Used in conjunction with any Badger Meter impeller flow
monitor or transmitter, Badger Meter non-magnetic flow
sensors provide an accurate rate of liquid flow as well as
total accumulated flow. A number of sensor models are
offered, which cover applications for a wide range of pipe
sizes and pressure/temperature specifications.
The flow sensors generate a frequency which is
proportional to flow rate. An internal preamplifier allows
the pulse signal to travel up to 2000 feet without further
amplification. Power to operate the sensor is provided by
the flow monitor. The impeller bearing assembly, shaft and
O-rings are replaceable in the field.
Badger Meter flow sensors feature a closed, six-bladed
impeller design, using a proprietary, non-magnetic
sensing technology. The forward-swept impeller shape
provides higher, more constant torque than four-bladed
impeller designs, and is less prone to fouling by waterborne debris. The forward-curved shape, coupled with the
absence of magnetic drag, provides improved operation
and repeatability, even at lower flow rates. As the liquid
flow turns the impeller, a low impedance signal is
transmitted with a frequency proportional to the flow rate.
Sensors of similar type are interchangeable, so there is no
need for recalibration after servicing or replacement.
MECHANICAL INSTALLATION
General
Flow measurement accuracy for all flow measuring
devices is highly dependent on proper location in the
piping system. Irregular flow velocity profiles caused by
valves, fittings, pipe bends, etc. can lead to inaccurate
overall flow rate indications although local flow velocity
measurement may be accurate. A sensor located where
it can be affected by air bubbles, floating debris, or
sediment may not achieve full accuracy and could be
damaged. Badger Meter flow sensors are designed
to operate reliably under adverse conditions, but the
following recommendations should be followed to ensure
maximum system accuracy:
1. Choose a location along the pipe where 10
pipe diameters upstream and 5 pipe diameters
downstream of the sensor provide no flow
disturbance. Pipe bends, valves, other fittings, pipe
enlargements and reductions should not be present
in this length of pipe.
2. The preferred location around the circumference of a
horizontal pipe is on top. If trapped air or debris will
interfere, then the sensor should be located further
around the pipe from the top but not more than 45
degrees from top center. The sensor should never
be located at the bottom of the pipe, as sediment
may collect there. Locations off top center cause
the impeller friction to increase, which may affect
performance at low flow rates. Any circumferential
location is correct for installation in vertical pipes.
3. An insertion depth of 1-1/2 inches for pipe sizes
2.5 inches and larger is required for accurate flow
rate calibration. Detailed installation instructions
for various sensor mounting configurations on the
following pages include methods for ensuring correct
insertion depth.
4. Alignment of the sensor to ensure that impeller
rotation is parallel to flow is important. Alignment
instructions are also included on the following pages.
INSTALLATION FOR 220BR, 220SS
Installation Procedure
The insertion depth and alignment of the sensor assembly
are critical to the accuracy of the flow measurement. The
flat end of the sensor tube assembly MUST BE INSTALLED
1-1/2 inches from the inside wall of the pipe. In order to
allow for variations in wall thickness, lining, or coatings the
depth adjustment is controlled by the position of the Hex
Nuts on the three threaded studs of the hex mounting
adapter. The hex mounting adapter is provided with a 2
inch male NPT connection.
There are two methods of mounting these sensors in a
2.5 inch or larger pipe. One is with a 2 inch NPT threaded
pipe saddle. The other is with a welded-on fitting such as
a Thredolet®, also tapped for a 2 inch NPT connection. In
either case, cut a 2 inch hole through a depressurized pipe
and then secure the saddle or weld-on fitting to the pipe.
(For drilling into a pressurized pipe, see instructions for
Series 225 and 226 sensors.) Install the 2 inch NPT adapter
provided, using a thread sealant to prevent leakage.
Tighten as necessary. Badger Meter insert style sensors are
calibrated with the sensor inserted 1-1/2 inches into the
pipe flow.
To determine the proper insertion depth, proceed as
follows:
1. Apply anti-seize thread lubricant , supplied with
the sensor, to the threaded studs of the mounting
adaptor.
2. Insert the depth gauge into the mounting adapter
and set it against the inside wall of the pipe as shown.
