– 120 Powerful Instructions – Most Single Clock Cycle Execu tion
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
• High Endurance, Non-volatile Memory Segments
– 2K/4K/8K Bytes of In-System, Self-programmable Flash Program Memory
• Endurance: 10,000 Write/Erase Cycles
– 128/256/512 Bytes of In-System Programmable EEPROM
• Endurance: 100,000 Write/Erase Cycles
– 128/256/512 Bytes of Internal SRAM
– Data Retention: 20 years at 85°C / 100 years at 25°C
– Programming Lock for Self-programming Flash & EEPROM Data Security
• Peripheral Features
– One 8-bit and One 16-bit Timer/Counter with Two PWM Channels, Each
– 10-bit ADC
• 8 Single-ended Channels
• 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x)
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Universal Serial Interface
• Special Microcontroller Features
– debugWIRE On-chip Debug System
– In-System Programmable via SPI Port
– Internal and External Interrupt Sources
• Pin Change Interrupt on 12 Pins
– Low Power Idle, ADC Noise Reduction, Standby and Power-down Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-out Detection Circuit with Software Disable Function
– Internal Calibrated Oscillator
– On-chip Temperature Sensor
• I/O and Packages
– Available in 20-pin QFN/MLF/VQ FN, 14-p in SOIC, 14-p in PDIP and 15-ball UFBGA
– Twelve Programmable I/O Lines
Port B is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability except PB3 which has the RESET
RESET pin, program (‘0’) RSTDISBL fuse. As inputs, Port B pins tha t are externally pulled low
will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a
reset condition becomes active, even if the cloc k is not runn in g.
Port B also serves the functions of various special features of the ATtiny24A/44A/84A as listed
in Section 10.2 “Alternate Port Functions” on page 58.
1.1.4RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running and provided the reset pin has not been disabled. Th e minimum pulse length is given in Table 20-4 on page 176. Shorter pulses are not guaranteed to
generate a reset.
ATtiny24A/44A/84A
capability. To use pin PB3 as an I/O pin, instead of
The reset pin can also be used as a (weak) I/O pin.
1.1.5Port A (PA7:PA0)
Port A is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port A pins are tri-stated when a reset co ndition becomes active,
even if the clock is not running.
Port A has alternate functions as analog inputs for the ADC, analog comparator, timer/counter,
SPI and pin change interrupt as described in “Alternate Port Functions” on page 58.
8183FS–AVR–06/12
3
2.Overview
ATtiny24A/44A/84A are low-power CMOS 8-bit microcontrollers based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the
ATtiny24A/44A/84A achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.
Figure 2-1.Block Diagram
VCC
GND
PROGRAM
COUNTER
PROGRAM
FLASH
INSTRUCTION
REGISTER
INSTRUCTION
DECODER
CONTROL
LINES
PROGRAMMING
LOGIC
STACK
POINTER
SRAM
GENERAL
PURPOSE
REGISTERS
X
Y
Z
ALU
STATUS
REGISTER
ISP INTERFACE
8-BIT DATABUS
INTERNAL
OSCILLATOR
WATCHDOG
TIMER
MCU CONTROL
REGISTER
MCU STATUS
REGISTER
TIMER/
COUNTER0
TIMER/
COUNTER1
INTERRUPT
UNIT
EEPROM
INTERNAL
CALIBRATED
OSCILLATOR
TIMING AND
CONTROL
OSCILLATORS
ADC
DATA REGISTER
PORT B
PORT B DRIVERS
PB[3:0]
DATA DIR.
REG.PORT B
PA[7:0]
DATA DIR.
REG.PORT A
DATA REGISTER
+
_
PORT A
ANALOG
COMPARATOR
PORT A DRIVERS
The AVR core combines a rich instruction set with 32 general purpose working registers. All 32
registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
4
ATtiny24A/44A/84A
8183FS–AVR–06/12
ATtiny24A/44A/84A
The ATtiny24A/44A/84A provides the following features: 2K/4K/8K byte of In-System Programmable Flash, 128/256/512 bytes EEPROM, 128/256/512 bytes SRAM, 12 general purpose I/O
lines, 32 general purpose working registers, an 8-bit Timer/Counter with two PWM channels, a
16-bit timer/counter with two PWM channels, Internal and External Interrupts, a 8-channel 10-bit
ADC, programmable gain stage (1x, 20x) for 12 differential ADC channel pairs, a programmable
Watchdog Timer with internal oscillator, internal calibrated oscillator, and four software selectable power saving modes. Idle mode stops the CPU while allowing the SRAM, Timer/Counter,
ADC, Analog Comparator, and Interrupt system to continue functioning. ADC Noise Reduction
mode minimizes switching noise during ADC conversions by stopping the CPU and all I/O modules except the ADC. In Power-down mode registers keep their contents and all chip functions
are disbaled until the next interrupt or hardware reset. In Standby mode, the crystal/resonator
oscillator is running while the rest of the device is sleeping, allowing very fast start-up combined
with low power consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology. The onchip ISP Flash allows the Program memory to be re-programmed in-system through an SPI
serial interface, by a conventional non-volatile memory programmer or by an on-chip boo t code
running on the AVR core.
The ATtiny24A/44A/84A AVR is supported w ith a full suit e of progra m and s ystem de velopmen t
tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators and Evaluation
kits.
8183FS–AVR–06/12
5
3.General Information
3.1Resources
A comprehensive set of drivers, application notes, data sheets and descriptions on development
tools are available for download at http://www.atmel.com/avr.
3.2Code Examples
This documentation contains simple code examples tha t briefly sh ow how to use var ious par ts of
the device. These code examples assume that the part specific header file is included b efore
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Plea se con firm with th e C com piler d ocumentation for more details.
For I/O Registers located in the extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically, this
means “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. Note that not all
AVR devices include an extended I/O map.
3.3Capacitive Touch Sensing
Atmel QTouch Library provides a simple to use solution for touch sensitive interfaces on Atmel
AVR microcontrollers. The QTouch Library includes support for QTouch
tion methods.
®
and QMatrix® acquisi-
3.4Data Retention
3.5Disclaimer
Touch sensing is easily added to any application by linking the QTouch Library and using the
Application Programming Interface (API) of the library to define the touch ch annels and senso rs.
The application then calls the API to retrieve channel information and determine the state of the
touch sensor.
The QTouch Library is free and can be downloaded from the Atmel website. For more information and details of implementation, refer to the QTouch Library User Guide – also available from
the Atmel website.
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device has been characterized.
Note:1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operation the specified bit, and can therefore be used on registers containing such Status Flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
8
ATtiny24A/44A/84A
8183FS–AVR–06/12
ATtiny24A/44A/84A
5.Instruction Set Summary
MnemonicsOperandsDescriptionOperationFlags#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADDRd, RrAdd two RegistersRd ← Rd + RrZ,C,N,V,H1
ADCRd, RrAdd with Carry two RegistersRd ← Rd + Rr + CZ,C,N,V,H1
ADIWRdl,KAdd Immediate to WordRdh:Rdl ← Rdh:Rdl + KZ,C,N,V,S2
SUBRd, RrSubtract two RegistersRd ← Rd - RrZ,C,N,V,H1
SUBIRd, KSubtract Constant from Register Rd ← Rd - KZ,C,N,V,H1
SBCRd, RrSubtract with Carry two RegistersRd ← Rd - Rr - CZ,C,N,V,H1
SBCIRd, KSubtract with Carry Constant from Reg.Rd ← Rd - K - CZ,C,N,V,H1
SBIWRdl,KSubtract Immediate from WordRdh:Rdl ← Rdh:Rdl - KZ,C,N,V,S2
ANDRd, RrLogical AND RegistersRd ← Rd • RrZ,N, V1
ANDIRd, KLogical AND Register and ConstantRd ← Rd • KZ,N,V1
ORRd, RrLogical OR RegistersRd ← Rd v RrZ,N,V1
ORIRd, KLogical OR Register and ConstantRd ← Rd v KZ,N,V1
EORRd, RrExclusive OR RegistersRd ← Rd ⊕ RrZ,N,V1
COMRdOne’s ComplementRd ← 0xFF − RdZ,C,N,V1
NEGRdTwo’s ComplementRd ← 0x00 − RdZ,C,N,V,H1
SBRRd,KSet Bit(s) in RegisterRd ← Rd v KZ,N,V1
CBRRd,KClear Bit(s) in RegisterRd ← Rd • (0xFF - K)Z,N,V1
INCRdIncrementRd ← Rd + 1Z,N,V1
DECRdDecrementRd ← Rd − 1 Z,N,V1
TSTRdTest for Zero or MinusRd ← Rd • Rd Z,N,V1
CLRRdClear RegisterRd ← Rd ⊕ RdZ,N,V1
SERRdSet RegisterRd ← 0xFFNone1
BRANCH INSTRUCTIONS
RJMPkRelative JumpPC ← PC + k + 1None2
IJMPIndirect Jump to (Z)PC ← Z None2
RCALLkRel ative Subroutine Call PC ← PC + k + 1None3
ICALLIndirect Call to (Z)PC ← ZNone3
RETSubroutine ReturnPC ← STACKNone4
RETIInterrupt ReturnPC ← STACKI4
CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC ← PC + 2 or 3None1/2/3
CPRd,RrCompareRd − RrZ, N,V,C,H1
CPCRd,RrCompare with CarryRd − Rr − CZ, N,V,C,H1
CPIRd,KCompare Register with ImmediateRd − KZ, N,V,C,H1
SBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC ← PC + 2 or 3 None1/2/3
SBRSRr, bSkip if Bit in Register is Setif (Rr(b)=1) PC ← PC + 2 or 3None1/2/3
SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=0) PC ← PC + 2 or 3 None1/2/3
SBISP, bSkip if Bit in I/O Register is Setif (P(b)=1) PC ← PC + 2 or 3None1/2/3
BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC←PC+k + 1None1/2
BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC←PC+k + 1None1/2
BREQ kBranch if Equal if (Z = 1) then PC ← PC + k + 1None1/2
BRNE kBranch if Not Equalif (Z = 0) then PC ← PC + k + 1None1/2
BRCS kBranch if Carry Setif (C = 1) then PC ← PC + k + 1None1/2
BRCC kBranch if Carry Clearedif (C = 0) then PC ← PC + k + 1None1/2
BRSH kBranch if Same or Higher if (C = 0) then PC ← PC + k + 1None1/2
BRLO kBranch if Lowerif (C = 1) then PC ← PC + k + 1None1/2
BRMI kBranch if Minusif (N = 1) then PC ← PC + k + 1None1/2
BRPL kBranch if Plus if (N = 0) then PC ← PC + k + 1None1/2
BRGE kBranch if Greater or Equal, Signedif (N ⊕ V= 0) then PC ← PC + k + 1None1/2
BRLT kBranch if Less Than Zero, Signedif (N ⊕ V= 1) then PC ← PC + k + 1None1/2
BRHS kBranch if Half Carry Flag Setif (H = 1) then PC ← PC + k + 1None1/2
BRHC kBranch if Half Carry Flag Clearedif (H = 0) then PC ← PC + k + 1None1/2
BRTS kBranch if T Flag Setif (T = 1) then PC ← PC + k + 1None1/2
BRTC kBranch if T Flag Clearedif (T = 0) then PC ← PC + k + 1None1/2
BRVS kBranch if Overflow Flag is Setif (V = 1) then PC ← PC + k + 1None1/2
BRVC kBranch if Overflow Flag is Clearedif (V = 0) then PC ← PC + k + 1None1/2
BRIE kBranch if Interrupt Enabledif ( I = 1) then PC ← PC + k + 1None1/2
BRID kBranch if Interrupt Disabledif ( I = 0) then PC ← PC + k + 1None1/2
BIT AND BIT-TEST INSTRUCTIONS
SBIP,bSet Bit in I/O RegisterI/O(P,b) ← 1None2
CBIP,bClear Bit in I/O RegisterI/O(P,b) ← 0None2
LSLRdLogical Shift LeftRd(n+1) ← Rd(n), Rd(0)
LSRRdLogical Shift RightRd(n) ← Rd(n+1), Rd(7) ← 0Z,C,N,V1
ROLRdRotate Left Through CarryRd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)Z,C,N,V1
← 0Z,C,N,V1
8183FS–AVR–06/12
9
MnemonicsOperandsDescriptionOperationFlags#Clocks
RORRdRotate Right Through CarryRd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)Z,C,N,V1
ASRRdArithmetic Shift RightRd(n) ← Rd(n+1), n=0..6Z,C,N,V1
SWAPRdSwap NibblesRd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)None1
BSETsFlag SetSREG(s) ← 1SREG(s)1
BCLRsFlag ClearSREG(s) ← 0 SREG(s)1
BSTRr, bBit Store from Register to TT ← Rr(b)T1
BLDRd, bBit load from T to RegisterRd(b) ← TNone1
SECSet CarryC ← 1C1
CLCClear CarryC ← 0 C1
SENSet Negative FlagN ← 1N1
CLNClear Negative FlagN ← 0 N1
SEZSet Zero FlagZ ← 1Z1
CLZClear Zero FlagZ ← 0 Z1
SEIGlobal Interrupt EnableI ← 1I1
CLIGlobal Interrupt DisableI ← 0 I1
SESSet Signed Test FlagS ← 1S1
CLSClear Signed Test FlagS ← 0 S1
SEVSet Twos Complement Overflow.V ← 1V1
CLVClear Twos Complement OverflowV ← 0 V1
SETSet T in SREGT ← 1T1
CLTClear T in SREGT ← 0 T1
SEHSet Half Carry Flag in SREGH ← 1H1
CLHClear Half Carry Flag in SREGH ← 0 H
DATA TRANSFER INSTRUCTIONS
MOVRd, RrMove Between RegistersRd ← RrNone1
MOVWRd, RrCopy Register Word
LDIRd, KLoad ImmediateRd ← KNone1
LDRd, XLoad IndirectRd ← (X)None2
LDRd, X+Load Indirect and Post-Inc.Rd ← (X), X ← X + 1None2
LDRd, - XLoad Indirect and Pre-Dec.X ← X - 1, Rd ← (X)None2
LDRd, YLoad IndirectRd ← (Y)None2
LDRd, Y+Load Indirect and Post-Inc.Rd ← (Y), Y ← Y + 1None2
LDRd, - YLoad Indirect and Pre-Dec.Y ← Y - 1, Rd ← (Y)None2
LDDRd,Y+qLoad Indirect with DisplacementRd ← (Y + q)None2
LDRd, ZLoad Indirect Rd ← (Z)None2
LDRd, Z+Load Indirect and Post-Inc.Rd ← (Z), Z ← Z+1None2
LDRd, -ZLoad Indirect and Pre-Dec.Z ← Z - 1, Rd ← (Z)None2
LDDRd, Z+qLoad Indirect with DisplacementRd ← (Z + q)None2
LDSRd, kLoad Direct from SRAMRd ← (k)None2
STX, RrStore Indirect(X) ← RrNone2
STX+, RrStore Indirect and Post-Inc.(X) ← Rr, X ← X + 1None2
ST- X, RrStore Indirect and Pre-Dec.X ← X - 1, (X) ← RrNone2
STY, RrStore Indirect(Y) ← RrNone2
STY+, RrStore Indirect and Post-Inc.(Y) ← Rr, Y ← Y + 1None2
ST- Y, RrStore Indirect and Pre-Dec.Y ← Y - 1, (Y) ← RrNone2
STDY+q,RrStore Indirect with Displacement(Y + q) ← RrNone2
STZ, RrStore Indirect(Z) ← RrNone2
STZ+, RrStore Indirect and Post-Inc.(Z) ← Rr, Z ← Z + 1None2
ST-Z, RrStore Indirect and Pre-Dec.Z ← Z - 1, (Z) ← RrNone2
STDZ+q,RrStore Indirect with Displacement(Z + q) ← RrNone2
STSk, RrStore Direct to SRAM(k) ← RrNone2
LPMLoad Program MemoryR0 ← (Z)None3
LPMRd, ZLoad Program MemoryRd ← (Z)None3
LPMRd, Z+Load Program Memory and Post-IncRd ← (Z), Z ← Z+1None3
SPMStore Program Memory(z) ← R1:R0None
INRd, PIn PortRd ← PNone1
OUTP, RrOut PortP ← RrNone1
PUSHRrPush Register on StackSTACK ← RrNone2
POPRdPop Register from StackRd ← STACKNone2
MCU CONTROL INSTRUCTIONS
NOPNo OperationNone1
SLEEPSleep(see specific descr. for Sleep function)None1
WDRWatchdog Reset(see specific descr. for WDR/Timer)None1
BREAKBreakFor On-chip Debug OnlyNoneN/A
Rd+1:Rd ← Rr+1:Rr
None1
1
10
ATtiny24A/44A/84A
8183FS–AVR–06/12
6.Ordering Information
6.1ATtiny24A
Speed (MHz)
(1)
Supply Voltage (V)Temperature RangePackage
ATtiny24A/44A/84A
(2)
14S1
14P3ATtiny24A-PU
Ordering Code
ATtiny24A-SSU
ATtiny24A-SSUR
(3)
Industrial
(-40°C to +85°C)
(5)
201.8 – 5.5V
Industrial
(-40°C to +105°C)
Industrial
(-40°C to +125°C)
(6)
(7)
Notes:1. For speed vs. supply voltage, see section 20.3 “Speed” on page 174.
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazardous Substances (RoHS)
3. Code indicators:
– H: NiPdAu lead finish
– F, N, U: matte tin
– R: tape & reel
4. Topside marking for ATtiny24A: T24 / Axx / manufacturing data
5. Also supplied in wafer form. Contact your local Atmel sales office for ordering information and minimum quantities.
6. For typical and electrical characteristics, see “Appendix A – ATtiny24A/44A Specification at 105°C”.
7. For typical and electrical characteristics, see “Appendix B – ATtiny24A/44A/84A Specification at 125°C”.
14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)
14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
15-ball (4 x 4 Array), 0.65 mm Pitch, 3.0 x 3.0 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA)
20M120-pad, 4 x 4 x 0.8 mm Body, Quad Flat No Lead / Micro Lead Frame Package (QFN/MLF)
20M220-pad, 3 x 3 x 0.85 mm Body, Very Thin Quad Flat No Lead Package (VQFN)
8183FS–AVR–06/12
11
6.2ATtiny44A
Speed (MHz)
Notes:1. For speed vs. supply voltage, see section 20.3 “Speed” on page 174.
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-
3. Code indicators:
4. Topside marking for ATtiny44A:
5. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa-
6. For typical and electrical characteristics, see “Appendix A – ATtiny24A/44A Specification at 105°C”.
7. For typical and electrical characteristics, see “Appendix B – ATtiny24A/44A/84A Specification at 125°C”.
(1)
Supply Voltage (V)Temperature RangePackage
201.8 – 5.5V
ous Substances (RoHS).
– H: NiPdAu lead finish
– F, N, U: matte tin
– R: tape & reel
14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)
14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
15-ball (4 x 4 Array), 0.65 mm Pitch, 3.0 x 3.0 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA)
20M120-pad, 4 x 4 x 0.8 mm Body, Quad Flat No Lead / Micro Lead Frame Package (QFN/MLF)
20M220-pad, 3 x 3 x 0.85 mm Body, Very Thin Quad Flat No Lead Package (VQFN)
12
ATtiny24A/44A/84A
8183FS–AVR–06/12
6.3ATtiny84A
Speed (MHz)
Notes:1. For speed vs. supply voltage, see section 20.3 “Speed” on page 174.
2. All packages are Pb-free, halide-free and fully green and they comply with the European directive for Restriction of Hazard-
3. Code indicators:
4. Topside marking for ATtiny84A:
5. These devices can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering informa-
6. For typical and electrical characteristics, see “Appendix A – ATtiny24A/44A Specification at 105°C”.
7. For typical and electrical characteristics, see “Appendix B – ATtiny24A/44A/84A Specification at 125°C”.
(1)
Supply Voltage (V)Temperature RangePackage
201.8 – 5.5V
ous Substances (RoHS).
– H: NiPdAu lead finish
– F, N, U: matte tin
– R: tape & reel
14-lead, 0.150" Wide Body, Plastic Gull Wing Small Outline Package (SOIC)
14-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
15-ball (4 x 4 Array), 0.65 mm Pitch, 3.0 x 3.0 x 0.6 mm, Ultra Thin, Fine-Pitch Ball Grid Array Package (UFBGA)
20M120-pad, 4 x 4 x 0.8 mm Body, Quad Flat No Lead / Micro Lead Frame Package (QFN/MLF)
20M220-pad, 3 x 3 x 0.85 mm Body, Very Thin Quad Flat No Lead Package (VQFN)
8183FS–AVR–06/12
13
7.Packaging Information
2325 Orchard Parkway
San Jose, CA 95131
TITLE
DRAWING NO.
R
REV.
14S1, 14-lead, 0.150" Wide Body, Plastic Gull
Wing Small Outline Package (SOIC)
2/5/02
14S1
A
A1
E
L
Side View
Top View
End View
H
E
b
N
1
e
A
D
COMMON DIMENSIONS
(Unit of Measure = mm/inches)
SYMBOL
MIN
NOM
MAX
NOTE
Notes:1. This drawing is for general information only; refer to JEDEC Drawing MS-012, Variation AB for additional information.
2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusion and gate burrs shall not
exceed 0.15 mm (0.006") per side.
3. Dimension E does not include inter-lead Flash or protrusion. Inter-lead flash and protrusions shall not exceed 0.25 mm
(0.010") per side.
4. L is the length of the terminal for soldering to a substrate.
5. The lead width B, as measured 0.36 mm (0.014") or greater above the seating plane, shall not exceed a maximum value
20M2, 20-pad, 3 x 3 x 0.85 mm Body, Lead Pitch 0.45 mm,
1.55 x 1.55 mm Exposed Pad, Thermally Enhanced
Plastic Very Thin Quad Flat No Lead Package (VQFN)
10/24/08
15
14
13
12
11
1
2
3
4
5
16 17 18 19 20
10 9 8 7 6
D2
E2
e
b
K
L
Pin #1 Chamfer
(C 0.3)
D
E
SIDE VIEW
A1
y
Pin 1 ID
BOTTOM VIEW
TOP VIEW
A1
A
C
C0.18 (8X)
0.3 Ref (4x)
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
MIN
NOM
MAX
NOTE
A 0.75 0.80 0.85
A1 0.00 0.02 0.05
b 0.17 0.22 0.27
C 0.152
D 2.90 3.00 3.10
D2 1.40 1.55 1.70
E 2.90 3.00 3.10
E2 1.40 1.55 1.70
e – 0.45 –
L 0.35 0.40 0.45
K 0.20 ––
y 0.00 – 0.08
18
ATtiny24A/44A/84A
8183FS–AVR–06/12
8.Errata
8.1ATtiny24A
8.1.1Rev. H
8.1.2Rev. G
8.1.3Rev. F
8.2ATtiny44A
8.2.1Rev. G
ATtiny24A/44A/84A
The revision letters in this section refer to the revision of the corresponding ATtiny24A/44A/84A
device.
No known errata.
Not sampled.
Not sampled.
No known errata. Yield improvement.
8.2.2Rev. F
8.2.3Rev. E
8.3ATtiny84A
8.3.1Rev. C
No known errata.
Not sampled.
No known errata.
8183FS–AVR–06/12
19
9.Datasheet Revision History
9.1Rev. 8183F – 06/12
1. Updated:
– Table 16-1 on page 138
– Figure 16-7 on page 137
– “Ordering Information” on page 11
9.2Rev. 8183E – 01/12
1. Updated:
– Production status for ATtiny24A and ATtiny84A
– “Start Condition Detector” on page 122
– “Ordering Information” on page 11, 12, and 13
9.3Rev. 8183D – 04/11
1. Added errata for ATtiny44A rev. G in Section 8. “Errata” on page 19
9.4Rev. 8183C – 03/11
1. Added:
– ATtiny84A, including typical characteristics plots
– Section 3.3 “Capacitive Touch Sensing” on page 6
– Table 6-8, “Capacitance of Low-Frequency Crystal Oscillator,” on page 28
– Analog Comparator Offset plots for ATtiny24A (Figure 21.2.10 on page 208) and
ATtiny44A (Figure 21.3.11 on page 236)
– Extended temperature part numbers in Section 6. “Ordering Information” on page 11
2. Updated:
– Bit syntax throughout the datasheet, e.g. from CS02:0 to CS0[2:0]
– Section 6.4 “Clock Output Buffer” on page 30, changed CLKO to CKOUT
– Table 16-4, “Single-Ended Input channel Selections,” on page 145, added note for
Internal 1.1V Reference
– Table 19-16, “High-voltage Serial Programming Instruction Set for
ATtiny24A/44A/84A,” on page 170, adju ste d note s
– Table 20-1, “DC Characteristics. TA = -40°C to +85°C,” on page 173, adjusted notes
9.5Rev. 8183B – 03/10
1. Updated template.
2. Added UFBGA package (15CC1) in: “Features” on page 1, “Pin Configurations” on
2. Updated "Ordering Information" on page 19 and page 19. Pb-plated packages are no
3. Updated data sheet template.
4. Removed all references to 8K device.
5. Updated characteristic plots of section “Typical Characteristics”, starting on page 182.
6. Added characteristic plots:
7. Updated sections:
8. Updated Figures:
9. Update Tables:
ATtiny24A/44A/84A
– Section 6. “Ordering Information” on page 11, added tape & reel and topside
marking, updated notes
– Figure 4-1“Block Diagram of the AVR Architecture” on page 7
– Figure 8-1“Reset Logic” on page 38
– Figure 14-1“Universal Serial Interface, Block Diagram” on page 116, USIDB ->
USIBR
– Figure 19-5“High-voltage Serial Programming Waveforms” on page 169
– Table 19-11, “Minimum Wait Delay Before Writing the Next Flash or EEPROM
Location,” on page 164, updated value for t
longer offered and there are no separate ordering codes for commercial operation
range, the only available option now is industrial. Also, updated some order codes to
reflect changes in leadframe composition and added VQFN package option.
– “Bandgap Voltage vs. Supply Voltage” on page 233
– “Bandgap Voltage vs. Temperature” on page 233
– “Features” on page 1
– “Power Reduction Register” on page 35
– “Analog Comparator” on page 128
– “Features” on page 132
– “Operation” on page 133
– “Starting a Conversion” on page 134
– “ADC Voltage Reference” on page 139
– “Speed” on page 174
– “Program Memory Map” on page 15
– “Data Memory Map” on page 16
– “Device Signature Bytes” on page 161
– “DC Characteristics. TA = -40°C to +85°C” on page 173
– “Additional Current Consumption for the different I/O modules (absolute values)” on
page 182
– “Additional Current Consumption (percentage) in Active and Idle mode” on page 183
WD_ERASE
8183FS–AVR–06/12
21
HeadquartersInternational
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
Atmel Asia Limited
Unit 01-5 & 16, 19F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621
Technical Support
avr@atmel.com
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581
Sales Contact
www.atmel.com/contacts
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHA NTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, C ONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. A tmel does not make any commitment to update the inform ation contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warra nted for use
as components in applications intended to support or sustain life.