AudioCodes mediant msbr Configuration Manual

Page 1
Version 6.8
Configuration Guide
Mediant MSBR
IP Networking Configuration
Version 6.8
Version 6.8
Document # LTRT-31654
Page 2
Page 3
Configuration Guide Contents
Version 6.8 3 Mediant MSBR
Table of Contents
1 Introduction ....................................................................................................... 11
2 IPv4 ..................................................................................................................... 13
2.1 Example of Primary and Secondary IP Address Configuration ............................. 13
2.1.1 Configuration ...........................................................................................................13
2.1.2 Output ......................................................................................................................13
2.2 Interface VLAN – Link State Monitor ..................................................................... 14
2.2.1 Configuration ...........................................................................................................14
3 ICMP ................................................................................................................... 15
3.1 ping ...................................................................................................................... 15
3.2 Traceroute ............................................................................................................ 16
4 VRRP .................................................................................................................. 17
4.1 Feature Key .......................................................................................................... 17
4.2 CLI Configuration and Status Commands ............................................................. 17
4.2.1 Configuration Commands ........................................................................................17
4.2.2 Status Commands ...................................................................................................17
4.3 VRRP Example .................................................................................................... 19
5 DHCP .................................................................................................................. 27
5.1 DHCP Client ......................................................................................................... 27
5.2 DHCP Server ........................................................................................................ 28
5.2.1 DHCP Zones ............................................................................................................29
5.2.1.1 Selectors...................................................................................................29
5.2.1.2 Default Zone .............................................................................................30
5.3 DHCP Relay ......................................................................................................... 31
5.4 Example of DHCP Server and DHCP Client ......................................................... 32
5.4.1 DHCP Client Configuration Example (WAN Side) ...................................................32
5.4.2 DHCP Server Configuration Example (LAN Side) ...................................................32
5.5 Example of DHCP Relay ...................................................................................... 33
5.6 Example of DHCP Server with Zones ................................................................... 33
5.7 O
utput of show Commands .................................................................................. 35
5.7.1 show dhcp server leased ip addresses ...................................................................35
5.7.2 show dhcp relay configuration display .....................................................................35
6 DNS ..................................................................................................................... 37
6.1 DNS Configuration................................................................................................ 37
6.1.1 Global Configuration ................................................................................................37
6.1.2 Interface-specific Configuration ...............................................................................37
6.2 Example #1 of Basic Dynamic DNS Configuration ................................................ 38
6.2.1 Configuration ...........................................................................................................38
6.2.2 Output and show Commands ..................................................................................39
6.3 Example #2 of Basic Static DNS Configuration ..................................................... 40
6.3.1 Configuration ...........................................................................................................40
7 Track ................................................................................................................... 41
7.1 Configuring Track ................................................................................................. 41
7.2 Output .................................................................................................................. 41
Page 4
IP Networking Configuration
Configuration Guide 4 Document #: LTRT-31657
8 Static Routing .................................................................................................... 43
8.1 Configuring Static Routing .................................................................................... 43
8.2 Example of Basic Static Route Configuration ........................................................ 43
8.2.1 Configuration ...........................................................................................................43
8.2.2 Output ......................................................................................................................44
8.3 Example of "Floating” Static Route and Track ...................................................... 45
8.3.1 Configuration ...........................................................................................................45
9 Manipulating the Routing Table ....................................................................... 47
10 Administrative Distance ................................................................................... 49
10.1 Examples of Configuring AD for Various Protocols ............................................... 49
10.2 Example of Changing Default AD for a Dynamic Routing Protocol ....................... 50
10.2.1 Configuration ...........................................................................................................50
10.2.2 Output ......................................................................................................................50
10.3 Example of Configuring Static Route with Custom Metric ..................................... 51
10.3.1 Configuration ...........................................................................................................51
10.3.2 Output ......................................................................................................................51
11 Dynamic IP Routing .......................................................................................... 53
11.1 RIP Routing Protocol ............................................................................................ 53
11.1.1 Configuring RIP .......................................................................................................53
11.1.2 Example of RIP Routing ..........................................................................................55
11.1.2.1 Configuration ............................................................................................55
11.1.2.2 Output and show Commands ...................................................................56
11.2 OSPF Routing Protocol ........................................................................................ 57
11.2.1 Configuring OSPF ....................................................................................................57
11.2.1.1 Router-Configuration Level ......................................................................57
11.2.1.2 Interface-Configuration Level ...................................................................58
11.2.2 Example of OSPF Routing.......................................................................................59
11.2.3 Useful Output and show Commands .......................................................................60
11.3 Border Gateway Protocol (BGP) ........................................................................... 62
11.3.1 Configuring BGP ......................................................................................................62
11.3.1.1 Address-Family Level Configuration (configuration can also be set
without entering the AF mode) ................................................................................62
11.3.1.2 General Configuration ..............................................................................64
11.3.2 Example of Basic BGP WAN Connectivity ..............................................................65
11.3.2.1 Configuration ............................................................................................65
11.3.2.2 Output .......................................................................................................66
11.3.3 Example 2 ................................................................................................................66
11.3.3.1 Configuration ............................................................................................67
11.3.3.2 Output .......................................................................................................68
11.4 Advanced Routing Examples ................................................................................ 69
11.4.1 Multi-WAN with BGP and Static Route ....................................................................69
11.4.1.1 Configuration ............................................................................................69
11.4.1.2 Output and show Commands ...................................................................70
11.4.2 Filtering Dynamic Routing Protocol Routes .............................................................71
11.4.3 Multi-WAN with BGP and IPSec ..............................................................................72
11.4.3.1 MSBR1 Configuration ...............................................................................72
11.4.3.2 Output .......................................................................................................74
12 Policy Based Routing (PBR) ............................................................................ 75
12.1 PBR Configuration ................................................................................................ 75
12.1.1 Example of PBR using Route-Map-Static................................................................75
12.1.1.1 Configuration ............................................................................................76
Page 5
Configuration Guide Contents
Version 6.8 5 Mediant MSBR
12.1.1.2 Output .......................................................................................................76
13 Loopback Interfaces ......................................................................................... 79
13.1.1 Loopback Interface Configuration ............................................................................79
13.1.2 Example of Loopback Interface Configuration ........................................................79
13.1.2.1 Configuration ............................................................................................79
13.1.2.2 Output .......................................................................................................79
13.1.3 Example of Protocol Binding to Loopback Interfaces ..............................................81
13.1.3.1 OAMP Binding to Loopback .....................................................................81
13.1.3.2 BGP Termination on Loopback ................................................................81
13.1.4 Configuring Loopback Interfaces to Work with Voice ..............................................82
14 Virtual Routing and Forwarding (VRF) ............................................................ 85
14.1.1 VRF Configuration ...................................................................................................85
14.1.1.1 Global Configuration .................................................................................85
14.1.1.2 Interface Configuration .............................................................................85
14.1.1.3 Other .........................................................................................................85
14.1.2 VRF App Awareness ...............................................................................................86
14.1.3 Example of Segment Isolation using VRF ...............................................................87
14.1.3.1 Configuration ............................................................................................87
14.1.3.2 Output .......................................................................................................88
14.1.4 Routing Services on Different VRF’S ......................................................................89
14.1.4.1 Configuration ............................................................................................89
14.1.4.2 Output .......................................................................................................90
15 GRE Tunnels ...................................................................................................... 91
15.1.1 Configuring GRE Tunnels ........................................................................................91
15.1.2 Example of Connecting Multiple Subnets using GRE .............................................91
15.1.2.1 Configuration ............................................................................................92
15.1.2.2 Output .......................................................................................................93
16 Quality of Service (QoS) ................................................................................... 95
16.1.1 QoS Configuration ...................................................................................................96
16.1.2 Example of Weighted Bandwidth Sharing ...............................................................97
16.1.2.1 Configuration ............................................................................................98
16.1.2.2 Output .......................................................................................................98
16.1.3 Example using QoS to Ensure Bandwidth for Critical Traffic ................................100
16.1.3.1 Configuration ..........................................................................................100
16.1.3.2 Output .....................................................................................................100
17 IPv6 ................................................................................................................... 103
17.1 Example of multiple IPv6 Address Configuration ................................................ 104
17.1.1 Configuration .........................................................................................................104
17.1.2 Output ....................................................................................................................104
17.1.3 Example of a Dual-Stack Configuration .................................................................105
17.1.3.1 Configuration ..........................................................................................105
17.1.3.2 Output .....................................................................................................105
18 ICMPv6 ............................................................................................................. 107
18.1 ping ipv6 ............................................................................................................. 107
18.2 Traceroute v6 ..................................................................................................... 108
19 Track v6 ............................................................................................................ 109
19.1 Configuring Track ............................................................................................... 109
19.2 Output ................................................................................................................ 109
Page 6
IP Networking Configuration
Configuration Guide 6 Document #: LTRT-31657
20 IPv6 Routing .................................................................................................... 111
20.1 Static Routing ..................................................................................................... 111
20.1.1 Configuring Static Routing .....................................................................................111
20.1.2 Example of a Basic Static Route Configuration .....................................................111
20.1.2.1 Configuration ..........................................................................................111
20.1.2.2 Output .....................................................................................................112
20.2 RIPng Routing Protocol ...................................................................................... 113
20.2.1 Configuring RIPng .................................................................................................113
20.2.2 Example of RIPng Routing ....................................................................................114
20.2.2.1 Configuration ..........................................................................................114
20.2.2.2 Output and show Commands .................................................................115
20.3 OSPFv3 Routing Protocol ................................................................................... 116
20.3.1 Configuring OSPF ..................................................................................................116
20.3.1.1 Router-Configuration Level ....................................................................116
20.3.1.2 OSPF6 Router Level ..............................................................................116
20.3.1.3 Main options for Interface-Configuration Level ......................................116
20.3.2 Example of OSPFv3 Routing .................................................................................117
20.3.3 Useful Output and show Commands .....................................................................118
20.4 Border Gateway Protocol (BGP) for IPv6 ............................................................ 119
20.4.1 Configuring BGP ....................................................................................................119
20.4.1.1 Main options for Address-Family Level Configuration ...........................119
20.4.2 Example of Basic BGP WAN Connectivity ............................................................120
20.4.2.1 Configuration ..........................................................................................120
20.4.2.2 Output .....................................................................................................120
20.4.3 Example 2 ..............................................................................................................121
20.4.3.1 Configuration ..........................................................................................121
20.4.3.2 Output .....................................................................................................123
20.5 DCHPv6 ............................................................................................................. 125
20.5.1 Configuring Stateless DHCP .................................................................................126
20.5.2 Configuring Stateful DHCP ....................................................................................126
20.5.3 Configuring Router Advertisement ........................................................................126
20.5.4 Configuring Prefix Delegation ................................................................................127
20.5.5 Example of DHCPv6 Prefix Delegation .................................................................128
20.5.5.1 Configuration of Prefix Delegation .........................................................128
20.5.5.2 Output .....................................................................................................129
20.5.6 Example of RA Configuration ................................................................................130
20.5.6.1 Configuration ..........................................................................................130
20.5.6.2 Output .....................................................................................................130
20.6 DNSv6 ................................................................................................................ 131
20.6.1 DNSv6 Configuration .............................................................................................131
20.6.1.1 Global Configuration ...............................................................................131
20.6.1.2 Interface-Specific Configuration .............................................................131
20.6.2 Example of Basic Static DNS Configuration ..........................................................132
21 IP Multicast – PIM Sparse Mode ..................................................................... 133
21.1 Feature Key ........................................................................................................ 133
21.2 CLI Configuration and Status Commands ........................................................... 133
21.2.1 Configuration Commands ......................................................................................133
21.2.2 Status Commands .................................................................................................134
21.2.3 Multicast Example - Static RP ...............................................................................136
21.2.4 Multicast Example - Dynamic RP – Bootstrap Router Elects RP ..........................150
21.2.4.1 On the Client \ Media Receiving Side ....................................................150
22 IP Multicast – IGMP Proxy .............................................................................. 153
22.1 Feature Key ........................................................................................................ 153
Page 7
Configuration Guide Contents
Version 6.8 7 Mediant MSBR
22.2 CLI Configuration and Status Commands ........................................................... 153
22.2.1 Configuration Commands ......................................................................................153
22.2.2 Status Commands .................................................................................................153
22.2.3 Multicast Example ..................................................................................................154
A Mediant 500 Transmitter Examples ............................................................... 165
Page 8
IP Networking Configuration
Configuration Guide 8 Document #: LTRT-31657
This page is intentionally left blank.
Page 9
Version 6.8 9 Mediant MSBR
Configuration Guide Notices
Notice
This document describes IP network configuration using the CLI management interface for AudioCodes Multi-Service Business Routers (MSBR).
Information contained in this document is believed to be accurate and reliable at the time of printing. However, due to ongoing product improvements and revisions, AudioCodes cannot guarantee accuracy of printed material after the Date Published nor can it accept responsibility for errors or omissions. Before consulting this document, check the corresponding Release Notes regarding feature preconditions and/or specific support in this release. In cases where there are discrepancies between this document and the Release Notes, the information in the Release Notes supersedes that in this document. Updates to this document and other documents as well as software files can be downloaded by registered customers at
http://www.audiocodes.com/downloads.
© Copyright 2016 AudioCodes Ltd. All rights reserved.
This document is subject to change without notice.
Date Published: April-144-2016
Trademarks
AudioCodes, AC, HD VoIP, HD VoIP Sounds Better, IPmedia, Mediant, MediaPack, What’s Inside Matters, OSN, SmartTAP, VMAS, VoIPerfect, VoIPerfectHD, Your Gateway To VoIP, 3GX, VocaNOM and CloudBond 365 are trademarks or registered trademarks of AudioCodes Limited All other products or trademarks are property of their respective owners. Product specifications are subject to change without notice.
WEEE EU Directive
Pursuant to the WEEE EU Directive, electronic and electrical waste must not be disposed of with unsorted waste. Please contact your local recycling authority for disposal of this product.
Customer Support
Customer technical support and services are provided by AudioCodes or by an authorized AudioCodes Service Partner. For more information on how to buy technical support for AudioCodes products and for contact information, please visit our Web site at
www.audiocodes.com/support
.
Abbreviations and Terminology
Each abbreviation, unless widely used, is spelled out in full when first used.
Page 10
IP Networking Configuration
Configuration Guide 10 Document #: LTRT-31657
Document Revision Record
LTRT Description
31652 Initial document release.
31653 Updated Section 4.1 DHCP Client.
31654 Sections 4, 7, 18, 19, 21 and 22 were added.
31655 Added configuration for loopback of interfaces to work with voice.
31656 Updates to the Ping command, Traceroute command, Static routing, RIP interface
configuration, Dynamic Routing protocol routes, OAMP Binding to loopback, VRF configuration, OSPF Routing protocol and BGP configuration.
31657 Updates to the Policy Based Routing (PBR) configuration.
Documentation Feedback
AudioCodes continually strives to produce high quality documentation. If you have any comments (suggestions or errors) regarding this document, please fill out the Documentation Feedback form on our Web site at http://www.audiocodes.com/downloads
.
Page 11
Version 6.8 11 Mediant MSBR
Configuration Guide 1. Introduction
1 Introduction
As an all-in-one product family, the MSBR provides a variety of data services. As a rule, data services of any-size organization are based on IP networking as a standard, as IPv4 (and in the future, IPv6) are the official and standard suits of data network protocols.
This document deals with the IP data functionality of the MSBR and addresses the purpose of listing and explaining the kinds and nature of the IP protocols supported by the MSBR, explaining their most common uses and functionality, how to configure and implement them in an existing network, and demonstrating the most common and real-life-like scenarios and best practices in which those protocols can and should be used. In addition, a list of available commands and options for each protocol is described.
The examples in this document include topology, configuration methods and sample output and verifying commands to better understand the way they operate.
All mentioned protocols and technologies can be used in a more complex and advanced configuration than some of those demonstrated in this document; however, the main goal is to demonstrate common and well-tested implementations.
Page 12
IP Networking Configuration
Configuration Guide 12 Document #: LTRT-31657
This page is intentionally left blank.
Page 13
Version 6.8 13 Mediant MSBR
Configuration Guide 2. IPv4
2 IPv4
IPv4 is the common and most widespread version of the Internet Protocol which is responsible for routing traffic on the internet and private networks. IPv4 also defines the structure and rules of IP addressing for network devices and nodes.
MSBR maintains a routing table which lists the IP addresses familiar to the device and how to reach them in terms of next-hop. Information stored in the routing table is received from different sources, such as local physical and logical interfaces, static routes configured by the network administrator, and dynamic routing protocols. All of the listed items are seen as different routing domains.
IP addresses on the MSBR are configured on interfaces, and usually are accompanied by the subnet mask, which is used for the subnet calculation.
Each Layer-3 interface can be assigned one primary IP address, and several secondary IP addresses. Secondary IP addresses are typically used to provide connectivity to several subnets through a single interface, facilitating network transitions and multi-homing.
2.1 Example of Primary and Secondary IP Address Configuration
The following is an example of primary and secondary IP address configuration.
2.1.1 Configuration
MSBR# configure data MSBR(conf-data)# interface VLAN 1 MSBR(conf-if-VLAN 1)# ip address 192.169.12.1 255.255.255.0 MSBR(conf-if-VLAN 1)# ip address 192.169.0.1 255.255.255.0
secondary MSBR(conf-if-VLAN 1)# no shutdown
2.1.2 Output
MSBR# show data int vlan 1
VLAN 1 is Connected. Description: LAN switch VLAN 1 Hardware address is 00:90:8f:4a:23:43
IP address is 192.169.12.1 netmask is 255.255.255.0
State Time: 242:26:48 Time since creation: 242:27:11 Time since last counters clear : 0:00:05 mtu auto
Secondary IP address is 192.169.0.1 Secondary netmask is 255.255.255.0
DNS is configured static DNS primary IP address is 0.0.0.0 DNS secondary IP address is 0.0.0.0
Page 14
IP Networking Configuration
Configuration Guide 14 Document #: LTRT-31657
2.2 Interface VLAN – Link State Monitor
MSBR handles physical and logical interfaces. While the state of a physical interface is determined by whether its connected to the power (plugged in or not), logical interfaces, such as interface VLAN, can remain in UP state even if ports associated with them are disconnected. To prevent such a scenario, it is possible to enable a link-state monitor, which probes the state of VLAN-associated interfaces, and brings down VLAN interfaces if ports associated with them are disconnected.
2.2.1 Configuration
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface vlan
vlan
Enters the interface vlan configuration mode.
(conf-if-Vlan
num
)# link-state
monitor
Enables the link-state monitor.
Page 15
Version 6.8 15 Mediant MSBR
Configuration Guide 3. ICMP
3 ICMP
Internet Control Message Protocol (ICMP) is one of the main protocols in the IP suite and in general, is used by network equipment to obtain information or notify about data delivery problems, for example, in case a specific service is unavailable or a specific network or host is unreachable.
The most common and known usages of ICMP are the ping and traceroute commands, using ICMP messages to test IP reachability to an IP address on the internet, and to verify the IP “hops” a packet travels on its way to the destination, respectively.
The ICMP protocol “runs” over UDP and is defined in RFC 792.
3.1 ping
The ping tests IP reachability to a desired destination. If the destination is reachable, there will be the same amount of echo requests and replies.
Command structure:
ping <IP address / host> options
where the options are:
repeat - amount of ICMP requests to send.
size - size of the of the ICMP packet in bytes.
source – source from where to send the packets
summarized - display summarized results (! - successful reply, .U - No reply, timeout
and Unreachable)
source [data voip]- interface to use as source address for the ICMP requests. Voip or
data interfaces can be used. “Source voip” – allows you to select the source interface as name or as VLAN number. “Source data – allows you to select any interface as source for ping. The pings are sent from this interface. “Source data source-address” allows you to ping from IP of any address while the next hop calculated using the routing table. “Source data vrf” allows you to ping from any configured VRF.
Typical output:
MSBR# ping 192.168.0.3
Reply from 192.168.0.3: time=1 ms Reply from 192.168.0.3: time=1 ms Reply from 192.168.0.3: time=1 ms Reply from 192.168.0.3: time=1 ms 4 packets transmitted, 4 packets received Round-trip min/avg/max = 1/1/1 ms
Page 16
IP Networking Configuration
Configuration Guide 16 Document #: LTRT-31657
3.2 Traceroute
The ping command informs you if the destination is reachable or not. Traceroute can be used to discover the path that packets travel to the remote destination.
Command structure:
traceroute <IP Address / host> [vrf | source-address]
Typical output:
MSBR# traceroute 8.8.8.8
1 192.168.0.1 (192.168.0.3) 1.169 ms * 7.346 ms 2 100.100.100.2 (100.100.100.2) 1.169 ms * 7.346 ms . . 8 8.8.8.8 (8.8.8.8) 1.169 ms * 7.346 ms Traceroute: Destination reached
MSBR#
Page 17
Version 6.8 17 Mediant MSBR
Configuration Guide 4. VRRP
4 VRRP
VRRP provides for automatic assignment of available routers to participating hosts. This increases the availability and reliability of routing paths via automatic default gateway selections on a LAN.
The protocol achieves this by creating virtual routers, comprised of master and backup routers. VRRP routers use multicast to notify its presence in the LAN (never forwarding outside of the LAN).
VRRP is based on RFC 2338 and RFC 3768.
4.1 Feature Key
Advanced routing feature key must be enabled.
4.2 CLI Configuration and Status Commands
The following describes the CLI Configuration and Status commands.
4.2.1 Configuration Commands
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface <Interface>
Configures an interface.
vrrp <VRID> ip <ip address>
Sets primary IP address for the VRID
vrrp <VRID> ip <ip address> secondary
Sets secondary IP address for the VRID
vrrp <VRID> priority <priority>
Sets priority for VRID, range 1-254
vrrp <VRID> preempt
Sets preemption for lower priority Master
vrrp <VRID> advertisement-timer
<time in seconds>
Sets interval timer for advertising the Master VRID
4.2.2 Status Commands
Command Description
show data vrrp
Displays vrrp status
show data vrrp interface <interface name>
Displays vrrp interface status.
show data vrrp brief
Displays vrrp brief status
# show data vrrp
VLAN 1 - Group 1 State is Master Virtual IP address is 10.4.6.14 Advertisement interval is 1 sec Preemption is enabled
Page 18
IP Networking Configuration
Configuration Guide 18 Document #: LTRT-31657
Priority is 100 Master Router is 10.4.6.12 (local), priority is 100 Master Advertisement interval is 1 sec Master Down interval is 3.609 sec
VLAN 2 - Group 1 State is Master Virtual IP address is 10.7.5.4 Advertisement interval is 10 sec Preemption is enabled Priority is 120 Master Router is 10.7.7.7 (local), priority is 120 Master Advertisement interval is 10 sec Master Down interval is 30.531 sec
# show data vrrp interface vlan 2
VLAN 2 - Group 1 State is Master Virtual IP address is 10.7.5.4 Advertisement interval is 10 sec Preemption is enabled Priority is 120 Master Router is 10.7.7.7 (local), priority is 120 Master Advertisement interval is 10 sec Master Down interval is 30.531 sec
# show data vrrp brief
Interface Grp Pri Time,msec Own Pre State Master addr Group addr
VLAN 1000 2 100 765609 Y Y Master
101.101.101.101 2.2.2.2 VLAN 1000 100 255 3003 Y Y Master
101.101.101.101 101.101.101.101 VLAN 2 3 100 3609 Y Y Master
10.50.50.50 200.200.200.200 VLAN 2 4 100 3609 Y Y Master
10.50.50.50 10.4.3.2 VLAN 2 2 120 300531 Y Y Master
10.50.50.50 10.9.9.9
Page 19
Version 6.8 19 Mediant MSBR
Configuration Guide 4. VRRP
4.3 VRRP Example
In the example below, there are two VRRP routers – one with IP 10.100.10.2 and one with
10.100.10.3. They use a common virtual IP address 10.100.10.1, where one is the Master and the other is the Backup. In the example, we will use VRID 1 over VLAN 1.
Figure 4-1: VRRP Example
The Master will be the MSBR with the higher priority. For example:
Master configuration:
Mediant 800B# configure data Mediant 800B(config-data)# interface vlan 1 Mediant 800B(conf-if-VLAN 1)# vrrp 1 ip 10.100.10.1 Mediant 800B(conf-if-VLAN 1)# vrrp 1 priority 200 Mediant 800B(conf-if-VLAN 1)# exit
Mediant 800B(config-data)
Backup configuration:
Mediant 800B# configure data Mediant 800B(config-data)# interface vlan 1 Mediant 800B(conf-if-VLAN 1)# vrrp 1 ip 10.100.10.1 Mediant 800B(conf-if-VLAN 1)# vrrp 1 priority 100 Mediant 800B(conf-if-VLAN 1)# exit
Mediant 800B(config-data)
Page 20
IP Networking Configuration
Configuration Guide 20 Document #: LTRT-31657
The following is an example of the show run command for two MSBRs:
Master:
M500 *# show run
# Running Configuration M500
## VoIP Configuration configure voip interface network-dev 0 name "vlan 1" activate exit interface network-if 0 ip-address 192.168.10.2 prefix-length 24 gateway 192.168.10.1 name "Voice" primary-dns 192.168.10.1 underlying-dev "vlan 1" activate exit media udp-port-configuration udp-port-spacing 10 activate exit voip-network realm 0 name "DefaultRealm" ipv4if "Voice" port-range-start 4000 session-leg 6154 port-range-end 65530 is-default true activate exit megaco naming physical-start-num 0 0 physical-start-num 1 1 physical-start-num 2 1 physical-start-num 3 0 physical-start-num 4 0 activate exit tdm pcm-law-select mulaw activate exit exit
Page 21
Version 6.8 21 Mediant MSBR
Configuration Guide 4. VRRP
## System Configuration
configure system cli-terminal wan-ssh-allow on wan-telnet-allow on ssh on idle-timeout 0 activate exit ntp set primary-server "0.0.0.0" activate exit snmp no activate-keep-alive-trap activate exit web wan-http-allow on set https-cipher-string "RC4:EXP" activate exit configuration-version 0 exit
## Data Configuration configure data interface GigabitEthernet 0/0 ip address dhcp ip dhcp-client default-route mtu auto desc "WAN Copper" no ipv6 enable speed auto duplex auto no service dhcp ip dns server auto napt firewall enable no shutdown exit interface Fiber 0/1 ip address 200.0.0.2 255.255.255.252 mtu auto desc "WAN Fiber" no ipv6 enable no service dhcp ip dns server static no napt
Page 22
IP Networking Configuration
Configuration Guide 22 Document #: LTRT-31657
no firewall enable no shutdown exit interface dsl 0/2 #DSL configuration is automatic #Termination cpe mode adsl shutdown exit interface EFM 0/2 #This interface is DISABLED due to physical layer
configuration no ip address mtu auto desc "WAN DSL" no ipv6 enable no service dhcp ip dns server static no shutdown exit interface GigabitEthernet 1/1 speed auto duplex auto switchport mode trunk switchport trunk native vlan 1 no shutdown exit interface GigabitEthernet 1/2 speed auto duplex auto switchport mode trunk switchport trunk native vlan 1 no shutdown exit interface GigabitEthernet 1/3 speed auto duplex auto switchport mode trunk switchport trunk native vlan 1 no shutdown exit interface GigabitEthernet 1/4 speed auto duplex auto switchport mode trunk switchport trunk native vlan 1 no shutdown exit interface VLAN 1 ip address 10.100.10.2 255.255.255.0 vrrp 1 advertisement-timer 10
vrrp 1 priority 200
Page 23
Version 6.8 23 Mediant MSBR
Configuration Guide 4. VRRP
vrrp 1 ip 10.100.10.1 mtu auto desc "LAN switch VLAN 1" no ipv6 enable no napt no firewall enable no link-state monitor no shutdown exit ip nat translation udp-timeout 120 ip nat translation tcp-timeout 86400 ip nat translation icmp-timeout 6 # Note: The following WAN ports are in use by system
services, # conflicting rules should not be created: # Ports 80 - 80 --> HTTP # Ports 23 - 23 --> Telnet CLI # Ports 22 - 22 --> SSH CLI # Ports 82 - 82 --> TR069 ip domain name home ip domain localhost msbr pm sample-interval minute 5 pm sample-interval seconds 15 exit
Slave:
M500 *# show run
# Running Configuration M500
## VoIP Configuration
configure voip interface network-dev 0 name "vlan 1" activate exit interface network-if 0 ip-address 192.168.10.2 prefix-length 24 gateway 192.168.10.1 name "Voice" primary-dns 192.168.10.1 underlying-dev "vlan 1" activate exit media udp-port-configuration udp-port-spacing 10 activate exit
Page 24
IP Networking Configuration
Configuration Guide 24 Document #: LTRT-31657
voip-network realm 0 name "DefaultRealm" ipv4if "Voice" port-range-start 4000 session-leg 6154 port-range-end 65530 is-default true activate exit megaco naming physical-start-num 0 0 physical-start-num 1 1 physical-start-num 2 1 physical-start-num 3 0 physical-start-num 4 0 activate exit tdm pcm-law-select mulaw activate exit exit
## System Configuration configure system cli-terminal wan-ssh-allow on wan-telnet-allow on ssh on idle-timeout 0 activate exit ntp set primary-server "0.0.0.0" activate exit snmp no activate-keep-alive-trap activate exit web wan-http-allow on set https-cipher-string "RC4:EXP" activate exit configuration-version 0 exit
Page 25
Version 6.8 25 Mediant MSBR
Configuration Guide 4. VRRP
## Data Configuration
configure data interface GigabitEthernet 0/0 ip address dhcp ip dhcp-client default-route mtu auto desc "WAN Copper" no ipv6 enable speed auto duplex auto no service dhcp ip dns server auto napt firewall enable no shutdown exit interface Fiber 0/1 ip address 200.0.0.3 255.255.255.252 mtu auto desc "WAN Fiber" no ipv6 enable no service dhcp ip dns server static no napt no firewall enable no shutdown exit interface dsl 0/2 #DSL configuration is automatic #Termination cpe mode adsl shutdown exit interface EFM 0/2 #This interface is DISABLED due to physical layer
configuration no ip address mtu auto desc "WAN DSL" no ipv6 enable no service dhcp ip dns server static no shutdown exit interface GigabitEthernet 1/1 speed auto duplex auto switchport mode trunk switchport trunk native vlan 1 no shutdown exit
Page 26
IP Networking Configuration
Configuration Guide 26 Document #: LTRT-31657
interface GigabitEthernet 1/2 speed auto duplex auto switchport mode trunk switchport trunk native vlan 1 no shutdown exit interface GigabitEthernet 1/3 speed auto duplex auto switchport mode trunk switchport trunk native vlan 1 no shutdown exit interface GigabitEthernet 1/4 speed auto duplex auto switchport mode trunk switchport trunk native vlan 1 no shutdown exit interface VLAN 1 ip address 10.100.10.3 255.255.255.0 vrrp 1 advertisement-timer 10
vrrp 1 priority 100 vrrp 1 ip 10.100.10.1 mtu auto
desc "LAN switch VLAN 1" no ipv6 enable ip dns server static no napt no firewall enable no link-state monitor no shutdown exit ip nat translation udp-timeout 120 ip nat translation tcp-timeout 86400 ip nat translation icmp-timeout 6 # Note: The following WAN ports are in use by system
services, # conflicting rules should not be created: # Ports 80 - 80 --> HTTP # Ports 23 - 23 --> Telnet CLI # Ports 22 - 22 --> SSH CLI # Ports 82 - 82 --> TR069 ip domain name home ip domain localhost msbr pm sample-interval minute 5 pm sample-interval seconds 15 exit
Page 27
Version 6.8 27 Mediant MSBR
Configuration Guide 5. DHCP
5 DHCP
DHCP is a network protocol that allows network devices to acquire IPv4 address and additional network configuration parameters automatically from a DHCP server. DHCP is defined in RFC 2131 and the DHCP server options are defined in RFC 2132.
MSBR supports the following DHCP operation modes:
DHCP Client
DHCP Server
DHCP Relay
5.1 DHCP Client
The DHCP client operation mode allows the MSBR to acquire IPv4 addresses and network configuration parameters automatically on its network interfaces.
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface gigabitethernet 0/0
Selects an interface to configure.
(config-if-VLAN-1)# ip address
dhcp
Configures the interface to acquire the IPv4 address and configuration via DHCP.
(config-if-VLAN-1)# ip dhcp-client
default-route
Configures the interface to use the gateway address received via DHCP as the default route.
(config-if-VLAN-1)# ip dhcp-client
default-route track 1
Configures the interface to use the gateway address received via DHCP as default route when track 1 is up.
Note: If the track destination is remote, a static route will automatically be added to reach it through the gateway address.
(config-if-VLAN-1)# no service
dhcp
Disables the DHCP server service on the interface.
Note: Track number cannot be configured using zero-conf.
Page 28
IP Networking Configuration
Configuration Guide 28 Document #: LTRT-31657
5.2 DHCP Server
The DHCP server operation mode allows the MSBR to act as a DHCP server on the network and to lease IPv4 addresses to network devices. The DHCP server functionality is configured per interface.
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface VLAN 1
Selects an interface to configure.
(config-if-VLAN-1)# ip dhcp-
server network 192.169.12.10
192.169.12.20 255.255.255.0
Configures the start and end IP address for the leased range and the network mask.
(config-if-VLAN-1)# ip dhcp-
server dns-server 0.0.0.0
Configures the DNS server address that will be advertised.
(config-if-VLAN-1)# ip dhcp-
server netbios-name-server
0.0.0.0
Configures the NetBIOS server address that will be advertised.
(config-if-VLAN-1)# ip dhcp­server netbios-node-type
Configures the NetBIOS node type.
(config-if-VLAN-1)# ip dhcp-
server lease 0 1 0
Configures the lease timer for the IP addresses (days , hours , and minutes).
(config-if-VLAN-1)# ip dhcp-
server provide-host-name
Configures whether the server provides hostnames for network devices.
(config-if-VLAN-1)# ip dhcp-
server ntp-server 0.0.0.0
Configures the NTP server IP address that will be advertised.
(config-if-VLAN-1)# ip dhcp-
server tftp-server 0.0.0.0
Configures the TFTP server IP address that will be advertised.
(config-if-VLAN-1)# ip dhcp-
server override-router-address
0.0.0.0
Configures the Default Gateway to advertise to clients when not acting as a default gateway.
(config-if-VLAN-1)# ip dhcp-
server next-server 0.0.0.0
Configures the next TFTP server that can be used to advertise.
(config-if-VLAN-1)# ip dhcp-
server boot-file-name
Configures a boot file path/name that will be advertised to clients (DHCP option 67).
(config-if-VLAN-1)# ip dhcp-
server classless-static-route
Configures a static route that will be advertised to clients (DHCP option 121).
(config-if-VLAN-1)# ip dhcp-
server static-host HostName (static-dhcp)# ip 1.1.1.1 (static-dhcp)# mac
AA:BB:CC:DD:EE:FF
Enters the static address binding menu
Configures the MAC address for the binding.
Configures the IP address for the binding.
(config-if-VLAN-1)# ip dhcp-
server tftp-server-name
Configures the TFTP server name that will be advertised to clients.
(config-if-VLAN-1)# ip dhcp-
server time-offset
Configures the time-offset (GMT time zone) to be advertised to clients (in seconds).
(config-if-VLAN-1)# ip dhcp-
server tr069-acs-server-name
Configures ACS server IP to be advertised to clients.
Page 29
Version 6.8 29 Mediant MSBR
Configuration Guide 5. DHCP
Command Description
(config-if-VLAN-1)# service dhcp
Enable the DHCP service on the interface.
5.2.1 DHCP Zones
DHCP zones enable a router to act as a DHCP server to several different subnets. Each DHCP zone has its own IP address pool and an array of selectors indicating which requests each zone accepts.
If zones are configured in addition to the DHCP configuration as above, this configuration is referred to as the default zone.
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface VLAN 1
Selects an interface to configure.
(config-if-VLAN-1)# ip dhcp-server zone meep
Enters the configuration menu for zone meep
(conf-zone meep)# network 5.5.1.1
5.5.200.200 255.255.0.0
Configures the start and end IP addresses for the
zone’s leased range and the network mask. A zone’s pool can’t conflict with any other zone’s IP pool.
(conf-zone meep)# lease 0 1 0
Configures the lease timer for the IP addresses
(days, hours, and minutes) in the zone.
(conf-zone meep)# next-server
0.0.0.0
Configures the next TFTP server that can be used to advertise. If not defined, the interface’s IP address will be used as a default value.
(conf-zone meep)# dns 55.44.33.22
Configures the DNS server address that will be advertised.
(conf-zone meep)#exit (config-if-VLAN-1)# service dhcp
Exits the zone definition and starts the DHCP service.
5.2.1.1 Selectors
Packet selectors can be defined on the following properties:
DHCP Option 60
DHCP Option 61 (client identifier)
DHCP Option 77 (user class option)
MAC Address
Relay agent which forwarded this packet to server
A packet will be accepted by a zone if it meets one or more of the selectors defined in it. If a packet matches several zones, it will receive its IP from an arbitrary zone among them. If a zone has no selectors defined, it can accept no requests.
Page 30
IP Networking Configuration
Configuration Guide 30 Document #: LTRT-31657
The same selector can’t be defined in multiple zones.
Command Description
(conf-zone meep)# selector option
60 MSBR
Accepts packets where the value of Option 60 is exactly ‘MSBR’
(conf-zone meep)# selector option
60 substr MSBR
Accepts packets where the value of Option 60 contains ‘MSBR’, ex MSBR500
(conf-zone meep)# selector option
61 01008F58C0EE
Accepts packets where the value of Option 61 is the hex value 0x01008F58C0EE
(conf-zone meep)# selector option
61 prefix 01008F58
Accepts packets where the value of Option 61 starts with the hex value 0x01008F58
(conf-zone meep)# selector option
77 phone
Accepts packets where the value of Option 77 is exactly ‘phone’
(conf-zone meep)# selector option
77 substr phone
Accepts packets where the value of Option 77 contains ‘phone’, ex ip-phone
(conf-zone meep)# selector mac
00:8F:58:C0:22:EE
Accepts packets where the client’s mac address is 00:8F:58:C0:22:EE
(conf-zone meep)# selector mac
prefix 00:8F:58
Accepts packets where the client’s mac address starts with 00:8F:58
(conf-zone meep)# selector relay
3.3.3.3
Accepts packets received from the relay agent whose IP is 3.3.3.3
(conf-zone meep)# selector relay
3.3.3.3 3.3.3.16
Accepts packets received from the relay agent whose IP is in the range between 3.3.3.3 and
3.3.3.16
5.2.1.2 Default Zone
The DHCP server also has a default zone, which if configured will accept and respond to any DHCP request that no other zone accepts. See configuration details above.
Page 31
Version 6.8 31 Mediant MSBR
Configuration Guide 5. DHCP
5.3 DHCP Relay
The DHCP relay operation mode allows the MSBR to relay and forward DHCP packets between different Layer-3 network segments, and between different interfaces.
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface VLAN 1
Selects an interface to configure.
(config-if-VLAN-1)# ip dhcp-server
1.1.1.1
Configures the IP address of the DHCP server from which to relay messages.
Page 32
IP Networking Configuration
Configuration Guide 32 Document #: LTRT-31657
5.4 Example of DHCP Server and DHCP Client
This example configuration demonstrates a scenario in which the MSBR acts as a DHCP server on the LAN network to which it is connected, and acquires its' WAN address using DHCP (as a client).
Note: Acquiring a WAN address using DHCP and acting as a DHCP server on the LAN
is a common case, and describes a best-practice hierarchical DHCP functionality.
Figure 5-1: DHCP
On the WAN interface, the address is dynamically acquired once connectivity is established with a DHCP server. On the LAN interface, you need to configure MSBR to activate the DHCP service, specify the DHCP address pool, and which Default Gateway address to advertise. In addition, we specify the lease timers and TFTP and DNS server addresses to be advertised to DHCP clients.
5.4.1 DHCP Client Configuration Example (WAN Side)
MSBR# configure data MSBR(conf-data)# interface GigabitEthernet 0/0 MSBR(conf-if-GE 0/0)# firewall enable MSBR(conf-if-GE 0/0)# napt MSBR(conf-if-GE 0/0)# ip address dhcp MSBR(conf-if-GE 0/0)# ip dhcp-client default-route MSBR(conf-if-GE 0/0)# no service dhcp MSBR(conf-if-GE 0/0)# no shutdown MSBR(conf-if-GE 0/0)# exit
5.4.2 DHCP Server Configuration Example (LAN Side)
MSBR# configure data MSBR(conf-data)# interface VLAN 1 MSBR(conf-if-VLAN 1)# ip address 192.168.0.1 255.255.255.0 MSBR(conf-if-VLAN 1)# desc "VLAN 1 LAN VOIP" MSBR(conf-if-VLAN 1)# ip dhcp-server network 192.168.0.10
192.168.0.20 255.255.255.0 MSBR(conf-if-VLAN 1)# ip dhcp-server lease 0 1 0 MSBR(conf-if-VLAN 1)# service dhcp MSBR(conf-if-VLAN 1)# no shutdown MSBR(conf-if-VLAN 1)# exit
Page 33
Version 6.8 33 Mediant MSBR
Configuration Guide 5. DHCP
5.5 Example of DHCP Relay
This example configures the MSBR to accept DHCP packets from the configured IP address, which will act as a DHCP relay.
MSBR# configure data MSBR(conf-data)# ip dhcp-server 100.100.100.100 gigabitEthernet
0/0
5.6 Example of DHCP Server with Zones
In this example, the server is connected to three subnets via relay agents. For every subnet, a zone is configured, in addition to a default zone.
Configure the first zone, which accepts packets with source mac addresses beginning with 00:33:22:
MSBR# configure data (config-data)# interface VLAN 1 (config-if-VLAN-1)# ip dhcp-server zone z1 (conf-zone z1)# selector mac prefix 00:33:22 (conf-zone z1)#network 20.20.10.5 20.20.10.200 255.255.255.0 (conf-zone z1)#lease 0 1 0 (conf-zone z1)#exit
Configure the second zone, which accepts packets arriving via relay agents whose addresses are in the 20.20.20.1-20.20.20.4 range:
(config-if-VLAN-1)# ip dhcp-server zone z2 (conf-zone z2)# selector relay 20.20.20.1 20.20.20.4 (conf-zone z2)#network 20.20.20.5 20.20.20.200 255.255.255.0 (conf-zone z2)#lease 0 1 0 (conf-zone z2)#exit
Page 34
IP Networking Configuration
Configuration Guide 34 Document #: LTRT-31657
Configure the third zone, which accepts packets whose DHCP option 60’s value contains the text “phone”:
(config-if-VLAN-1)# ip dhcp-server zone z3 (conf-zone z3)# selector option 60 substr phone (conf-zone z3)#network 20.20.30.5 20.20.30.200 255.255.255.0 (conf-zone z3)#lease 0 1 0 (conf-zone z3)#exit
Configure the default zone to have an address pool in the same subnet as its IP and activate the dhcp server:
(config-if-VLAN-1)# ip address 20.20.1.1 255.255.0.0 (config-if-VLAN-1)# ip dhcp-server 20.20.1.5 20.20.1.200
255.255.0.0 (config-if-VLAN-1)# ip dhcp-server lease 0 1 0 (config-if-VLAN-1)# service dhcp
Page 35
Version 6.8 35 Mediant MSBR
Configuration Guide 5. DHCP
5.7 Output of show Commands
The following displays the output of the show commands.
5.7.1 show dhcp server leased ip addresses
MSBR# show data ip dhcp binding
Hostname Ip address Mac address IF name Lease expiration
Test-Laptop 192.169.1.10 e8:11:32:05:05:26 VLAN 1 37
5.7.2 show dhcp relay configuration display
MSBR# show data ip dhcp-server all
DHCP relay server of interface GigabitEthernet 0/0: Relay Server is enabled. Configured servers:
100.100.100.100
Page 36
IP Networking Configuration
Configuration Guide 36 Document #: LTRT-31657
This page is intentionally left blank.
Page 37
Version 6.8 37 Mediant MSBR
Configuration Guide 6. DNS
6 DNS
Domain Name System (DNS) is a hierarchical naming system for computers, devices, or any resources connected to a network. DNS is used to resolve hostnames into IP addresses, and to enforce naming conventions for devices in the network and/or domain.
DNS configuration for devices can be either static – administrator configured – or acquired dynamically through DHCP.
6.1 DNS Configuration
The following describes DNS configuration commands.
6.1.1 Global Configuration
The following is the global configuration of the DNS:
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip dns server
<all|static>
Configures the DNS configuration method (static or dynamic).
(config-data)# ip name-server
server1ip [server2ip] all
Configures DNS server(s) IP address in case of static configuration.
6.1.2 Interface-specific Configuration
The following is the configuration of the DNS per interface:
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface
int_name
Selects an interface to configure
(config-if-
name
)# ip dns server
<dynamic|static>
Configures interface-specific DNS configuration method: static or dynamic
(config-if-
name
)# ip name-server
server1ip [server2ip] all
Configures DNS server/s ip address in case of static configuration on the interface
The MSBR can act as a DNS server. To configure the MSBR as a DNS server, use the following commands:
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip host <name> <ip
| ipv6> <ttl>
<name>: any name for the host. <ip | ipv6>: can configure IPv4 or IPv6 for the
name.
<TTL>: time to live of the DNS record.
Page 38
IP Networking Configuration
Configuration Guide 38 Document #: LTRT-31657
6.2 Example #1 of Basic Dynamic DNS Configuration
In this typical example scenario, the MSBR, acting as an access router for the organizational network, receives the DNS server’s IP address dynamically through DHCP on the WAN interface. The MSBR also acts as a DHCP server on the LAN, and by the configuration ip name-server 0.0.0.0, the MSBR acts as a DNS server, relaying DNS messages to the DNS server's IP address that it acquires dynamically on the WAN interface.
Figure 6-1: Dynamic DNS
6.2.1 Configuration
MSBR# configure data MSBR(conf-data)# interface GigabitEthernet 0/0 # WAN Interface is set as DHCP client MSBR(conf-if-GE 0/0)# firewall enable MSBR(conf-if-GE 0/0)# napt
MSBR(conf-if-GE 0/0)# ip address dhcp MSBR(conf-if-GE 0/0)# ip dhcp-client default-route
MSBR(conf-if-GE 0/0)# ip dns-server auto MSBR(conf-if-GE 0/0)# no shutdown MSBR(conf-if-GE 0/0)# exit MSBR(conf-data)# interface VLAN 1 # LAN Interface is set as DHCP server MSBR(conf-if-VLAN 1)# ip address 192.168.0.1 255.255.255.0 MSBR(conf-if-VLAN 1)# desc "VLAN 1 LAN VOIP" MSBR(conf-if-VLAN 1)# ip dhcp-server network 192.168.0.10
192.168.0.20 255.255.255.0 MSBR(conf-if-VLAN 1)# ip dhcp-server lease 0 1 0
MSBR(conf-if-VLAN 1)# ip dns server static MSBR(conf-if-VLAN 1)# ip name-server 0.0.0.0 MSBR(conf-if-VLAN 1)# service dhcp
MSBR(conf-if-VLAN 1)# no shutdown MSBR(conf-if-VLAN 1)# exit
Page 39
Version 6.8 39 Mediant MSBR
Configuration Guide 6. DNS
6.2.2 Output and show Commands
MSBR# show data hosts
Interface name DNS configuration Primary IP address Secondary IP address
------------------------------------------------------------------
-------------------­GigabitEthernet 0/0 Dynamic 80.179.52.100
80.179.55.100 Fiber 0/1 Static 0.0.0.0
0.0.0.0 VLAN 1 Static 0.0.0.0
0.0.0.0
Host Type Parameters
Page 40
IP Networking Configuration
Configuration Guide 40 Document #: LTRT-31657
6.3 Example #2 of Basic Static DNS Configuration
In this typical example scenario, the MSBR, acting as an access router for the organizational network, is configured with a static DNS server address. The MSBR also acts as a DHCP server on the LAN, and by the configuration ip name-server
0.0.0.0, the MSBR acts as a DNS server, relaying DNS messages to the DNS server's IP address that was provided statically or dynamically from the WAN interface.
Figure 6-2: Static DNS
6.3.1 Configuration
MSBR# configure data MSBR(conf-data)# interface GigabitEthernet 0/0 MSBR(conf-if-GE 0/0)# firewall enable MSBR(conf-if-GE 0/0)# napt MSBR(conf-if-GE 0/0)# ip address dhcp MSBR(conf-if-GE 0/0)# ip dhcp-client default-route
MSBR(conf-if-GE 0/0)# ip dns-server static MSBR(conf-if-GE 0/0)# ip name-server 10.10.10.10
MSBR(conf-if-GE 0/0)# no service dhcp MSBR(conf-if-GE 0/0)# no shutdown MSBR(conf-if-GE 0/0)# exit MSBR(conf-data)# interface VLAN 1 MSBR(conf-if-VLAN 1)# ip address 192.168.0.1 255.255.255.0 MSBR(conf-if-VLAN 1)# desc "VLAN 1 LAN VOIP" MSBR(conf-if-VLAN 1)# ip dhcp-server network 192.168.0.10
192.168.0.20 255.255.255.0 MSBR(conf-if-VLAN 1)# ip dhcp-server lease 0 1 0
MSBR(conf-if-VLAN 1)# ip dns server static MSBR(conf-if-VLAN 1)# ip name-server 0.0.0.0
MSBR(conf-if-VLAN 1)# service dhcp MSBR(conf-if-VLAN 1)# no shutdown
Page 41
Version 6.8 41 Mediant MSBR
Configuration Guide 7. Track
7 Track
This command tracks a destination IP address from a given source interface. The tracking is done by sending ICMP probes and monitors the replies. If the destination is reachable, the Track Status is set to ‘up’. When a configurable number of replies are not received, the Track Status is set to ‘down’.
7.1 Configuring Track
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# track id icmpecho
destIP interface [source-ip­interface interface] [interval
val
] [retries
val
]
Configures a Track to monitor reachability to
destIP from the interface.
7.2 Output
MSBR1# show data track brief
Track Type State Max round trip time (m.s) 1 ICMP reachability Up 37
Get the time of up to the last 10 Track states:
MSBR1# show data track 1 history
Track history: New state Date and Time [MM-DD-YYYY@hh:mm:ss] Up 08-28-2015@18:17:40 Down 08-28-2015@18:25:30 Up 08-28-2015@18:26:20
Page 42
IP Networking Configuration
Configuration Guide 42 Document #: LTRT-31657
This page is intentionally left blank.
Page 43
Version 6.8 43 Mediant MSBR
Configuration Guide 8. Static Routing
8 Static Routing
Static routing is used when the router uses pre-defined, user-configured routing entries to forward traffic. Static routes are usually manually configured by the network administrator and are added to the routing table.
A Common use of static routes is for providing the gateway of a "last resort", i.e., providing an instruction on how to forward traffic when no other route exists.
Static routes have a much lower administrative distance in the system than the dynamic routing protocols, and in most scenarios are prioritized over the dynamic routes.
8.1 Configuring Static Routing
Command Description
MSBR# configure data
Enter the data configuration menu.
(config-data)# ip route [vrf
vrf]
destIP destMask [next-hop] interface [A-distance] [track
number]
[output-vrf vrf]
Configure a static route by specifying the destination prefix, an output interface and optionally a next-hop address, the metric for the route and a tracking object and output vrf.
8.2 Example of Basic Static Route Configuration
In this example, the MSBR1 needs to reach the 10.10.10.0/24 network segment from its LAN. The destination segment is located somewhere in the network, behind MSBR2. This example does not include the configuration of dynamic routing. For this to configuration to work, MSBR1 needs to be configured to forward traffic to 10.10.10.0/24 through MSBR2’s network interface, interfacing with MSBR1, whose address is 10.0.12.20.
Figure 8-1: Static Routing
8.2.1 Configuration
MSBR1# configure data MSBR1(config-data)# ip route 10.10.10.0 255.255.255.0 100.0.12.20
gigabitethernet 0/0 MSBR1(config-data)#
Page 44
IP Networking Configuration
Configuration Guide 44 Document #: LTRT-31657
8.2.2 Output
MSBR1# show running-config data
Configure data ******************************************************************
** General configuration omitted, assume that configured as in
diagram ******************************************************************
**
ip route 10.10.10.0 255.255.255.0 100.0.12.20 GigabitEthernet 0/0 1
exit
MSBR1# show data ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 1.1.1.12/32 [1/4] is directly connected, Loopback 1 C 100.0.12.0/24 [1/3] is directly connected, GigabitEthernet
0/0 C 192.169.12.0/24 [1/4] is directly connected, VLAN 1
S 10.10.10.0/24 [1/1] via 100.0.12.20, GigabitEthernet 0/0
Page 45
Version 6.8 45 Mediant MSBR
Configuration Guide 8. Static Routing
8.3 Example of "Floating” Static Route and Track
In this example, the MSBR1 needs to reach the 10.10.10.0/24 network segment from its LAN. The destination network segment is reachable from both MSBR-R-WAN1 and MSBR­R-WAN2; however, this example assumes that due to routing considerations, the route through MSBR-R-WAN1 is preferable. Static routes will be configured through both of the MSBRs, while the one pointing to MSBR-R-WAN2 will have lower metric value and will be linked with a tracking object.
Figure 8-2: Multi WAN with Floating Static Route
If connectivity through MSBR2 fails, the tracking mechanism deletes the static route pointing to MSBR-R-WAN1 from the local MSBR's routing table and the second, higher metric value static route is used.
8.3.1 Configuration
MSBR1# show run data
Configure data ******************************************************************
** General configuration omitted, assume that configured as in
diagram ******************************************************************
** track 1 IcmpEcho 100.0.12.20 GigabitEthernet 0/0 interval 2
retries 2 ip route 10.10.10.0 255.255.255.0 100.0.12.20 GigabitEthernet
0/0 30 track 1 ip route 10.10.10.0 255.255.255.0 100.0.12.30 GigabitEthernet
0/0 50 Exit
MSBR1# show data track brief
Track Type State Max round trip time (m.s)
1 ICMP reachability Up 21
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 1.1.1.12/32 [1/4] is directly connected, Loopback 1 C 100.0.12.0/24 [1/3] is directly connected, GigabitEthernet
0/0 C 192.169.12.0/24 [1/4] is directly connected, VLAN 1 S 10.10.10.0/24 [1/30] via 100.0.12.20, GigabitEthernet 0/0
Page 46
IP Networking Configuration
Configuration Guide 46 Document #: LTRT-31657
S 10.10.10.0/24 [1/50] via 100.0.12.30, GigabitEthernet 0/0
After reachability failure to MSBR2:
MSBR1# show data track brief
Track Type State Max round trip time (m.s)
1 ICMP reachability Down -218137
MSBR1# show data ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 1.1.1.12/32 [1/4] is directly connected, Loopback 1 C 100.0.12.0/24 [1/3] is directly connected, GigabitEthernet
0/0 C 192.169.12.0/24 [1/4] is directly connected, VLAN 1 S 10.10.10.0/24 [1/50] via 100.0.12.30, GigabitEthernet 0/0
MSBR-R-WAN1#
Page 47
Version 6.8 47 Mediant MSBR
Configuration Guide 9. Manipulating the Routing Table
9 Manipulating the Routing Table
MSBR’s routing table contains the “best” routes the device is familiar with to known destinations; however, how does it decide which route is the better route to a destination?
MSBR starts by examining the prefixes and prefix lengths. The same prefixes, however with different prefix lengths are considered as different destinations, and as a rule, the most specific prefix always “wins” in a tie. Next, for destinations with the same prefixes and prefix lengths, the decision is made according to the lower Administrative Distance (AD) of the protocol it was learned from. Next, if there are two routes with similar AD, the one with the lower metric wins. The product of this decision process is the “best” route to a specific network destination.
The parameters which determine the best route are configurable, i.e. a network administrator can influence of the determination of this route by configuring the AD of the protocols running on the MSBR (OSPF, RIP, BGP, and Static) and the metrics of the specific protocols, for example, changing BGP attributes, changing BW for OSPF and, changing metrics for static routes, etc.).
Page 48
IP Networking Configuration
Configuration Guide 48 Document #: LTRT-31657
This page is intentionally left blank.
Page 49
Version 6.8 49 Mediant MSBR
Configuration Guide 10. Administrative Distance
10 Administrative Distance
The parameter that is used by the MSBR to rate the priority of routing information from the different routing domains is called the Administrative Distance and the system default ADs are as follows:
Connected – 1 (can’t be changed)
Static – 1 (can’t be changed)
RIP - 120
OSPF - 110
BGP – 200/20 (iBGP / eBGP)
If the router learns how to reach the same subnet from two different sources, the subnet with the lower AD is added in the routing table.
It is important to understand that the MSBR's routing table does not necessarily represent all the routes known to the MSBR, merely the best ones, while every route protocol has a routing database of its own for storing known routes.
When a routing decision is made and there are two routes in the routing table with the same prefix, with two similar AD values, the decision is reached according to the metric parameter.
10.1 Examples of Configuring AD for Various Protocols
The following examples configure AD for various protocols.
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router
<
OSPF|BGP|RIP>
Enters routing protocol configuration mode.
(config-router)# distance
distance
Configures the AD for the selected dynamic routing protocol.
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip route
prefix/length next-hop interface
[
metric
]
Configures a static route with a non-default metric.
Page 50
IP Networking Configuration
Configuration Guide 50 Document #: LTRT-31657
10.2 Example of Changing Default AD for a Dynamic Routing Protocol
The following examples configure AD for various protocols.
10.2.1 Configuration
This example changes the default AD for the RIP dynamic routing protocol.
Assume a pre-configured network with the correct RIP routing according to the following diagram:
Figure 10-1: Changing RIP Protocol AD
To demonstrate the effect of the AD change, configure the following:
MSBR1# configure data MSBR1(config-data)# router rip MSBR1(conf-router)# distance 60
10.2.2 Output
Before the change:
MSBR(conf-router)# MSBR1# show data ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 1.1.1.12/32 [1/4] is directly connected, Loopback 1 C 100.0.12.0/24 [1/3] is directly connected,
GigabitEthernet 0/0 C 192.169.0.0/24 [1/4] is directly connected, VLAN 1 R 192.168.0.0/24 [120/2] via 100.0.12.30, Gigabit Ethernet
0/0, 00:00:58
After the change:
MSBR1# show data ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 1.1.1.12/32 [1/4] is directly connected, Loopback 1 C 100.0.12.0/24 [1/3] is directly connected,
GigabitEthernet 0/0 C 192.169.0.0/24 [1/4] is directly connected, VLAN 1
Page 51
Version 6.8 51 Mediant MSBR
Configuration Guide 10. Administrative Distance
R 192.168.0.0/24 [60/2] via 100.0.12.30, GigabitEthernet 0/0, 00:00:21
10.3 Example of Configuring Static Route with Custom Metric
The following is an example of configuring static route with custom metric.
10.3.1 Configuration
In the event where there is a prefix that needs to be reached and is located behind MSBR2, you need to configure a static route on MSBR1 that points to this prefix through MSBR2’s interface towards MSBR1.
Figure 10-2: Changing Static Route Metric
Configure this static route with a non-default metric:
MSBR1# configure data MSBR1(config-data)# ip route 10.10.10.0 255.255.255.0 100.0.12.20
gigabitethernet 0/0 50 MSBR1(config-data)#
10.3.2 Output
MSBR1# show running-config data
Configure data
****************************************************************** **
General configuration omitted, assume that configured as in diagram
****************************************************************** **
ip route 10.10.10.0 255.255.255.0 100.0.12.20 GigabitEthernet 0/0 50
exit
MSBR1# show data ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 1.1.1.12/32 [1/4] is directly connected, Loopback 1
Page 52
IP Networking Configuration
Configuration Guide 52 Document #: LTRT-31657
C 100.0.12.0/24 [1/3] is directly connected, GigabitEthernet 0/0
C 192.169.12.0/24 [1/4] is directly connected, VLAN 1
S 10.10.10.0/24 [1/50] via 100.0.12.20, GigabitEthernet 0/0
Page 53
Version 6.8 53 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
11 Dynamic IP Routing
While the concept of data IP routing deals with getting data from point A to point B over the network, it is important to note that there are two distinct methods for doing this:
Static routing: specifically and manually pointing the router as to through which next-
hop to route to which destination.
Dynamic routing: configuring a dynamic routing protocol on all the routers in the
network, enabling them to become aware of each other and the different subnets in the network and dynamically learn the best route to each destination.
The advantages of dynamic routing are clear – it is automated, adaptive, makes routers network-aware and provides even redundant routing paths.
This chapter elaborates on the different dynamic routing protocols that are supported by the MSBR.
11.1 RIP Routing Protocol
Routing Information Protocol (RIP) is a dynamic routing protocol from the Distance Vector family which uses hop-count as a routing metric. The protocol is limited to 15 hops per route, which prevents loops; however also limits the network size and scalability.
Low metric routes are considered “better” and a route with hop count (metric) of 16 is considered “unreachable”.
RIP is considered a “chatty” and bandwidth consuming protocol due to the fact it “floods” its routing database once in a period (default is 30 seconds).
RIP can work both in broadcast and unicast modes (without or with peers, respectively).
The MSBR supports both RIP versions, RIPv1 (RFC 1058) and RIPv2 (RFC 2453).
11.1.1 Configuring RIP
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router rip
Enters the RIP configuration mode.
(conf-router)#
default-information
originate
Configures whether to advertise the default route.
(conf-router)# default-metric
metric
Configures the metric for redistributed routes.
(conf-router)# distance
distance
Configures the AD for the protocol.
(conf-router)# distribute-list
prefix list-name <in/out>
interface
Configures filtering of incoming/outgoing routing updates.
(conf-router)# neighbor IPaddress password Password
Configures a neighbor with secured session password.
(conf-router)# neighbor
IPaddress
Configures a neighbor router.
(conf-router)# network
interface
(conf-router)# network
prefix/prefLen
Configures a network or interface upon which to enable RIP routing.
(conf-router)# passive-interface
interface
Configures suppression of routing updates on an interface.
(conf-router)# redistribute
protocol
metric
metric
[route-map
Configures redistribution of routes from other
Page 54
IP Networking Configuration
Configuration Guide 54 Document #: LTRT-31657
Command Description
name]
protocols into RIP.
(conf-router)# route
prefix/length
Adds a RIP static route.
(conf-router)# route-map
RMname
<in/out> interface
interface
Configures a route-map for the RIP routing.
(conf-router)# timers basic
value
Configures the routing table update timer.
(conf-router)# version <1/2>
Configures which RIP version to run.
Rip interface configuration:
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface GigabitEthernet 0/0
Enters the interface configuration mode.
(conf-if-GE 0/0)# ip rip receive
Rip version for received packets.
(conf-if-GE 0/0)# ip rip send
Rip version for sent packets.
(conf-if-GE 0/0)# ip rip split-horizon
Perform split horizon.
Rip general configuration:
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# key chain
Rip Authentication key management.
Page 55
Version 6.8 55 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
11.1.2 Example of RIP Routing
This example demonstrates a LAN network scenario with an MSBR, where the connection to the WAN is through RIP.
Figure 11-1: RIP Routing
11.1.2.1 Configuration
MSBR1:
MSBR1# configure data
MSBR1(config-data)# router rip MSBR1(conf-router)# network vlan 1 MSBR1(conf-router)# network gigabitethernet 0/0 MSBR1(conf-router)# neighbor 100.0.12.20 MSBR1(conf-router)# version 2 MSBR1(conf-router)# timers basic 60
MSBR2:
MSBR2# configure data
MSBR2(config-data)# router rip MSBR2(conf-router)# network vlan 1 MSBR2(conf-router)# network gigabitethernet 0/0 MSBR2(conf-router)# neighbor 100.0.12.10 MSBR2(conf-router)# version 2 MSBR2(conf-router)# timers basic 60
Page 56
IP Networking Configuration
Configuration Guide 56 Document #: LTRT-31657
11.1.2.2 Output and show Commands
MSBR# show data ip rip
Codes: R - RIP, C - connected, S - Static, O - OSPF, B - BGP Sub-codes: (n) - normal, (s) - static, (d) - default, (r) -
redistribute, (i) - interface
Network Next Hop Metric From Tag Time C(i) 100.0.0.0/16 0.0.0.0 1 self 0 R(n) 192.168.0.0/24 100.0.12.20 2 100.0.12.20 0
02:34 C(i) 192.169.12.0/24 0.0.0.0 1 self 0
MSBR# show data ip rip status
Routing Protocol is "rip" Sending updates every 30 seconds with +/-50, next due in -
1041379202 seconds Timeout after 180 seconds, garbage collect after 120 seconds Outgoing update filter list for all interface is not set Incoming update filter list for all interface is not set Default redistribution metric is 1 Redistributing: Default version control: send version 2, receive version 2 Interface Send Recv Key-chain VLAN 1 2 2 GigabitEthernet 0/0 2 2 Routing for Networks: GigabitEthernet 0/0 VLAN 1
100.0.12.20 Routing Information Sources: Gateway BadPackets BadRoutes Distance Last Update
100.0.12.20 163 0 120 00:00:08 Distance: (default is 120)
A network learned via RIP protocol
List of RIP peers and parameters
Page 57
Version 6.8 57 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
11.2 OSPF Routing Protocol
Open Shortest Path First (OSPF) is a dynamic routing protocol from the Link-State family, basing its routing decisions on the bandwidth parameter using the Dijkstra Algorithm. The protocol establishes adjacencies with other OSPF routers to which it’s connected, and maintains detailed topology and routing tables. OSPF provides fast network convergence and great scalability. The version of the protocol that is being used is OSPFv2 (RFC 2328).
11.2.1 Configuring OSPF
The following describes how to configure OSPF.
11.2.1.1 Router-Configuration Level
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router ospf
Enters the OSPF configuration mode.
(conf-router)# area
area
authentication [message-digest]
Configures authentication in the specified area.
(conf-router)#area
area
default-
cost cost
Configures default summary cost for stub and NSSA areas.
(conf-router)#area
area
filter-
list prefix list <in/out>
Configures filtering of networks between OSPF areas.
(conf-router)#area
area
nssa [no-
summary|translate­always|translate-
candidate|translate-never]
Configures the specified area as nssa.
(conf-router)# area
area
range
prefix/length [advertise|cost|not-
advertise|substitude]
Configures summarization of routes that match the specified prefix.
(conf-router)#area
area
stub [no-
summary]
Configures the specified area as stub or totally stubby.
(conf-router)# auto-cost
reference-bandwidth bandwidth
Configures auto-calculation of interface cost using the provided reference cost.
(conf-router)# compatible rfc1583
Configures the protocol to be compatible with RFC 1583 (summary route cost calculation).
(conf-router)# default-information
originate [always|metric|metric-
type|route-map]
Configures the advertisement of default route.
(conf-router)# default-metric
metric
Configures the default metric for redistributed routes.
(conf-router)# distance
distance
Configures the AD for OSPF routes in the system.
(conf-router)# distance ospf
<external/inter-area/intra-area>
distance
Configures the AD for the different types of OSPF routes in the system.
(conf-router)# log-adjacency-
changes [detail]
Configures the system to log changes in OSPF peers adjacency state changes.
Page 58
IP Networking Configuration
Configuration Guide 58 Document #: LTRT-31657
Command Description
(conf-router)# max-metric router-
lsa <administrative/on­shutdown/on-startup> seconds
Configures the system to advertise maximum-metric (infinite-distance) for OSPF routes.
(conf-router)# neighbor
address
[poll-interval seconds] [priority priority
]
Configures neighbor IP address when connected to a non-broadcast network.
(conf-router)# network
prefix/length area area
Configures OSPF routing and advertisement on an IP network.
(conf-router)# ospf abr-type <cisco/ibm/shortcut/standard>
Configures the OSPF ABR implementation type.
(conf-router)# ospf
rfc1583comptibility
Enables the RF1583 compatibility flag (OSPF cost calculation in summarized routes).
(conf-router)# ospf router-id
router-id
Configures the router-id for the OSPF process.
(conf-router)# passive-interface
interface
Configures an interface to not participate in the OSPF routing.
(conf-router)# redistribute
<bgp/connected/kernel/rip/static> [metric metric] [metric-type 1/2]
[route-map
map
]
Configures redistribution of routes from another protocol into OSPF.
(conf-router)# refresh timer
seconds
Configures the refresh timer for LSAs in the OSPF LSDB.
(conf-router)# router-id
router-id
Configures the router-id for the OSPF process.
(conf-router)# timers spf
chanedelay holdtime
Configures OSPF SPF timers: delay between change and calculation, and the hold-time between calculations.
(conf-router)# timers throttle spf
delay initialhold maxhold
Configures the OSPF hold timers: delay from change to calculation, initial hold timer, and the maximum hold timer.
11.2.1.2 Interface-Configuration Level
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface
interface
Enters the interface configuration mode.
(conf-if-
int
)# ip ospf
authentication [ address /message-
digest/null ]
Configures the type of OSPF authentication to use on the specified interface.
(conf-if-
int
)# ip ospf
authentication-key auth-key
Configures the authentication key to be used on the specified interface in case authentication is configured.
(conf-if-
int
)# ip ospf cost
cost
Configures the OSPF cost for the specified interface.
(conf-if-
int
)# ip ospf <hello-
interval/dead-interval> seconds
Configures the Hello and Dead timer for OSPF to use on the specified interface.
Page 59
Version 6.8 59 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
Command Description
(conf-if-
int
)# ip ospf message-
digest-key key md5 password
[
address
]
Configures the MD5 key to use for message-digest authentication.
(conf-if-
int
)# ip ospf mtu-ignore
Configures to ignore the MTU mismatch detection on the specified interface.
(conf-if-
int
)# ip ospf network
<broadcast/non-broadcast/point-to­multipoint/point-to-point>
Configures the network type the interface connects to (has effects on adjacency formation and message forwarding).
(conf-if-
int
)# ip ospf priority
priority
Configures the OSPF priority of the specified interface (used for DR election).
(conf-if-
int
)# ip ospf retransmit-
interval seconds
Configures the time between retransmitting lost LSAs.
(conf-if-
int
)# ip ospf transmit-
delay
seconds
Configures the link state transmit delay.
11.2.2 Example of OSPF Routing
The example shown below demonstrates a typical scenario where an MSBR acts as a default gateway for a LAN network, and connects to the WAN network using the OSPF protocol. The example includes a single-area (area 0) OSPF network; however, in more complex and large-scale networks, multi-area topology may be more adequate in terms of scalability.
Figure 11-2: OSPF Routing
The following configuration demonstrates a basic OSPF configuration in which OSPF is activated on the LAN interfaces (for advertisement) and on the WAN interfaces (for adjacency forming). The router-ids are explicitly configured to the addresses of loopback interfaces configured on the MSBR. Adjacency change logging is activated for debugging. The OSPF timers are configured on the WAN interfaces of the MSBRs and should always be matched on both ends to avoid adjacency flapping.
****************************************************************** IP address configuration is omitted, assume it is as described in
the topology above. ******************************************************************
MSBR1:
MSBR1# configure data MSBR1(config-data)# router ospf MSBR1(conf-router)# network 100.0.12.0/24 area 0 MSBR1(conf-router)# network 192.168.12.0/24 area 0 MSBR1(conf-router)# router-id 1.1.1.12
Page 60
IP Networking Configuration
Configuration Guide 60 Document #: LTRT-31657
MSBR1(conf-router)# log-adjacency-changes MSBR1(conf-router)# exit MSBR1(config-data)# interface gigabitEthernet 0/0 MSBR1(conf-if-GE 0/0)# ip ospf hello-interval 1 MSBR1(conf-if-GE 0/0)# ip ospf dead-interval 3
MSBR2:
MSBR2# configure data MSBR2(config-data)# router ospf MSBR2(conf-router)# network 100.0.12.0/24 area 0 MSBR2(conf-router)# network 192.168.12.0/24 area 0 MSBR2(conf-router)# router-id 1.1.1.22 MSBR2(conf-router)# log-adjacency-changes MSBR2(conf-router)# exit MSBR2(config-data)# interface gigabitEthernet 0/0 MSBR2(conf-if-GE 0/0)# ip ospf hello-interval 1 MSBR2(conf-if-GE 0/0)# ip ospf dead-interval 3
11.2.3 Useful Output and show Commands
MSBR2# show data ip ospf neighbor
Neighbor ID Pri State Dead Time Address Interface RXmtL RqstL DBsmL
1.1.1.12 1 Full/Backup 38.143s 100.0.12.10 GigabitEthernet 0/0:10.31.2.8 0 0 0
MSBR2# # sh d ip route Codes: K - kernel route, C - connected, S - static,
R - RIP, O - OSPF, B – BGP
C 1.1.1.22/32 [1/4] is directly connected, Loopback 1 C 100.0.12.0/24 [1/3] is directly connected, GigabitEthernet
0/0 C 192.168.0.0/24 [1/4] is directly connected, VLAN 1 O 192.169.12.0/24 [110/20] via 100.0.12.10,
GigabitEthernet0/0,01:30:46
MSBR2# show data ip ospf
OSPF Routing Process, Router ID: 1.1.1.22
Supports only single TOS (TOS0) routes This implementation conforms to RFC2328 RFC1583Compatibility flag is disabled Initial SPF scheduling delay 200 millisec(s) Minimum hold time between consecutive SPFs 1000 millisec(s) Maximum hold time between consecutive SPFs 10000 millisec(s) Hold time multiplier is currently 2 SPF algorithm last executed 1m01s ago SPF timer is inactive Refresh timer 10 secs Number of external LSA 0. Checksum Sum 0x00000000
A network learned via
OSPF protocol
OSPF Neighbor Details
Page 61
Version 6.8 61 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
Number of areas attached to this router: 1 All adjacency changes are logged
Area ID: 0.0.0.0 (Backbone) Number of interfaces in this area: Total: 2, Active: 2 Number of fully adjacent neighbors in this area: 1
Area has no authentication SPF algorithm executed 8 times Number of LSA 3 Number of router LSA 2. Checksum Sum 0x00009eee Number of network LSA 1. Checksum Sum 0x00005e16 Number of summary LSA 0. Checksum Sum 0x00000000 Number of ASBR summary LSA 0. Checksum Sum 0x00000000 Number of NSSA LSA 0. Checksum Sum 0x00000000
Page 62
IP Networking Configuration
Configuration Guide 62 Document #: LTRT-31657
11.3 Border Gateway Protocol (BGP)
BGP is a standardized exterior gateway protocol (EGP) for exchanging routing and reachability information between routers on different Autonomous Systems (AS’s) in large scale, internet provider and public internet networks.
It does not use the metrics used by IGP protocols (such as RIP, OSPF, EIGRP, ISIS), however, makes its routing decisions based on paths, network policies and custom rules configured by network administrators.
BGP is more stable and much less “chatty” protocols than the common IGP protocols, and does not form adjacencies unless specifically configured. The formed adjacencies are connection oriented and based on TCP connections.
BGP is the main routing protocol of internet service providers and the Internet.
11.3.1 Configuring BGP
The following describes the commands for configuring BGP.
11.3.1.1 Address-Family Level Configuration (configuration can also be set without entering the AF mode)
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router bgp
as-
number
Enters the BGP configuration mode and the number of the local autonomous system.
(conf-router)# address-family ipv4 [
unicast
]
Enters the address-family configuration mode.
(conf-router-af)# aggregate-
address prefix/[length][as-set]
[summery-only]
Configures BGP aggregate entries.
(conf-router-af)# bgp dampening [
1-45
]
Configures route-flap dampening.
(conf-router-af)# neighbor
address
activate
Enables the address family for the specified neighbor.
(conf-router-af)# neighbor
address
aloowas-in [
occ.
]
Accepts as-path with local AS present in it.
(conf-router-af)# neighbor
address
attribute-unchanged [as­path/med/next-hop
]
Configures unchanged propagation of the specified attribute to the neighbor.
(conf-router-af)# neighbor
address
capability orf prefix-list
<both/receive/send>
Advertises ORF capability to the specified neighbor.
(conf-router-af)# neighbor
address
default-originate [route-map]
Advertises default route to the specified neighbor.
(conf-router-af)# neighbor
address
filter-list
name
<in/out>
Configures BGP AS-Path filter list.
(conf-router-af)# neighbor
address
maximum-prefix num [threshold]
[
restart
] [warning-only]
Configures a maximum number of prefixes that can be learned from the specified neighbor.
(conf-router-af)# neighbor
address
Configures advertisement of self as next-hop for
Page 63
Version 6.8 63 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
Command Description
next-hop-self
routing.
(conf-router-af)# neighbor
address
peer-group
name
Configures as member of a peer-group.
(conf-router-af)# neighbor
address
prefix-list name <in/out>
Configures filtering of updates to/from the specified neighbor.
(conf-router-af)# neighbor
address
remove-private-as
Removes the private AS number from outbound updates.
(conf-router-af)# neighbor
address
route-map name
<export/import/in/out>
Configures to apply a route-map to a neighbor.
(conf-router-af)# neighbor
address
route-reflector-client
Configures neighbor as a route reflector client.
(conf-router-af)# neighbor
address
route-server-client
Configures neighbor as route server client.
(conf-router-af)# neighbor
address
send-community
[both/extended/standard]
Configures to send community attributes to the specified neighbor.
(conf-router-af)# neighbor
address
soft-reconfiguration inbound
Configures per-neighbor soft reconfiguration.
(conf-router-af)# neighbor
address
unsuppresse-map
Configures a route-map to selectively un-suppress suppressed routes.
(conf-router-af)# network
prefix/[length] [route-map name]
Configures a network to be announced via BGP protocol.
Page 64
IP Networking Configuration
Configuration Guide 64 Document #: LTRT-31657
11.3.1.2 General Configuration
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# router bgp
as-
number
Enters the BGP configuration mode and the number of the local autonomous system.
(conf-router)# bgp always-compare-
med
Configures to always compare MED attribute from different neighbors.
(conf-router)# bgp bestpath <as-
path/compare-routerid/med>
Changes the default parameter for best path selection.
(conf-router)# bgp client-to­client reflection
Configures Client-to-Client route reflection.
(conf-router)# bgp cluster-id
cluster-id
Configures route-reflector cluster-id.
(conf-router)# bgp confederation <peers/identifier>
Configures BGP confederation parameters.
(conf-router)# bgp dampening [
time
]
Configures route-flap dampening.
(conf-router)# bgp default <local­preference/ipv4-unicast>
Configures BGP default parameters.
(conf-router)# bgp deterministic-
med
Configures to pick best-MED path advertised from neighbors.
(conf-router)# bgp enforce-first-
as
Configures to enforce the first AS for EBGP routes.
(conf-router)# bgp fast-external-
failover
Configures to reset the session when a link to a directly connected neighbor goes down.
(conf-router)# bgp graceful­restart [stalepath-time]
Configures BGP graceful restart parameters.
(conf-router)# bgp log-neighbor-
changes
Configures to log changes in neighbors state and reason.
(conf-router)# bgp network import-
check
Configures BGP to check whether network route exists in IGP.
(conf-router)# bgp router-id
router-id
Configures a router-id manually.
(conf-router)# bgp scan-time
sec
Configures the background scanner interval.
(conf-router)# distance
dist
[bgp
internal external local ]
Configures the administrative distance and BGP distances.
(conf-router)# neighbor
address
Configure BGP neighbor address and parameters.
(conf-router)# network
prefix/[length] [route-map name]
Configures a network to be announced via BGP protocol.
(conf-router)# redistribute
protocol [metric] [route-map]
Configures redistribution of routes from other routing protocols into BGP.
(conf-router)#timers bgp
keepalive
holdtime
Configures routing timers.
Page 65
Version 6.8 65 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
Note: When applying the configuration, some changes may require a process/peer clear
to take effect. To perform a process clear, the following command can be used.
MSBR# clear ip bgp [AS] [address] [dampening] [external] [peer­group] [view] [*]
AS: Clears peers with the AS number
Address: BGP neighbor IP address to clear
Dampening: Clears route flap dampening information
External: Clears all external peers
Peer-group: Clears all members of peer-group
View: BGP view
* : Clears all peers
It is typically recommended to use the clear ip bgp * command. This clears all the peers and their TCP sessions, allowing for configuration changes to take effect.
11.3.2 Example of Basic BGP WAN Connectivity
Figure 11-3: Basic BGP Routing
This example shows a basic and a very common BGP W AN connectivity. The local MSBR establishes a BGP adjacency with the ISP router and receives a default route it, enabling it full connectivity to the “outer world”.
Usually in scenarios like this, the internal (LAN) network segment is allocated by the ISP and allows it to be routed across the ISP network.
11.3.2.1 Configuration
MSBR# configure data MSBR(conf-router)# router bgp 65000 MSBR(conf-router)# bgp router-id 1.1.1.1 MSBR(conf-router)# bgp log-neighbor-changes MSBR(conf-router)# network 100.0.12.0/24 MSBR(conf-router)# network 192.168.0.0/24 MSBR(conf-router)# neighbor 100.0.12.10 remote-as 55101 MSBR(conf-router)# exit
Page 66
IP Networking Configuration
Configuration Guide 66 Document #: LTRT-31657
11.3.2.2 Output
The output shows local parameters of the BGP process and also the established BGP adjacencies:
MSBR# show data ip bgp summary BGP router identifier 1.1.1.1, local AS number 65000 RIB entries 3, using 264 bytes of memory Peers 1, using 4488 bytes of memory
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
100.0.12.10 4 55101 100 100 0 0 0 01:36:56 2
Total number of neighbors 1
MSBR#
The following output shows that the router learns a default route through ISP BGP peer:
MSBR# show data ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 100.0.12.0/24 is directly connected, GigabitEthernet 0/0 C 192.168.0.0/24 is directly connected, VLAN 1
B 0.0.0.0/0 [20/0] via 100.0.12.10, GigabitEthernet 0/0, 01:30:46
MSBR#
11.3.3 51BExample 2
The example shows a scenario in which an organization is connected to the public internet through two ISPs. This is often called a Multi-WAN configuration and it provides high availability and redundancy of the internet connection. It is demonstrated that both ISPs advertise a default route through the BGP protocol, and are prioritized by manually changing the BGP Weight attribute.
Figure 11-4: BGP Multi-WAN
Page 67
Version 6.8 67 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
11.3.3.1 Configuration
******************************************* Basic Configuration omitted *******************************************
MSBR(conf-router)# router bgp 65000 MSBR(conf-router)# bgp router-id 1.1.1.1 MSBR(conf-router)# bgp log-neighbor-changes MSBR(conf-router)# network 100.0.12.0/24 MSBR(conf-router)# network 200.0.5.0/24 MSBR(conf-router)# network 192.168.0.0/24 MSBR(conf-router)# neighbor 100.0.12.20 remote-as 55101 MSBR(conf-router)# neighbor 100.0.12.20 Activate MSBR(conf-router)# neighbor 200.0.5.20 remote-as 55202 MSBR(conf-router)# neighbor 200.0.5.10 Activate
The configuration includes two important parts:
The basic configuration defines the networks to be advertised and routed, and the
neighbors to which to establish adjacency.
The second part of the configuration deals with prioritizing the routes received from
neighbors. Given the fact that a default route is received via the BGP protocols from both neighbors, you need to give one of them a higher priority (better metric). This is performed using a route-map that tweaks the “Weight” BGP attribute of incoming route-updates, and the one with the higher Weight value gets inserted into the routing table.
Page 68
IP Networking Configuration
Configuration Guide 68 Document #: LTRT-31657
11.3.3.2 Output
BGP adjacency status:
MSBG# show data ip bgp sum BGP router identifier 1.1.1.1, local AS number 65000 RIB entries 3, using 264 bytes of memory Peers 2, using 8976 bytes of memory
Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
100.0.12.20 4 55101 120 139 0 0 0 01:04:09 1
200.0.5.20 4 55202 158 166 0 0 0 00:00:35 1
Total number of neighbors 2
MSBG#
MSBR routing table:
MSBR # show data ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 100.0.12.0/24 is directly connected, GigabitEthernet 0/0 C 192.168.0.0/24 is directly connected, VLAN 1 C 200.0.5.0/24 is directly connected, Fiber 0/3
B 0.0.0.0/0 [20/0] via 200.0.5.20, Fiber 0/3, 00:51:25
MSBR #
If the main ISP fails:
MSBR# show data ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 100.0.12.0/24 is directly connected, GigabitEthernet 0/0 C 192.168.0.0/24 is directly connected, VLAN 1
B 0.0.0.0/0 [20/0] via 100.0.12.20, GigabitEthernet 0/0, 00:00:06
MSBR#
Page 69
Version 6.8 69 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
11.4 Advanced Routing Examples
The following are examples of Advanced Routing.
11.4.1 Multi-WAN with BGP and Static Route
This example shows a scenario with multi-WAN topology, involving two types of technologies for redundant connectivity -- BGP dynamic routing protocol static routing, where each protocol runs on a different physical interface.
This type of connectivity provides redundancy and a failover option for cases where the primary service provider fails.
Note that even though the static route should be preferred over the BGP, it is fine-tuned to be a “floating” route only for an ISP failure scenario, through fine-tuning BGP’s administrative distance, and the static route’s metric.
Figure 11-5: Multi-Wan with Floating Static Route
11.4.1.1 Configuration
******************************************* Basic Configuration omitted ******************************************* MSBR(config-data)# router bgp 65000 MSBR(conf-router)# bgp router-id 1.1.1.1 MSBR(conf-router)# bgp log-neighbor-changes MSBR(conf-router)# network 100.0.12.0/24 MSBR(conf-router)# network 192.169.0.0/24 MSBR(conf-router)# neighbor 100.0.12.20 remote-as 55101 MSBR(conf-router)# neighbor 100.0.12.20 Activate MSBR(conf-router)# distance bgp 1 1 1 MSBR(conf-router)# exit MSBR(config-data)# ip route 0.0.0.0 0.0.0.0 gig 0/0 40
Page 70
IP Networking Configuration
Configuration Guide 70 Document #: LTRT-31657
11.4.1.2 Output and show Commands
Before failover:
MSBR# show data ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
B 0.0.0.0/0 [1/0] via 100.0.12.20, GigabitEthernet 0/0, 00:23:06
C 100.0.12.0/24 [1/3] is directly connected, GigabitEthernet 0/0
C 200.0.5.0/24 [1/3] is directly connected, Fiber 0/1
MSBR#
Client1> traceroute 8.8.8.8
Tracing route to 10.10.10.3 over a maximum of 30 hops 1 192.169.0.1 (192.169.0.1) 0.980 ms 0.808 ms 0.809 ms
2 100.0.12.20 (100.0.12.20) 51.238 ms 7.115 ms 10.770 ms
. 10 8.8.8.8 (8.8.8.8) 44.878 ms * 56.230 ms Trace complete. Client1>
After failover:
MSBR# show data ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
S 0.0.0.0/0 [1/40] via 200.0.5.20, Fiber 0/1 C 100.0.12.0/24 [1/3] is directly connected,
GigabitEthernet 0/0 C 200.0.5.0/24 [1/3] is directly connected, Fiber 0/1
MSBR#
Client1> traceroute 8.8.8.8
Tracing route to 10.10.10.3 over a maximum of 30 hops 1 192.169.1.1 (192.169.0.1) 0.870 ms 0.807 ms 0.800 ms
2 200.0.5.20 (200.0.5.20) 51.238 ms 7.123 ms 10.770 ms
. 10 10.10.10.3 (8.8.8.8) 44.878 ms * 56.230 ms Trace complete. Client1>
Page 71
Version 6.8 71 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
11.4.2 Filtering Dynamic Routing Protocol Routes
You can manipulate the BGP/OSPF/RIP routing advertisements using the route-map menu. Route-map contains tools to prioritize routes from specific BGP/OSPF/RIP sources, as well as denying some BGP/OSPF/RIP sources to be advertised in the MSBR routing table. The example below demonstrates both methods:
******************************************* Basic Configuration omitted *******************************************
MSBR(conf-router)# ip prefix-list Example seq 5 deny host
10.10.10.10 MSBR(conf-router)# route-map Example1 permit 10 MSBR(conf-route-map)# match ip address prefix-list Example MSBR(conf-route-map)# set weight 10 MSBR(conf-route-map)# exit MSBR(conf-router)# route-map Example1 permit 20 MSBR(conf-route-map)# exit MSBR(conf-router)# route-map Example2 permit 10 MSBR(conf-route-map)# match ip address prefix-list Example MSBR(conf-route-map)# set weight 20 MSBR(conf-route-map)# exit MSBR(conf-router)# route-map Example2 permit 20 MSBR(conf-route-map)# exit
MSBR(conf-router)# router bgp 65000 MSBR(conf-router)# bgp router-id 1.1.1.1 MSBR(conf-router)# bgp log-neighbor-changes MSBR(conf-router)# network 100.0.12.0/24 MSBR(conf-router)# network 200.0.5.0/24 MSBR(conf-router)# network 192.168.0.0/24 MSBR(conf-router)# neighbor 100.0.12.20 remote-as 55101 MSBR(conf-router)# neighbor 100.0.12.20 Activate MSBR(conf-router)# neighbor 100.0.12.20 route-map Example1 in MSBR(conf-router)# neighbor 200.0.5.20 remote-as 55202 MSBR(conf-router)# neighbor 200.0.5.10 Activate MSBR(conf-router)# neighbor 200.0.5.10 route-map Example1 in
BGP Attribute tweaking using Route-Maps
Page 72
IP Networking Configuration
Configuration Guide 72 Document #: LTRT-31657
11.4.3 Multi-WAN with BGP and IPSec
This example shows a scenario with multi-WAN topology, involving two types of technologies for redundant connectivity -- BGP dynamic routing protocol and IPsec VPN, with each protocol running on a different physical interface.
This type of connectivity provides redundancy, security on untrusted circuits and an option to fine-tune routing parameters in your network.
Figure 11-6: Multi WAN with BGP and IPsec
11.4.3.1 MSBR1 Configuration
configure data access-list ipsec permit ip 192.168.0.0 0.0.0.255 any crypto isakmp key P@ssw0rd address 10.10.10.20 crypto isakmp policy 1 encr aes 128 authentication pre-share hash sha group 2 lifetime 3600 exit crypto ipsec transform-set crypto_set1 esp-aes 128 esp-sha-hmac mode tunnel exit crypto map MAP1 1 ipsec-isakmp set peer 10.10.10.20 set transform-set crypto_set1 set security-association lifetime seconds 28000 match address ipsec set metric 42 exit interface GigabitEthernet 0/0 ip address 20.20.20.10 255.255.255.0 mtu auto desc "WAN Copper" speed auto duplex auto no service dhcp
Page 73
Version 6.8 73 Mediant MSBR
Configuration Guide 11. Dynamic IP Routing
ip dns server static napt no firewall enable no shutdown exit interface Fiber 0/1 ip address 10.10.10.10 255.255.255.0 mtu auto desc "WAN Fiber" no service dhcp ip dns server static crypto map MAP1 no firewall enable no shutdown exit interface VLAN 1 ip address 192.168.0.1 255.255.255.0 exit router bgp 60001 bgp router-id 20.20.20.10 network 20.20.20.0/24 neighbor 20.20.20.20 remote-as 60002 neighbor 20.20.20.20 default-originate distance bgp 1 1 1 exit
11.4.3.1.1 ISP1
ISP1 is used for BGP connectivity and therefore, it is configured accordingly for BGP peering with the MSBR over the GigabitEthernet interface, and propagates a default route to the MSBR.
11.4.3.1.2 ISP2
ISP2 is used to set up an IPSec tunnel over the Fiber interface, for security and redundancy reasons. The IPSec configuration on the ISP2, in terms of key, authentication and encryption matches with the IPSec configuration on the MSBR.
Page 74
IP Networking Configuration
Configuration Guide 74 Document #: LTRT-31657
11.4.3.2 Output
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 10.10.10.20/32 is directly connected, Fiber 0/1 C 192.168.0.0/24 is directly connected, VLAN 1 C 20.20.20.0/24 is directly connected, GigabitEthernet 0/0 C 10.10.10.0/24 is directly connected, Fiber 0/1
default [42] via 10.10.10.20, Fiber 0/1 [IPSec] B 0.0.0.0/0 [1/0] via 20.20.20.20, GigabitEthernet 0/0,
00:00:30 MSBR1#
Note: If and when the main link fails, the default route learned through BGP is erased
from the routing table and IPSec is then used as a gateway of last resort. This can be observed, for example, using Traceroute, which shows that the next-hop is through IPsec.
The following shows the Routing table after the change:
MSBR1# show data ip route
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 10.10.10.20/32 is directly connected, Fiber 0/1 C 192.168.0.0/24 is directly connected, VLAN 1 C 20.20.20.0/24 is directly connected, GigabitEthernet 0/0 C 10.10.10.0/24 is directly connected, Fiber 0/1
default [42] via 10.10.10.20, Fiber 0/1 [IPSec] MSBR1#
Page 75
Version 6.8 75 Mediant MSBR
Configuration Guide 12. Policy Based Routing (PBR)
12 Policy Based Routing (PBR)
Policy Based Routing (PBR) is a solution in the routing world that allows you to perform user-defined routing manipulation on specific network traffic up to various parameters, like layer-4 ports. PBR is implemented using a tool called Route-maps.
Route-maps are powerful tools for routing manipulation. Route-maps allow you to select specific traffic, by match at extended access-list and route it to specific interface and IP next hop (if needed).
12.1 PBR Configuration
The following describes PBR configuration.
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface VLAN 1
Enters VLAN 2 configuration menu.
(conf-if-VLAN 2)# ip policy route-
map-static name
Configures the static route map for traffic that received by this interface.
(conf-if-VLAN 2)# exit
Exits the VLAN 2 configuration menu.
(config-data)# route-map-static
name
Configures the static route map and enter route­map-static configuration mode.
(conf-route-map-static)# match ip
address ACL_name
Configures the access list that select the traffic which route by the route-map.
(conf-route-map-static)# set
attribute value
Configures the set command for traffic that passed the match condition.
Only single match rule can be applied in a single route-map-static, and only single set
interface and set next-hop rules can be set.
12.1.1 Example of PBR using Route-Map-Static
In this example, MSBR acts as a router for two LAN segments: VLAN1 and VLAN2. The example assumes that the MSBR needs to reach a specific destination network
segment in the WAN, and a default route on the MSBR has been configured to route regular traffic through R-WAN1, but the traffic from host 192.169.0.115 and assigned to TCP port 80, route through R-WAN2.
This is easily done using PBR and route-map-static.
Figure 12-1: PBR Source-Based Routing
Page 76
IP Networking Configuration
Configuration Guide 76 Document #: LTRT-31657
12.1.1.1 Configuration
MSBR1# configure data MSBR1(config-data)# access-list 130 permit tcp host 192.169.0.115
0.0.0.0 255.255.255.255 eq 80 MSBR1(config-data)# access-list 130 deny ip any any MSBR1(config-data)# ip route 0.0.0.0 0.0.0.0 100.0.12.20
GigabitEthernt 0/0 MSBR1(config-data)# route-map-static example1 MSBR1(conf-route-map-static)# match ip address 130 MSBR1(conf-route-map-static)# set interface GigabitEthernt 0/0 MSBR1(conf-route-map-static)# set next-hop 100.0.12.20 MSBR1(conf-route-map-static)# exit
12.1.1.2 114BOutput
Client 1:
Client1> traceroute 10.10.10.3
Tracing route to 10.10.10.3 over a maximum of 30 hops 1 192.169.1.1 (192.169.1.1) 0.980 ms 0.808 ms 0.809 ms
2 100.0.12.20 (100.0.12.20) 51.238 ms 7.115 ms 10.770 ms
. . . 10 10.10.10.3 (10.10.10.3) 44.878 ms * 56.230 ms Trace complete. Client1>
Client 2
Client2> traceroute 10.10.10.3
Tracing route to 10.10.10.3 over a maximum of 30 hops 1 192.169.1.1 (192.169.1.1) 0.870 ms 0.807 ms 0.800 ms
2 100.0.12.30 (100.0.12.30) 51.238 ms 7.123 ms 10.770 ms
. . . 10 10.10.10.3 (10.10.10.3) 44.878 ms * 56.230 ms Trace complete. Client2>
Page 77
Version 6.8 77 Mediant MSBR
Configuration Guide 12. Policy Based Routing (PBR)
MSBR:
MSBR1# show data ip route
From input dev [VLAN 1] match up to ACL [130] route to [GigabitEthernet 0/0] via GW [100.0.12.20]
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
S 0.0.0.0/0 [1/1] is directly connected, PPPOE C 1.1.1.12/32 [1/4] is directly connected, Loopback 1 C 100.0.12.0/24 [1/3] is directly connected,
GigabitEthernet 0/0 C 192.169.12.0/24 [1/4] is directly connected, VLAN 1 C 192.169.1.0/24 [1/4] is directly connected, VLAN 2
MSBR1#
Page 78
IP Networking Configuration
Configuration Guide 78 Document #: LTRT-31657
This page is intentionally left blank.
Page 79
Version 6.8 79 Mediant MSBR
Configuration Guide 13. Loopback Interfaces
13 Loopback Interfaces
Loopback interfaces are logical interfaces configured by the network administrator, which in contrary to physical interfaces on the MSBR, will always be in “Connected” and “IP” state, as they do not correspond to a physical port. Usage of loopback interfaces for management IPs, router IDs for various protocols and persistent peer IDs for neighbor relationships is considered good practice.
IP addresses on these interfaces are configured without a subnet mask, as they are by definition /32 e.g. single host subnet.
13.1.1 Loopback Interface Configuration
The following describes the commands for Loopback Interface configuration.
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface loopback
number
Creates a loopback interface (up to 5) and enter the interface configuration mode.
(conf-if-Loopback
num
)#
Interfaces configuration mode.
The configuration options available for loopback interfaces in the interface configuration mode are generally similar to those of physical interfaces, except for L1/L2 options.
13.1.2 Example of Loopback Interface Configuration
The following is an example of Loopback Interface configuration.
13.1.2.1 Configuration
MSBR# configure data
MSBR(config-data)# interface loopback 1 MSBR(conf-if-Loopback 1)# ip address 1.1.1.1 MSBR(conf-if-Loopback 1)# description LOOPBACK
13.1.2.2 116BOutput
MSBR1# show data ip interfaces brief
Interface IP Address Status Protocol
GigabitEthernet 0/0 100.0.0 .10 Connected Up
Fiber 0/1 unassigned Enabled Up
VLAN 1 192.168.1.1 Connected Up
VLAN 2 192.169.2.1 Connected Up
Loopback 1 1.1.1.1 Connected Up
Page 80
IP Networking Configuration
Configuration Guide 80 Document #: LTRT-31657
MSBR1# show running-config data
configure data
****************************************************************** **
General configuration omitted ****************************************************************** **
interface Loopback 1 ip address 1.1.1.12 mtu auto desc "LOOPBACK" no napt no firewall enable no shutdown exit
Page 81
Version 6.8 81 Mediant MSBR
Configuration Guide 13. Loopback Interfaces
13.1.3 Example of Protocol Binding to Loopback Interfaces
The following is an example of Protocol Binding to Loopback Interfaces.
13.1.3.1 OAMP Binding to Loopback
In some cases, you may wish to bind the management protocols and interface to a loopback interface on the MSBR, instead of a physical interface, so that management protocols and messages will have to originate from and be addressed to this loopback interface.
This can be configured as follows:
MSBR# configure data
MSBR(config-data)# interface loopback 1 MSBR(conf-if-Loopback 1)# ip address 1.1.1.1 MSBR(conf-if-Loopback 1)# description LOOPBACK MSBR(conf-if-Loopback 1)#exit MSBR(config-data)#exit MSBR# config system MSBR(config-system)# bind interface loopback 1 management-servers
13.1.3.2 118BBGP Termination on Loopback
It is common practice to terminate the BGP adjacency on loopback interfaces instead of the physical interfaces, which provides more stability for the connection in case of connectivity failure.
Page 82
IP Networking Configuration
Configuration Guide 82 Document #: LTRT-31657
13.1.4 Configuring Loopback Interfaces to Work with Voice
In some cases it is a good practice to use telephony traffic with the loopback interface. In this case, if more than one WAN connection is being used, and one WAN connection fails, the traffic is be able to flow via the secondary connection.
For Voice traffic, NAT rules need to be created for MSBR to forward traffic to the Voice processor. If a global VRF is used to forward Voice traffic, the MSBR can be configured to create these NAT rules automatically.
In order for the MSBR to route Voice traffic via the loopback interface, the loopback needs to be bound to the saved “WAN” keyword in the voice configuration context. For this to work, the sip-interface in the voice context needs to be assigned to the WAN keyword, and loopback interface needs to be assigned to voice. In this way the MSBR will know to route the voice traffic from LAN to WAN and vice versa using the Loopback interface.
The following is the required configuration to bind the loopback configuration to WAN keyword.
To bind the loopback configuration to WAN keyword:
1. Bind the SIP interface to the WAN keyword.
MSBR# conf voip MSBR(config-voip)# voip-network sip-interface 2 MSBR(sip-interface-2)# network-interface "WAN" Note: Changes to this parameter will take effect when applying
the 'activate' or 'exit' command MSBR(sip-interface-2)# exit MSBR(config-voip)# exit MSBR#
2. Configure the Loopback as WAN.
MSBR# configure data MSBR(config-data)# interface loopback 1 MSBR(conf-if-Loopback 1)# network wan MSBR(conf-if-Loopback 1)# exit MSBR(config-data)# exit MSBR#
3. Bind the loopback interface to the WAN.
MSBR# configure system MSBR(config-system)# bind interface loopback 1 voip Note: Changes will take effect after reset. MSBR(config-system)*# exit MSBR*#
Page 83
Version 6.8 83 Mediant MSBR
Configuration Guide 13. Loopback Interfaces
4. Reset the router for the configuration to take effect.
To check that the configuration took effect, use the “show run” command. At the bottom of the data configuration, the ports used by system services are shown.
# Note: The following WAN ports are in use by system services,
# conflicting rules should not be created: # Ports 80 - 80 --> HTTP # Ports 23 - 23 --> Telnet CLI # Ports 22 - 22 --> SSH CLI # Ports 82 - 82 --> TR069 # Ports 6000 - 6090 --> RealmPortPool::MR_WAN # Ports 5060 - 5060 --> SIPUDP#2 # Ports 5060 - 5060 --> SIPLISTENING#2 # Ports 5061 - 5061 --> SIPLISTENING#2
5. To see the WAN binding, use the “show voip wan-bindings” command:
MSBR# show voip wan-bindings
WAN interface was defined by configuration (Loopback 1, ip address 0.0.0.0)
The following WAN ports are in use by VOIP services: Ports 6000 - 6090 --> RealmPortPool::MR_WAN Ports 5060 - 5060 --> SIPUDP#2 Ports 5060 - 5060 --> SIPLISTENING#2 Ports 5061 - 5061 --> SIPLISTENING#2
Note: This feature cannot be used with VRFs other than global. If other than global
VRFs are used, the port forwarding rules need to be added manually for all VoIP inbound and outbound traffic.
Page 84
IP Networking Configuration
Configuration Guide 84 Document #: LTRT-31657
This page is intentionally left blank.
Page 85
Version 6.8 85 Mediant MSBR
Configuration Guide 14. Virtual Routing and Forwarding (VRF)
14 Virtual Routing and Forwarding (VRF)
VRF is an IP feature that is included in IP network routers, which allows the simultaneous existence and work of multiple routing tables on a single physical router. This can be visualized, in general and simple terms, as several logical routers inside a physical one.
Because of this separation to different routing and forwarding tables, this feature allows the creation of different networks and segments without using multiple devices, creation of VPNs, and isolation of different network segments for better security due to the fact that no data is transferred from one VRF to another, and much more.
In addition, to utilize this separation of routing and forwarding tables, many components and configuration objects can be associated with different VRFs on the same device, such as physical and logical interfaces, static routes, prefix-lists and routing protocol instances.
On the MSBR's MAIN-VRF by default, BGP, OSPF, RIP services exist. The MSBR supports up to five additional VRFs. For all additional VRFs, the user can enable up to five dynamic routing services. For example, if VRF “BLUE” has BGP enabled towards the WAN and RIP towards the LAN, the other VRFs will have cumulatively only three services remaining for use.
14.1.1 VRF Configuration
The following describes the VRF configuration commands.
14.1.1.1 Global Configuration
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip vrf
vrf-name
Creates a VRF instance.
(config-data)# ip vrf
vrf-name
enable <ospf/rip/bgp>
Enables a routing protocol on the VRF instance.
14.1.1.2 Interface Configuration
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface
int-name
Enters the interface configuration mode.
(conf-if-
name
)# ip vrf forwarding
vrf-name
Associates the interface with a specific VRF.
14.1.1.3 Other
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# ip route vrf
vrf-
name destination mask next-hop
interface
Associates a static route with a VRF instance.
(config-data)# ip prefix-list
list-name vrf vrf-name action prefix/length
Associates a prefix-list with a VRF instance.
Page 86
IP Networking Configuration
Configuration Guide 86 Document #: LTRT-31657
(config-data)# route-map <name> vrf
vrf-name
Associates a route-map with a VRF.
(config-data)# router ospf|bgp|rip
vrf vrf-name
Associates a BGP/OSPF/RIP routing-instance with a VRF.
Also the show commands of the above configurations and the following utilities: Ping,
Traceroute, Copy files, debug capture data physical, show data mac table.
14.1.2 VRF App Awareness
The MSBR VRF App awareness is essentially the ability to perform ICMP commands (such as ping, and traceroute) with a vrf attribute, enabling VRF-specific reachability and connectivity testing. Note that ICMP packets are not routed from one VRF to another.
The operation is performed according to the ICMP ping and traceroute command syntax, for example:
MSBR# ping 192.168.0.1 source data vrf blue
4 packets transmitted, 0 packets received
MSBR#
Page 87
Version 6.8 87 Mediant MSBR
Configuration Guide 14. Virtual Routing and Forwarding (VRF)
14.1.3 Example of Segment Isolation using VRF
This example includes two hosts, each connected to a separate VLAN. On the MSBR, Layer-3 interface VLANS for the two VLANS are configured where each interface VLAN is associated to a different VRF.
Without a VRF configuration, there would be routing between the two Layer-3 interfaces where if Workstation 1 tries to reach Workstation 2 (with ICMP Ping, for example) it would get an answer.
In the example, Layer-3 VLAN interfaces are associated with different VRFs and belong to different routing tables. The MSBR isolates them from one another, and if ICMP reachability is checked, an Unreachable message is received.
Figure 14-1: Segment Isolation using VRF
14.1.3.1 Configuration
MSBR# configure data MSBR(conf-data)# ip vrf blue MSBR(conf-data)# ip vrf red MSBR(conf-data)# interface VLAN 1 MSBR(conf-if-VLAN 1)# ip address 192.169.0.1 255.255.255.0 MSBR(conf-if-VLAN 1)# desc "VLAN 1 – Lan segment 1" MSBR(conf-if-VLAN 1)# ip vrf forwarding blue MSBR(conf-if-VLAN 1)# exit MSBR(conf-data)# interface VLAN 2 MSBR(conf-if-VLAN 2)# ip address 192.169.1.1 255.255.255.0 MSBR(conf-if-VLAN 2)# desc "VLAN 2 – Lan segment 2" MSBR(conf-if-VLAN 2)# ip vrf forwarding red MSBR(conf-data)# interface gi 0/0.1 MSBR(conf-if-VLAN 2)# desc "vlan 1 - WAN" MSBR(conf-if-VLAN 2)# ip vrf forwarding blue MSBR(conf-data)# interface gi 0/0.2 MSBR(conf-if-VLAN 2)# desc "vlan 2 – WAN" MSBR(conf-if-VLAN 2)# ip vrf forwarding red
Page 88
IP Networking Configuration
Configuration Guide 88 Document #: LTRT-31657
14.1.3.2 Output
Client 1>ping 192.169.0.100
Pinging 192.169.0.100 with 32 bytes of data: Request timed out.
Ping statistics for 192.169.0.100: Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Client 1>
Client 2>ping 192.169.1.100
Pinging 192.169.1.100 with 32 bytes of data: Request timed out.
Ping statistics for 192.169.1.100: Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
Client 2>
MSBR# show data ip vrf
VRF - blue Interfaces: VLAN 1 GigabitEthernet 0/0.1
Enabled protocols:
VRF - red Interfaces: VLAN 2 GigabitEthernet 0/0.2
Enabled protocols:
MSBR#
MSBR# show data ip route vrf blue Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 192.169.0.0/24 is directly connected, VLAN 1
MSBR#
MSBR# show data ip route vrf red
Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 192.169.1.0/24 is directly connected, VLAN 2
MSBR#
Page 89
Version 6.8 89 Mediant MSBR
Configuration Guide 14. Virtual Routing and Forwarding (VRF)
14.1.4 Routing Services on Different VRF’S
This example shows a scenario in which there are several LAN segments connected to the MSBR via different VLANs, which are associated with different VRFs. The Data VRF has BGP connectivity to the ISP and RIP protocol for routing on the LAN. The ipTV VRF has a static route towards the ISP and OSPF routing protocol for the LAN network.
This is a conceptual scenario to show how to provide different services using different protocols on different VRFs.
Figure 14-2: Routing Services on Different VRFs
14.1.4.1 Configuration
The configuration regarding the VRFs and their associated protocols is shown below. Standard protocol and addressing configuration is omitted and can be observed in their respective chapters in this guide.
MSBR(config-data)# ip vrf DATA enable bgp MSBR(config-data)# ip vrf DATA enable rip MSBR(config-data)# ip vrf VOICE MSBR(config-data)# ip vrf IPTV enable ospf MSBR(config-data)#interface vlan 1 MSBR(config-if-VLAN-1)#ip address 192.168.0.1 255.255.255.0 MSBR(config-if-VLAN-1)#ip vrf forwarding DATA MSBR(config-if-VLAN-1)#exit MSBR(config-data)#interface vlan 2 MSBR(config-if-VLAN-2)#ip address 192.168.1.1 255.255.255.0 MSBR(config-if-VLAN-2)#ip vrf forwarding VOICE MSBR(config-if-VLAN-2)#exit MSBR(config-data)#interface vlan 3 MSBR(config-if-VLAN-3)#ip address 192.168.3.1 255.255.255.0 MSBR(config-if-VLAN-3)#ip vrf forwarding IPTV MSBR(config-if-VLAN-3)#exit MSBR(config-data)#interface gigabitethernet 0/0.1 MSBR(config-if-GE 0/0.1)#ip address 100.0.0.1 255.255.255.0 MSBR(config-if-GE 0/0.1)#ip vrf forwarding VOICE MSBR(config-if-GE 0/0.1)#exit MSBR(config-data)#interface gigabitethernet 0/0.2 MSBR(config-if-GE 0/0.2)#ip address 100.0.1.1 255.255.255.0 MSBR(config-if-GE 0/0.2)#ip vrf forwarding IPTV
Page 90
IP Networking Configuration
Configuration Guide 90 Document #: LTRT-31657
MSBR(config-if-GE 0/0.2)#exit MSBR(config-data)#interface fiber 0/3 MSBR(config-if-Fi 0/3)#ip address 200.0.0.1 255.255.255.0 MSBR(config-if-Fi 0/3)#ip vrf forwarding DATA MSBR(config-if-Fi 0/3)# napt MSBR(config-if-Fi 0/3)# firewall enable MSBR(config-if-Fi 0/3)#exit MSBR(config-data)# router ospf vrf IPTV
*********************************************** Standard protocol configuration – omitted ***********************************************
MSBG(config-data)# router rip vrf DATA
*********************************************** Standard protocol configuration – omitted ***********************************************
MSBR(config-data)# router bgp 65000 vrf DATA
*********************************************** Standard protocol configuration – omitted ***********************************************
MSBR(config-data)#
14.1.4.2 Output
MSBR# show data ip vrf
VRF - DATA
Interfaces: VLAN 1 Fiber 0/3 Enabled protocols: bgp rip
VRF - VOICE
Interfaces: VLAN 2 GigabitEthernet 0/0.1
Enabled protocols:
VRF - IPTV
Interfaces: VLAN 3 GigabitEthernet 0/0.2 Enabled protocols: ospf
MSBR#
Page 91
Version 6.8 91 Mediant MSBR
Configuration Guide 15. GRE Tunnels
15 GRE Tunnels
MSBR supports GRE tunnels. Tunnels are a type of interface where when there is a proper and working IP connectivity between its two ends, appears as directly connected to the “other side”, even if there are multiple different IP networks between them. GRE tunnels are tunnels that use a special encapsulation on the IP packets.
15.1.1 Configuring GRE Tunnels
The following describes the commands for configuring GRE Tunnels.
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# interface gre
<number>
MSBR supports up to 255 GRE interfaces. The GRE interfaces can be a number from 1 to 255.
(conf-if-GRE 1)# ip address <IP>
<MASK>
Configures the IP address of the GRE interface. The mask is not mandatory and if not stated the default value of 255.255.255.255 is applied.
(conf-if-GRE 1)# tunnel
destination <IP>
Configures the destination IP for the tunnel interface. The tunnel is created for this address.
15.1.2 Example of Connecting Multiple Subnets using GRE
This example describes the configuration of the next topology, where three different subnets are connected using GRE tunnels. Note that for a GRE tunnel to work properly, you must have a route to the tunnel destination.
Figure 15-1: Multiple Subnets using GRE
Page 92
IP Networking Configuration
Configuration Guide 92 Document #: LTRT-31657
15.1.2.1 Configuration
MSBR1:
MSBR1# conf d MSBR1(config-data)# int gigabitethernet 0/0 MSBR1(conf-if-GE 0/0)# ip address 180.1.1.1 255.255.255.0 MSBR1(conf-if-GE 0/0)# no firewall enable MSBR1(config-data)# int vla 1 MSBR1(conf-if-VLAN 1)# ip address 192.168.11.1 255.255.255.0 MSBR1(conf-if-VLAN 1)# exit MSBR1(config-data)# int vla 2 MSBR1(conf-if-VLAN 2)# ip address 192.168.12.1 255.255.255.0 MSBR1(conf-if-VLAN 2)# no shutdown MSBR1(conf-if-VLAN 2)# exit MSBR1(config-data)# int vla 3 MSBR1(conf-if-VLAN 3)# ip address 192.168.13.1 255.255.255.0 MSBR1(conf-if-VLAN 3)# no shutdown MSBR1(conf-if-VLAN 3)# exit MSBR1(config-data)# interface gre 1 MSBR1(conf-if-GRE 1)# ip address 1.1.1.1 255.255.255.0 MSBR1(conf-if-GRE 1)# tunnel destination 180.1.1.2 MSBR1(conf-if-GRE 1)# no shutdown MSBR1(conf-if-GRE 1)# exit MSBR1(config-data)# ip route 192.168.1.0 255.255.255.0 gre 1 MSBR1(config-data)# ip route 192.168.2.0 255.255.255.0 gre 1 MSBR1(config-data)# ip route 192.168.3.0 255.255.255.0 gre 1
MSBR2:
MSBR2# conf d MSBR2(config-data)# int gigabitethernet 0/0 MSBR2(conf-if-GE 0/0)# ip address 180.1.1.2 255.255.255.0 MSBR2(conf-if-GE 0/0)# no firewall enable MSBR2(config-data)# int vla 1 MSBR2(conf-if-VLAN 1)# ip address 192.168.1.1 255.255.255.0 MSBR2(conf-if-VLAN 1)# exit MSBR2(config-data)# int vla 2 MSBR2(conf-if-VLAN 1)# ip address 192.168.2.1 255.255.255.0 MSBR2(conf-if-VLAN 1)# no shutdown MSBR2(conf-if-VLAN 1)# exit MSBR2(config-data)# int vla 3 MSBR2(conf-if-VLAN 1)# ip address 192.168.3.1 255.255.255.0 MSBR2(conf-if-VLAN 1)# no shutdown MSBR2(conf-if-VLAN 1)# exit MSBR2(config-data)# interface gre 1 MSBR2(conf-if-GRE 1)# ip address 1.1.1.2 255.255.255.0 MSBR2(conf-if-GRE 1)# tunnel destination 180.1.1.1 MSBR2(conf-if-GRE 1)# no shutdown MSBR2(conf-if-GRE 1)# exit MSBR2(config-data)# ip route 192.168.11.0 255.255.255.0 gre 1 MSBR2(config-data)# ip route 192.168.12.0 255.255.255.0 gre 1 MSBR2(config-data)# ip route 192.168.13.0 255.255.255.0 gre 1
Page 93
Version 6.8 93 Mediant MSBR
Configuration Guide 15. GRE Tunnels
15.1.2.2 Output
IP routing table of MSBR1:
MSBR1# sh d ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 180.1.1.0/24 is directly connected, GigabitEthernet 0/0 S 192.168.1.0/24 [1/1] is directly connected, GRE 1 S 192.168.2.0/24 [1/1] is directly connected, GRE 1 S 192.168.3.0/24 [1/1] is directly connected, GRE 1 C 192.168.11.0/24 is directly connected, VLAN 1 C 192.168.12.0/24 is directly connected, VLAN 2 C 192.168.13.0/24 is directly connected, VLAN 3
IP routing table of MSBR2:
MSBR2# sh d ip route Codes: K - kernel route, C - connected, S - static, R - RIP, O - OSPF, B - BGP
C 180.1.1.0/24 is directly connected, GigabitEthernet 0/0 C 192.168.1.0/24 is directly connected, VLAN 1 C 192.168.2.0/24 is directly connected, VLAN 2 C 192.168.3.0/24 is directly connected, VLAN 3 S 192.168.11.0/24 [1/1] is directly connected, GRE 1 S 192.168.12.0/24 [1/1] is directly connected, GRE 1 S 192.168.13.0/24 [1/1] is directly connected, GRE 1 MSBR2#
To verify a connection among networks, you can ping each network from MSBR:
MSBR1# ping 192.168.11.1
Reply from 192.168.11.1: time=0 ms Reply from 192.168.11.1: time=0 ms Reply from 192.168.11.1: time=0 ms 3 packets transmitted, 3 packets received Round-trip min/avg/max = 0/0/0 ms
MSBR1# ping 192.168.12.1
Reply from 192.168.12.1: time=0 ms Reply from 192.168.12.1: time=0 ms Reply from 192.168.12.1: time=0 ms MSBR1# Reply from 192.168.12.1: time=0 ms 4 packets transmitted, 4 packets received Round-trip min/avg/max = 0/0/0 ms
MSBR1# ping 192.168.13.1
Reply from 192.168.13.1: time=0 ms Reply from 192.168.13.1: time=0 ms Reply from 192.168.13.1: time=0 ms 3 packets transmitted, 3 packets received Round-trip min/avg/max = 0/0/0 ms MSBR1#
Page 94
IP Networking Configuration
Configuration Guide 94 Document #: LTRT-31657
This page is intentionally left blank.
Page 95
Version 6.8 95 Mediant MSBR
Configuration Guide 16. Quality of Service (QoS)
16 Quality of Service (QoS)
In modern networks, different types of traffic are transported over the same infrastructure: Data, Voice, Video, latency sensitive, application specific and more. In cases of network congestion, some amount of data may be delayed or dropped and retransmitted, and while some kinds of traffic are tolerant to this phenomenon, others such as video and voice are sensitive to it.
QoS is a set of mechanisms to handle the prioritization of some traffic over another to make sure it gets the amount of network bandwidth it requires, proper latency, etc.
It is important to be familiar with several concepts that are crucial for the QoS process:
Traffic filtering: the first step in the QoS mechanism. You need to filter and define the
preferred traffic”; basically stating which traffic should receive the special priority handling. This step is usually performed using ACLs, VLAN-Priority or the DSCP value.
The DiffServ (the system behind DSCP) is a computer networking mechanism for
classifying, managing and providing QoS for data in IP networks in layer 3, while TOS is quite similar, however uses a slightly different terminology and rating for traffic in layer 2.
The usual event flow of the QoS mechanism is as follows:
Figure 16-1: QOS Handling Flow-Chart
Match-maps bind the “match” statements with marking rules, meaning that once there are rules matching the specified traffic, you can mark it for further processing, using the DSCP system.
After the marking, the actual QoS mechanism is activated using the service-map objects, which are configured on the physical egress interface and contain the actual queues to which the different traffic is divided. For each queue the following actions can be performed:
Shaping: assuring an amount of bandwidth for the specified traffic – usually media
requires minimal bandwidth.
Prioritization: setting different priorities for different traffic associated with different
queues, thus providing lower delay for higher priority traffic.
Drop policy and queue scheduling: setting rules for planned packet drop or sharing
the bandwidth according to user-defined thresholds.
Note: It is considered good practice to perform the matching as close to the ingress
interface as possible, and the manipulation on the physical egress interface.
Page 96
IP Networking Configuration
Configuration Guide 96 Document #: LTRT-31657
16.1.1 QoS Configuration
The QoS configuration consists of several steps:
6. Defining interesting traffic.
7. Marking it.
8. Configuring a shaping policy
9. Applying it.
The following table describes the QoS CLI commands.
Command Description
MSBR# configure data
Enters the data configuration menu.
(config-data)# access-list
acl-name
permit protocol src dst <eq/range/dscp/established/log/stateless
>
Configures an access-list to filter the requested “interesting traffic”.
(config-data)# qos match-map <in/out>
map-name interface
Configures a match-map for the QoS mechanism.
(conf-m-map)# match < access-list/ any/
dscp/ length/ precedence/ priority>
Configures match clauses for the match­map.
(conf-m-map)# set < dscp/ precedence/
priority/ queue>
Configures the marking for the matched traffic.
(config-data)# qos service-map
interface
output
Configures a service-map.
(conf-s-map)# bandwidth bw
Configures the maximum bandwidth for the service-map.
(conf-s-map)# queue <
name/
default>
Configures the queue for the service­map and enter the queue configuration mode.
(conf-s-map-q)# [bandwidth
bw
| policy
policy
| priority
priority
]
Configures queue parameters.
Page 97
Version 6.8 97 Mediant MSBR
Configuration Guide 16. Quality of Service (QoS)
16.1.2 Example of Weighted Bandwidth Sharing
This example includes a branch office with several network segments: VoIP, IP and Users, connected to VLANS 1, 2, and 3, respectively. The WAN interface bandwidth needs to be shared according to the network administrator’s design and functional requirements, which in this example, is 40% for VoIP, 40% for IT, and 20% for Users.
Figure 16-2: Weighted QOS Handling
Page 98
IP Networking Configuration
Configuration Guide 98 Document #: LTRT-31657
16.1.2.1 Configuration
MSBR(config-data)# ip access-list VLAN1_IN permit ip any any log MSBR(config-data)# ip access-list VLAN2_IN permit ip any any log MSBR(config-data)# ip access-list VLAN3_IN permit ip any any log MSBR(config-data)# qos match-map input QOS_VOIP vlan 1 MSBR(conf-m-map)# match access-list VLAN1_IN MSBR(conf-m-map)# set queue VoIP MSBR(conf-m-map)# exit MSBR(config-data)# qos match-map input QOS_IT vlan 2 MSBR(conf-m-map)# match access-list VLAN2_IN MSBR(conf-m-map)# set queue IT MSBR(conf-m-map)# exit MSBR(config-data)# qos match-map input QOS_USR vlan 3 MSBR(conf-m-map)# match access-list VLAN3_IN MSBR(conf-m-map)# set queue USR MSBR(conf-m-map)# exit MSBR(config-data)# qos service-map gigabitethernet 0/0 output MSBR(conf-s-map)# queue default MSBR(conf-s-map-q)# priority 4 MSBR(conf-s-map-q)# exit MSBR(conf-s-map)# queue VoIP MSBR(conf-s-map-q)# priority 1 MSBR(conf-s-map-q)# bandwidth percent 40 MSBR(conf-s-map-q)# exit MSBR(conf-s-map)# queue IT MSBR(conf-s-map-q)# priority 2 MSBR(conf-s-map-q)# bandwidth percent 40 MSBR(conf-s-map-q)# exit MSBR(conf-s-map)# queue USR MSBR(conf-s-map-q)# priority 3 MSBR(conf-s-map-q)# bandwidth percent 20 MSBR(conf-s-map-q)# exit MSBR(conf-s-map)# exit MSBR(config-data)#
16.1.2.2 Output
MSBR# show data qos match-map
match-map input QOS_VOIP vlan 1 match access-list VLAN1_IN set queue VOIP match-map input QOS_IT vlan 2 match access-list VLAN2_IN set queue IT match-map input QOS_USR vlan 3 match access-list VLAN3_IN set queue USR MSBR#
Page 99
Version 6.8 99 Mediant MSBR
Configuration Guide 16. Quality of Service (QoS)
MSBR# show data qos service-map
LAN service map: service map does not exist WAN service map: GigabitEthernet 0/0: service map maximum bandwidth 100000 default queue: STRICT PRIORITY priority 4 reserved bandwidth 0 kbps maximum bandwidth is unlimited VOIP queue: STRICT PRIORITY priority 1 reserved bandwidth 40 percent maximum bandwidth is unlimited IT queue: STRICT PRIORITY priority 2 reserved bandwidth 40 percent maximum bandwidth is unlimited USR queue: STRICT PRIORITY priority 3 reserved bandwidth 20 percent maximum bandwidth is unlimited Fiber 0/1: service map does not exist
MSBR#
MSBR# show data qos queue
Global statistics for LAN Queues: No available queue statistics.
Global statistics for WAN Queues: GigabitEthernet 0/0:
queue name|sent packets|sent bytes|packet rate|rate(bytes/s)|packets delayed|packets dropped
------------|------------|----------|-----------|-------------|---------
------|---------
Default | 1 | 1234 | 20 | 40 | 0 | 0
VOIP | 38 | 56378 | 16 | 32 | 0 | 0
IT | 24 | 35436 | 6 | 15 | 0 | 0
USR | 1 | 34 | 4 | 10 | 0 | 0
Fiber 0/1: No available queue statistics.
EFM 0/2: No available queue statistics.
Note: Queue name may be truncated (limited to 20 characters).
MSBR#
Page 100
IP Networking Configuration
Configuration Guide 100 Document #: LTRT-31657
16.1.3 Example using QoS to Ensure Bandwidth for Critical Traffic
This example assumes two PC workstations, each on a different VLAN and subnet. Client 1 is running a very important and sensitive application that requires a minimum of 2 Mbits of network bandwidth for proper operation. Based on the mechanisms described in this chapter, a policy is configured to ensure the client obtains the required bandwidth.
Figure 16-3: QoS Bandwidth Shaping
16.1.3.1 Configuration
MSBR# configure data MSBR(config-data)# access-list exampleList1 permit ip 192.168.0.3
0.0.0.0 any MSBR(config-data)# qos match-map output mMap1 gigabitethernet 0/0 MSBR(conf-m-map)# match access-list exampleList1 MSBR(conf-m-map)# set queue ex1 MSBR(conf-m-map)# exit MSBR(config-data)# qos service-map gigabitethernet 0/0 output MSBR(conf-s-map)# queue ex1 MSBR(conf-s-map-q)# bandwidth 2048 MSBR(conf-s-map-q)# exit MSBR(conf-s-map)# exit MSBR(config-data)#
16.1.3.2 Output
MSBR# show data qos match-map gigabitethernet 0/0 match-map output mMap1 GigabitEthernet 0/0 match access list ex1 set queue ex1
MSBR#
MSBR# show data qos service-map LAN service map: service map does not exist WAN service map: GigabitEthernet 0/0: service map maximum bandwidth 100000 default queue: STRICT PRIORITY priority 4 reserved bandwidth 0 kbps maximum bandwidth is unlimited
Loading...