Set the top of the upper adjusting nut to 3-3/4 inches
as measured. Lock it in place with the bottom nut on
the same stud. Repeat for the other adj. nuts.
Note: For Model 220PVS - set nuts 6.5 inches above inside wall of pipe.
Page 3 August 2012
Series 200 Flow Sensors
Adjusting Nuts
3 ¾”
20345
2. As a backup to the flow arrow label, there is a
small hole next to the larger sighting hole of the
upstream side. With a 3/32 inch Allen wrench, tighten
positioning collar set screws.
3. Double check that the sighting holes in the sleeve are
parallel down the pipe and that the flow arrow label
matches pipe liquid flow direction.
4. Cable routing: The positioning collar is threaded for
connection of a standard 1/2 inch electrical conduit
(flex cable) or a wire strain relief. Route cable as
required. Be sure to leave enough flex in cable or
conduit to allow future removal of sensor for service
or cleaning if necessary.
Figure 1: Installation for 220BR and 220SS
3. Clean O-rings and flow sensor sleeve, and lightly
lubricate O-rings with silicone grease from the packet
provided or some other acceptable lubricant. Take
care not to get grease on the impeller or bearing.
4. Insert the flow sensor into the 2 inch NPT adapter so
that the mounting holes in the positioning collar fit
over the studs on the adapter. Lower the sensor onto
the previously adjusted nuts. Install the lock nuts on
top of the positioning collar and tighten. Now tighten
the lower jam nuts firmly against the upper adjusting
nuts to secure them for future removal of the sensor
for inspection or service.
Alignment of Flow Sensor
1. Loosen positioning collar set screws with a 3/32 inch
Allen wrench. Place the alignment rod through the
sight holes in the flow sensor. Refer to Figure 2. Using
the alignment rod as a guide, align the flow sensor so
that the flow label arrow matches pipe flow direction
and so that the alignment rod is exactly parallel to the
pipe. This procedure aligns the impeller directly into
the fluid flow.
ALIGNMENT ROD
ALIGNMENT ROD
C
SET SCREW
C
HOT TAP INSTALLATION FOR
225BR, 226BR, AND 226SS
Badger Meter Series 200 hot tap style liquid flow sensors
are designed for use in cases where pipelines will be in
continuous service and depressurizing or draining the
system for installation or service is not practical.
The Series 200 hot tap sensors are designed to be installed
either in a depressurized pipe by hand or “Hot Tapped”
into a pressurized pipeline. Both installation procedures
are listed in this installation and operation manual. If
there is the slightest possibility that the pipe could be
full or pressurized, FOLLOW THE INSTALLATION FOR
PRESSURIZED PIPE.
Refer to Figure 3 for location or identification of the
various parts described in the following procedures.
The insertion depth and alignment of the sensor assembly
are critical to the accuracy of the flow measurement. The
flat end of the sensor tube assembly MUST BE INSTALLED
1-1/2 inches from the inside wall of the pipe. In order to
allow for variations in wall thickness, lining or coatings
the depth adjustment is controlled by the position of the
hex nuts on the three threaded studs of the hex mounting
adapter. The hex mounting adapter is provided with a
2 inch male NPT connection. Both gate and ball valve
units are provided with 2 inch nipples for mounting onto
saddles, weld-o-lets, etc.
Depth setting is accomplished by positioning the hex
nuts 14-7/8 inches minus the thickness of the pipe, from
the outside diameter of the pipe. For example, measure
the wall thickness of the pipe from the coupon removed
when the 1-7/8 inch hole was cut into the pipe. If the pipe
was 1/8 inch thick, subtract 1/8 inch from 14-7/8 inch, or
position the nuts 14-3/4 inch from the outside diameter of
the pipe. This will allow the 16-3/8 inch sensor to protrude
1-1/2 inch into the pipe.
Apply anti-seize thread lubricant, supplied with the
sensor, to the threaded studs of the mounting adaptor.
