be
captured without hardware
changes
◄Figure39
Examples of possible trigger sources.
36
8.5.4. Debouncer
The basic idea behind this feature was to seperate interfering signals (short peaks) from 
valid square wave signals, which can be important in industrial environments. Debouncing
means that invalid signals are ltered out, and signals lasting longer than a user-dened 
testing time t
DebounceHigh
will be recognized, and routed to the camera to induce a trigger.
In order to detect the end of a valid signal and lter out possible jitters within the signal, a 
second testing time t
DebounceLow
was introduced. This timing is also adjustable by the user. 
If the signal value falls to state low and does not rise within t
DebounceLow
, this is recognized
as end of the signal.
The debouncing times t
DebounceHigh
and t
DebounceLow
are adjustable from 0 to 5 msec in steps
of 1 μsec.
This feature is disabled by default.
low
high
U
t0
4.5V
11V
30V
low
high
U
t0
4.5V
11V
30V
t
∆t
1
∆tx high time of the signal t
DebounceHigh
user defined debouncer delay for state high
t
DebounceLow
user defined debouncer delay for state low
t
DebounceHigh
∆t
2
∆t3∆t4∆t
5
∆t
6
t
DebounceLow
Incoming signals (valid and invalid)
Debouncer
Filtered signal
Flash Signal8.5.5.
The CameraLink® standard doesn't describe an explicite ash signal.
On  Baumer  cameras,  this  feature  is  realized  by  the  internal  signal  "ExposureActive", 
which can be wired to one of the digital outputs.
Debouncer:
Please note that the edges of valid trigger signals are shifted by t
DebounceHigh
and
t
DebounceLow
!
Depending on these two timings, the trigger signal might be temporally stretched or compressed.
Figure40►
Principle of  the Baumer 
debouncer.
37
8.6. User Sets
Three user sets (1-3) are available for the Baumer cameras of the SXC series. The user  sets can contain the following information:
Parameter Parameter
Binning Mode Mirroring Control
CameraLink
®
Control Offset
Defectpixellist Partial Scan
Digital I/O Settings Pixelformat
Exposure Time Readout Mode
Gain Factor Testpattern
Look-Up-Table Trigger Settings
These user sets are stored within the camera and and cannot be saved outside the de­vice.
By employing a so-called "user set default selector", one of the three possible user sets 
can be selected as default, which means, the camera starts up with these adjusted pa­rameters.
Factory Settings8.7.
The factory settings are stored in an additional parametrization set which is used by de­fault. This settings are not editable.
38
CameraLink9.
®
The CameraLink® interface was especially developed for cameras in machine vision ap-
plications and provides high transfer rates and low latency. Depending on the congura­tion (Base, Medium or Full) the transfer rate adds up to 680 MBytes/sec.
Cameras of the Baumer SXC series are equipped with a CameraLink
®
 Base interface and 
therewith able to transmit up to 240MBytes/sec.
9.1. Channel Link and LVDS Technology
CameraLink® bases upon the Channel Link® technology, but provides a specication, that 
is more benecial for machine vision.
Channel Link
®
 in turn is an advancement of the LDVS (Low Voltage Differential Signaling) 
standard – a low power, high speed interface standard.
The Channel Link
®
 technology  consists of a transmitter receiver pair, whereat 21, 28  or 
48 single-ended data signals and a single-ended clock signal can be wired on transmitter
side. Within the transmitter the data is serialized with a ratio of 7:1. Afterwards the four re­sulting data streams and the clock signal are transferred via ve LVDS pairs. On receiver 
side the four LVDS data streams and the LVDS clock are reordered to parallel signals and afterwards forwarded to further processing.
Camera Signals9.2.
The standard designates three different signal types, provided via standard CameraLink® cable:
Serial 9.2.1. Communication
The standard regulates two LVDS pairs are allocated for asynchronous serial communi­cation between the camera and the frame grabber. Cameras and frame grabbers should support at least 9600 baud serial communication.
Figure41►
Channel Link
®
operation.
39
The following signals are designated:
Signal Description
SerTFG LVDS pair for serial communications to the frame grabber
SerTC LVDS pair for serial communications to the camera
The serial interface must apply the following regulations:
one start bit, one stop bit, no parity and no handshaking.
9.2.2. Camera Control
According to the CameraLink® standard four LVDS pairs have to be reserved for general-
purpose camera control. They are dened as frame grabber outputs and camera inputs.  The denition of these signals is left to the camera manufacturer.
Signal BaumerNaming Employment
Camera Control 1 (CC1) FrameGrabberLine0
On Baumer SXC cameras, the wiring  of these signals is arbitrary.
Camera Control 2 (CC2) FrameGrabberLine1
Camera Control 3 (CC3) FrameGrabberLine2
Camera Control 4 (CC4) FrameGrabberLine3
9.2.3. Video Data
The  standard  designates  four  signals  (as well  as  the  signal  state)  for  the  validation  of  transmitted image data:
Signal Description
FVAL Frame Valid is dened high for valid lines.
LVAL Line Valid is dened high for valid pixels.
DVAL Data Valid is dened high for valid data.
Spare Has been dened for future use.
9.3. Chip and Port Assignment
As previously stated CameraLink® comes with three different congurations. 
Since the data processing of one Channel Link
®
chip is limited to 28 bits, several chips
may be required for an efcient data transfer. Depending on the conguration, a camera  may be equipped with up to three chips.
The standard designates a port as an 8-bit word. The CameraLink
®
interface uses up to
eight port (A-H).
An overview of congurations, used ports, Channel Link
®
chips and camera connectors is
given within the chart below.
Conguration No. of Chips Supported Ports No. of Connectors
CameraLink
®
 Base 1 A,B,C 1
CameraLink
®
Medium 2 A,B,C,D,E,F 2
CameraLink
®
Full 3 A,B,C,D,E,F,G,H 2
40
9.4. CameraLink® Taps
The standard denes a tap as "the data path carrying a stream of pixels". This means the  number of taps equates to the number of simultaniously transferred pixel.
Notice
Please do not mix up sensor taps and CameraLink
®
taps.
9.4.1. TapConguration
Within the subsequent sections, the transmission of images with different pixel formats
(bit depth) linked to the employment of different numbers of taps is displayed.
8-bit Monochrome Single 9.4.1.1. Tap Transmission
Port A
Tap 1
bit 0
Tap 1
bit 1
Tap 1
bit 2
Tap 1
bit 3
Tap 1
bit 4
Tap 1
bit 5
Tap 1
bit 6
Tap 1
bit 7
Port B
Port C
8-bit Monochrome Dual Tap9.4.1.2. Transmission
Port A
Tap 1
bit 0
Tap 1
bit 1
Tap 1
bit 2
Tap 1
bit 3
Tap 1
bit 4
Tap 1
bit 5
Tap 1
bit 6
Tap 1
bit 7
Port B
Tap 2
bit 0
Tap 2
bit 1
Tap 2
bit 2
Tap 2
bit 3
Tap 2
bit 4
Tap 2
bit 5
Tap 2
bit 6
Tap 2
bit 7
Port C
8-bit Monochrome Triple Tap Transmission9.4.1.3.
Port A
Tap 1
bit 0
Tap 1
bit 1
Tap 1
bit 2
Tap 1
bit 3
Tap 1
bit 4
Tap 1
bit 5
Tap 1
bit 6
Tap 1
bit 7
Port B
Tap 2
bit 0
Tap 2
bit 1
Tap 2
bit 2
Tap 2
bit 3
Tap 2
bit 4
Tap 2
bit 5
Tap 2
bit 6
Tap 2
bit 7
Port C
Tap 3
bit 0
Tap 3
bit 1
Tap 3
bit 2
Tap 3
bit 3
Tap 3
bit 4
Tap 3
bit 5
Tap 3
bit 6
Tap 3
bit 7
8-bitRGB9.4.1.4. Triple Tap Transmission
Port A
Red
bit 0
Red
bit 1
Red
bit 2
Red
bit 3
Red
bit 4
Red
bit 5
Red
bit 6
Red
bit 7
Port B
Green
bit 0
Green
bit 1
Green
bit 2
Green
bit 3
Green
bit 4
Green
bit 5
Green
bit 6
Green
bit 7
Port C
Blue
bit 0
Blue
bit 1
Blue
bit 2
Blue
bit 3
Blue
bit 4
Blue
bit 5
Blue
bit 6
Blue
bit 7
41
10-bit Monochrome 9.4.1.5. Single Tap Transmission
Port A
Tap 1
bit 0
Tap 1
bit 1
Tap 1
bit 2
Tap 1
bit 3
Tap 1
bit 4
Tap 1
bit 5
Tap 1
bit 6
Tap 1
bit 7
Port B
Tap 1
bit 8
Tap 1
bit 9
Port C
10-bit Monochrome Dual9.4.1.6. Tap Transmission
Port A
Tap 1
bit 0
Tap 1
bit 1
Tap 1
bit 2
Tap 1
bit 3
Tap 1
bit 4
Tap 1
bit 5
Tap 1
bit 6
Tap 1
bit 7
Port B
Tap 1
bit 8
Tap 1
bit 9
Tap 2
bit 8
Tap 2
bit 9
Port C
Tap 2
bit 0
Tap 2
bit 1
Tap 2
bit 2
Tap 2
bit 3
Tap 2
bit 4
Tap 2
bit 5
Tap 2
bit 6
Tap 2
bit 7
12-bit Monochrome Single Tap 9.4.1.7. Transmission
Port A
Tap 1
bit 0
Tap 1
bit 1
Tap 1
bit 2
Tap 1
bit 3
Tap 1
bit 4
Tap 1
bit 5
Tap 1
bit 6
Tap 1
bit 7
Port B
Tap 1
bit 8
Tap 1
bit 9
Tap 1
bit 10
Tap 1
bit 11
Port C
12-bit Monochrome Dual Tap Transmission9.4.1.8.
Port A
Tap 1
bit 0
Tap 1
bit 1
Tap 1
bit 2
Tap 1
bit 3
Tap 1
bit 4
Tap 1
bit 5
Tap 1
bit 6
Tap 1
bit 7
Port B
Tap 1
bit 8
Tap 1
bit 9
Tap 1
bit 10
Tap 1
bit 11
Tap 2
bit 8
Tap 2
bit 9
Tap 2
bit 10
Tap 2
bit 11
Port C
Tap 2
bit 0
Tap 2
bit 1
Tap 2
bit 2
Tap 2
bit 3
Tap 2
bit 4
Tap 2
bit 5
Tap 2
bit 6
Tap 2
bit 7
42
9.4.2. Tap Geometry
Since frame grabbers possess the ability of image reconstruction from multi-tap cameras "on-the-y",  the  CameraLink®  standards  demands  the  specication  of  the  used  /  sup­ported tap geometries from the manufacturers of both, cameras and frame grabbers.
Single 9.4.2.1. Tap Geometry
For single tap transmission the cameras of the Baumer SXC series employ the 1X-1Y tap  geometry:
Dual 9.4.2.2. Tap Geometry
For dual tap transmission the cameras of the Baumer SXC series employ the 1X2-1Y tap  geometry:
Tripple 9.4.2.3. Tap Geometry
For triple tap transmission the cameras of the Baumer SXC series employ the 1X3-1Y tap  geometry:
Figure42►
Tap geometry 1X-1Y.
The pixel information
is  transmitted  pixel-by­pixel and line-by-line.
Figure43►
Tap geometry 1X2-1Y.
Figure44►
Tap geometry 1X3-1Y.
43
Cleaning10.
Cover glass
Notice
The sensor is mounted dust-proof. Remove of the cover glass for cleaning is not neces-
sary.
Avoid cleaning the cover glass of the CCD sensor if possible. To prevent dust, follow the instructions under "Install lens".
If you must clean it, use compressed air or a soft, lint free cloth dampened with a small  quantity of pure alcohol.
Housing
Caution!
volatile
solvents
Volatile solvents for cleaning. Volatile solvents damage the surface of the camera.
Never use volatile solvents (benzine, thinner) for cleaning!
To clean the surface of the camera housing, use a  soft, dry cloth. To remove persistent  stains, use a  soft  cloth dampened with a  small quantity of neutral detergent,  then wipe  dry.
Transport / Storage11.
Notice
Transport the camera only in the original packaging. When the camera is not installed, 
then storage the camera in the original packaging.
Storage Environment
Storage temperature -10°C ... +70°C ( +14°F ... +158°F)
Storage Humidy 10% ... 90% non condensing
44
Disposal12.
Dispose of outdated products with electrical or electronic circuits, not in the
normal domestic waste, but rather according to your national law and the  directives 2002/96/EC and 2006/66/EC for recycling within the competent 
collectors.
Through the proper disposal of obsolete equipment will help to save valu­able resources and prevent possible adverse effects on human health and the environment.
The return of the packaging to the material cycle helps conserve raw mate­rials an reduces the production of waste. When no longer required, dispose of the packaging materials in accordance with the local regulations in force.
Keep the original packaging during the warranty period in order to be able  to pack the device properly in the event of a warranty claim.
Warranty Notes13.
Notice
If it is obvious that the device is / was dismantled, reworked or repaired by other than  Baumer  technicians,  Baumer  Optronic  will  not  take  any  responsibility  for  the  subse­quent performance and quality of the device!
Lens Mounting14.
Notice
Avoid contamination of the  sensor  and  the  lens  by  dust  and  airborne particles when 
mounting a lens to the device!
Therefore the following points are very important:
Install lenses in an environment that is as dust free as possible! Keep the dust covers on camera and lens as long as possible!
Hold the camera downwards with unprotected sensor (or lter- /cover glass)! Avoid contact with any optical surface of the camera or lens!
45
Conformity15.
Cameras of the Baumer SXC family comply with:
CE, ▪ FCC Part 15 Class B,  ▪ RoHS
CE15.1.
We  declare,  under  our  sole  responsibility, that  the  previously  described  Baumer  SXC 
cameras conform with the directives of the CE.
FCC–ClassBDevice15.2.
No t e : This equipment has been tested and found to comply with the limits for a Class B  digital device, pursuant to part 15 of the FCC Rules. These limits are designed to pro­vide reasonable protection against harmful interference in a residential environment. This
equipment generates, uses, and can radiate radio frequency energy and, if not installed  and  used  in  accordance  with  the  instructios,  may  cause  harmful  interference  to  radio 
communications. However, there is no guarantee that interference will not occure in a particular installation. If this equipment does cause harmful interference to radio or televi-
sion reception, which can be determined by turning the equipment off an on, the user is  encouraged to try to correct the interference by one or more of the following measures:
Reorient or relocate the receiving antenna. Increase the separation between the equipment and the receiver. Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. Consult the dealer or an experienced radio/TV technician for help.
46
Support16.
If you have any problems with the camera, then feel free to contact our support.
Worldwide
BaumerOptronicGmbH
Badstrasse 30 DE-01454 Radeberg, Germany
Tel: +49 (0)3528 4386 845
Mail: support.cameras@baumer.com
Website: www.baumer.com
47
BaumerOptronicGmbH
BaumerOptronicGmbH
Badstrasse 30 DE-01454 Radeberg, Germany Phone +49 (0)3528 4386 0 · Fax +49 (0)3528 4386 86 sales@baumeroptronic.com · www.baumer.com
DE-01454 Radeberg, Germany Phone +49 (0)3528 4386 0 · Fax +49 (0)3528 4386 86 sales@baumeroptronic.com · www.baumeroptronic.com
Technical data has been fully checked, but accuracy of printed matter not guaranteed.
Subject to change without notice. Printed in Germany 08/13.      v1.3            11083682
Loading...