Figure 2: Alignment of Flow Sensor in 220BR and
220SS
Page 4 August 2012
Installation & Operation Manual
BLEED VALVE
HEX NUT
JAM NUT
The alignment of the impeller with the flow in the pipe
is accomplished by aligning the two “sight holes” at the
top of the sensor tube assembly with the center line of
the pipe. Make sure the alignment is made to the pipe and not to a wall or surface near the sensor. To adjust,
loosen the two set screws in the positioning collar with
a 3/32 inch Allen wrench provided in the Series 200 hot
tap installation kit. Slip one end of the 1/4 inch x 18 inch
steel rod (also supplied in the installation kit) through the
holes in the sensor tube. Rotate the sensor tube until the
rod is centered on the pipe. Ensure the flow label “Arrow”
on the sensor matches the liquid flow direction. Tighten
the positioning collar Allen screws to lock the sensor
tube assembly in position. Note: As a backup to the flow
direction arrow label on the tube assembly, there is a
smaller hole located beside one of the sighting holes in
the tube, to also indicate the upstream side of the tube
assembly.
If the Pipe is Depressurized and Drained
1. Drill or cut a 1-7/8 inch hole in the pipe with a drill
or hole saw. Note the pipe wall thickness for use in
calculating sensor assembly depth. A location on the
top of the pipe is best for overall performance and
service life; however, any radial location on the top
half of the pipe is acceptable. Allow a minimum of ten
pipe diameters upstream and five downstream from
the sensor of straight unobstructed pipe to allow full
development of the flow profile.
2. Install either a service saddle or welded pipe fitting (2
inch female NPT) on the outside diameter of the pipe
over the 1-7/8 inch hole.
3. Install the Badger Meter isolation valve and nipple
onto the fitting using pipe thread sealant or Teflon®
tape on all threads.
4. Install the Badger Meter hex mounting adapter onto
the valve assembly. Use pipe thread sealant on the
adapter. Tighten the hex adapter so that no stud is
aligned with the center-line of the pipe. This could
interfere with final sensor alignment. Measure depth
and set the height of the nuts of the hex mounting
adapter.
5. Open the bleed petcock valve on the hex adapter to
relieve the pressure as the sensor tube is installed.
Carefully hand insert the Badger Meter hot tap flow
sensor tube into the hex mounting adapter. The
sleeve should be inserted past the top two O-rings in
the adapter (approx. 1 to 1-1/4 inches). Take care not
to push the tube in too far as the impeller could be
damaged if it strikes the closed valve.
6. Even if the sensor is installed with system drained,
Badger Meter recommends that a HTT, hot tap
insertion/removal tool be purchased for future
service. This tools allows the sensor tube assembly to
be removed from the pipe line without draining the
entire loop where the sensor is mounted.
7. In a fully depressurized and drained pipe, the sensor
tube assembly may be installed by hand. Carefully and very slowly open the isolation valve to relieve
any pressure that may have built up. Fully open the
isolation valve. Push the sensor tube into the pipe
with a slight twisting motion. Guide the sensor
collar holes over the three hex adapter studs until
the collar rests on the nuts. Hex nuts should have
been previously set to the correct height. Install the
three lock nuts onto these studs at the top of the
positioning collar and securely tighten.
8. Loosen the two set screws in the positioning collar
with a 3/32 inch Allen wrench. Align the sensor
sight holes along the pipe axis using the alignment
rod provided in the installation kit supplied with
the sensor. Ensure that the flow label arrow on the
sensor matches the liquid flow direction inside the
pipe. Tighten the positioning collar set screws. Note:
As a backup to the flow label arrow, there is a small
hole located beside one of the sighting holes to also
indicate the upstream side of the sensor.
INSTALLATION INTO A
PRESSURIZED PIPELINE USING
MODEL HTT
For information on installing hot tap sensor with older
225H consult technical bulletin DID-001.
For pipe sizes 2½” and above; all Badger Meter sensors
are inserted 1 1/2” from the inside wall of the pipe. The
insertion depth is controlled by the position of the hex
nuts on the three threaded rods. The formula below
defines the distance between the top of the sensor hex
mounting adaptor and the bottom of the positioning
collar (the top of the hex nut). Reference Figure 3.
D = 16 3/8” - ( H + Pipe Wall Thickness + 1.5 “ )
Example: If sensor is installed in a 8 inch Sch 80 pipe with
a pipe wall thickness of 1/2 inch and the “H” dimension is
10 inches then the calculation would be as below: