• High Performance, Low Power AVR ® 8-bit Microcontroller
• Advanced RISC Architecture
– 129 Powerful Instructions - Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 1 MIPS throughput per MHz
– On-chip 2-cycle Multiplier
• Data and Non-Volatile Program Memory
– 16K Bytes Flash of In-System Programmable Program Memory
• Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits
• In-System Programming by On-chip Boot Program
• True Read-While-Write Operation
– 512 Bytes of In-System Programmable EEPROM
• Endurance: 100,000 Write/Erase Cycles
– 1024 Bytes Internal SRAM
– Programming Lock for Flash Program and EEPROM Data Security
• On Chip Debug Interface (debugWIRE)
• Peripheral Features
– Two or three 12-bit High Speed PSC (Power Stage Controllers) with 4-bit
Resolution Enhancement
• Non Overlapping Inverted PWM Output Pins With Flexible Dead-Time
• Variable PWM duty Cycle and Frequency
• Synchronous Update of all PWM Registers
• Auto Stop Function for Event Driven PFC Implementation
• Less than 25 Hz Step Width at 150 kHz Output Frequency
• PSC2 with four Output Pins and Output Matrix
– One 8-bit General purpose Timer/Counter with Separate Prescaler and Capture
Mode
– One 16-bit General purpose Timer/Counter with Separate Prescaler, Compare
Mode and Capture Mode
– Programmable Serial USART
• Standard UART mode
• 16/17 bit Biphase Mode for DALI Communications
– Master/Slave SPI Serial Interface
– 10-bit ADC
• Up To 11 Single Ended Channels and 2 Fully Differential ADC Channel Pairs
• Programmable Gain (5x, 10x, 20x, 40x on Differential Channels)
• Internal Reference Voltage
– 10-bit DAC
– Two or three Analog Comparator with Resistor-Array to Adjust Comparison
Voltage
– 4 External Interrupts
– Programmable Watchdog Timer with Separate On-Chip Oscillator
• Special Microcontroller Features
– Low Power Idle, Noise Reduction, and Power Down Modes
– Power On Reset and Programmable Brown Out Detection
– Flag Array in Bit-programmable I/O Space (4 bytes)
8-bit
Microcontroller
with 16K Bytes
In-System
Programmable
Flash
AT90PWM216
AT90PWM316
Summary
7710CS–AVR–01/08
AT90PWM216/316
– In-System Programmable via SPI Port
– Internal Calibrated RC Oscillator ( 8 MHz)
– On-chip PLL for fast PWM ( 32 MHz, 64 MHz) and CPU (16 MHz)
•
Operating Voltage: 2.7V - 5.5V
•
Extended Operating Temperature:
– -40°C to +105°
ADC
ProductPackage12 bit PWM with deadtime
AT90PWM216SO242 x 2812One fluorescent ballast
AT90PWM316
SO32,
QFN32
3 x 21123
Input
ADC
Diff
Analog
ComparApplication
HID ballast, fluorescent ballast,
Motor control
1.History
ProductRevision
AT90PWM216
AT90PWM316
First revision of parts
2.Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.
1. PSCOUT10 & PSCOUT11 are not present on 24 pins package
4.Overview
The AT90PWM216/316 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC a r chitectur e . By execut i n g pow e r f u l ins t r u c tions i n a single clock cycle, the
AT90PWM216/316 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.
6
7710CS–AVR–01/08
4.1Block Diagram
16Kx8 Flash
Program
Memory
Instruction
Register
Instruction
Decoder
Program
Counter
Control Lines
32 x 8
General
Purpose
Registrers
ALU
Status
and Control
I/O Lines
EEPROM
512 bytes
Data Bus 8-bit
Data
SRAM
1024 bytes
Direct Addressing
Indirect Addressing
Interrupt
Unit
SPI
Unit
Watchdog
Timer
3 Analog
Comparators
DAC
ADC
PSC 2/1/0
Timer 1
Timer 0
DALI USART
AT90PWM216/316
Figure 4-1.Block Diagram
7710CS–AVR–01/08
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The AT90PWM216/316 provides the following features: 16K bytes of In-System Programmable
Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1024 bytes SRAM, 53 general
purpose I/O lines, 32 general purpose working registers,three Power Stage Controllers, two flexible Timer/Counters with compare modes and PWM, one USART with DALI mode, an 11channel 10-bit ADC with two differential input stage with programmable gain, a 10-bit DAC, a
programmable Watchdog Timer with Internal Oscillator, an SPI serial port, an On-chip Debug
system and four software selectable power saving modes.
7
AT90PWM216/316
The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI ports and interrupt
system to continue functioning. The Power-down mode saves the register contents but freezes
the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. The
ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running
while the rest of the device is sleeping. This allows very fast start-up combined with low power
consumption.
The device is manufactured using Atmel’s high-density nonvolatile memory technology. The Onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the Atmel AT90PWM216/316 is a powerful microcontroller that provides a highly flexible and
cost effective solution to many embedded control applications.
The AT90PWM216/316 AVR is supported with a full suite of program and system development
tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.
4.2Pin Descriptions
4.2.1VCC
Digital supply voltage.
4.2.2GND
Ground.
4.2.3Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the AT90PWM216/316 as listed
on page 67.
4.2.4Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port C is not available on 24 pins package.
8
Port C also serves the functions of special features of the AT90PWM216/316 as listed on page
70.
7710CS–AVR–01/08
4.2.5Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the AT90PWM216/316 as listed
on page 73.
4.2.6Port E (PE2..0) RESET/ XTAL1/
XTAL2
Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
If the RSTDISBL Fuse is programmed, PE0 is used as an I/O pin. Note that the electrical characteristics of PE0 differ from those of the other pins of Port C.
AT90PWM216/316
4.2.7AVCC
4.2.8AREF
If the RSTDISBL Fuse is unprogrammed, PE0 is used as a Reset input. A low level on this pin
for longer than the minimum pulse length will generate a Reset, even if the clock is not running.
The minimum pulse length is given in Table 9-1 on page 45. Shorter pulses are not guaranteed
to generate a Reset.
Depending on the clock selection fuse settings, PE1 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PE2 can be used as output from the inverting
Oscillator amplifier.
The various special features of Port E are elaborated in “Alternate Functions of Port E” on page
76 and “Clock Systems and their Distribution” on page 28.
AVCC is the supply voltage pin for the A/D Converter. It should be externally connected to VCC,
even if the ADC is not used. If the ADC is used, it should be connected to VCC through a lowpass filter.
This is the analog reference pin for the A/D Converter.
4.3About Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.
Note:1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The AT90PWM216/316 is a
complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the
IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
7710CS–AVR–01/08
13
AT90PWM216/316
6.Instruction Set Summary
MnemonicsOperandsDescriptionOperationFlags#Clocks
ADDRd, RrAdd two RegistersRd ← Rd + RrZ,C,N,V,H1
ADCRd, RrAdd with Carry two RegistersRd ← Rd + Rr + CZ,C,N,V,H1
ADIWRdl,KAdd Immediate to WordRdh:Rdl ← Rdh:Rdl + KZ,C,N,V,S2
SUBRd, RrSubtract two RegistersRd ← Rd - RrZ,C,N,V,H1
SUBIRd, KSubtract Constant from Register Rd ← Rd - KZ,C,N,V,H1
SBCRd, RrSubtract with Carry two RegistersRd ← Rd - Rr - CZ,C,N,V,H1
SBCIRd, KSubtract with Carry Constant from Reg.Rd ← Rd - K - CZ,C,N,V,H1
SBIWRdl,KSubtract Immediate from WordRdh:Rdl ← Rdh:Rdl - KZ,C,N,V,S2
ANDRd, RrLogical AND RegistersRd ← Rd • RrZ,N,V1
ANDIRd, KLogical AND Register and ConstantRd ← Rd • KZ,N,V1
ORRd, RrLogical OR RegistersRd ← Rd v RrZ,N,V1
ORIRd, KLogical OR Register and ConstantRd ← Rd v KZ,N,V1
EORRd, RrExclusive OR RegistersRd ← Rd ⊕ RrZ,N,V1
COMRdOne’s ComplementRd ← 0xFF − RdZ,C,N,V1
NEGRdTwo’s ComplementRd ← 0x00 − RdZ,C,N,V,H1
SBRRd,KSet Bit(s) in RegisterRd ← Rd v KZ,N,V1
CBRRd,KClear Bit(s) in RegisterRd ← Rd • (0xFF - K)Z,N,V1
INCRdIncrementRd ← Rd + 1Z,N,V1
DECRdDecrementRd ← Rd − 1 Z,N,V1
TSTRdTest for Zero or MinusRd ← Rd • Rd Z,N,V1
CLRRdClear RegisterRd ← Rd ⊕ RdZ,N,V1
SERRdSet RegisterRd ← 0xFFNone1
MULRd, RrMultiply UnsignedR1:R0 ← Rd x RrZ,C2
MULSRd, RrMultiply SignedR1:R0 ← Rd x RrZ,C2
MULSURd, RrMultiply Signed with UnsignedR1:R0 ← Rd x RrZ,C2
FMULRd, RrFractional Multiply UnsignedR1:R0 ← (Rd x Rr) << 1Z,C2
FMULSRd, RrFractional Multiply SignedR1:R0 ← (Rd x Rr) << 1Z,C2
FMULSURd, RrFractional Multiply Signed with UnsignedR1:R0 ← (Rd x Rr) << 1Z,C2
RJMPkRelative JumpPC ← PC + k + 1None2
IJMPIndirect Jump to (Z)PC ← Z None2
JMPkDirect JumpPC ← kNone3
RCALLkRelative Subroutine Call PC ← PC + k + 1None3
ICALLIndirect Call to (Z)PC ← ZNone3
CALLkDirect CallPC ← kNone4
RETSubroutine ReturnPC ← STACKNone4
RETIInterrupt ReturnPC ← STACKI4
CPSERd,RrCompare, Skip if Equalif (Rd = Rr) PC ← PC + 2 or 3None1/2/3
CPRd,RrCompareRd − RrZ, N,V,C,H1
CPCRd,RrCompare with CarryRd − Rr − CZ, N,V,C,H1
CPIRd,KCompare Register with ImmediateRd − KZ, N,V,C,H1
SBRCRr, bSkip if Bit in Register Clearedif (Rr(b)=0) PC ← PC + 2 or 3 None1/2/3
SBRSRr, bSkip if Bit in Register is Setif (Rr(b)=1) PC ← PC + 2 or 3None1/2/3
SBICP, bSkip if Bit in I/O Register Clearedif (P(b)=0) PC ← PC + 2 or 3 None1/2/3
SBISP, bSkip if Bit in I/O Register is Setif (P(b)=1) PC ← PC + 2 or 3None1/2/3
BRBSs, kBranch if Status Flag Setif (SREG(s) = 1) then PC←PC+k + 1None1/2
BRBCs, kBranch if Status Flag Clearedif (SREG(s) = 0) then PC←PC+k + 1None1/2
BREQ kBranch if Equal if (Z = 1) then PC ← PC + k + 1None1/2
BRNE kBranch if Not Equalif (Z = 0) then PC ← PC + k + 1None1/2
BRCS kBranch if Carry Setif (C = 1) then PC ← PC + k + 1None1/2
BRCC kBranch if Carry Clearedif (C = 0) then PC ← PC + k + 1None1/2
BRSH kBranch if Same or Higher if (C = 0) then PC ← PC + k + 1None1/2
BRLO kBranch if Lowerif (C = 1) then PC ← PC + k + 1None1/2
BRMI kBranch if Minusif (N = 1) then PC ← PC + k + 1None1/2
BRPL kBranch if Plus if (N = 0) then PC ← PC + k + 1None1/2
BRGE kBranch if Greater or Equal, Signedif (N ⊕ V= 0) then PC ← PC + k + 1None1/2
BRLT kBranch if Less Than Zero, Signedif (N ⊕ V= 1) then PC ← PC + k + 1None1/2
BRHS kBranch if Half Carry Flag Setif (H = 1) then PC ← PC + k + 1None1/2
BRHC kBranch if Half Carry Flag Clearedif (H = 0) then PC ← PC + k + 1None1/2
BRTS kBranch if T Flag Setif (T = 1) then PC ← PC + k + 1None1/2
BRTC kBranch if T Flag Clearedif (T = 0) then PC ← PC + k + 1None1/2
BRVS kBranch if Overflow Flag is Setif (V = 1) then PC ← PC + k + 1None1/2
BRVC kBranch if Overflow Flag is Clearedif (V = 0) then PC ← PC + k + 1None1/2
ARITHMETIC AND LOGIC INSTRUCTIONS
BRANCH INSTRUCTIONS
14
7710CS–AVR–01/08
AT90PWM216/316
MnemonicsOperandsDescriptionOperationFlags#Clocks
BRIE kBranch if Interrupt Enabledif ( I = 1) then PC ← PC + k + 1None1/2
BRID kBranch if Interrupt Disabledif ( I = 0) then PC ← PC + k + 1None1/2
Note:This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and
minimum quantities.
Note:Parts numbers are for shipping in sticks (SO) or in trays (QFN). These devices can also be supplied in Tape and Reel. Please
contact your local Atmel sales office for detailed ordering information and minimum quantities.
Extended (-4
Extended (-4
Extended (-4
0°C to
105°C)
0°C to
105°C)
0°C to
105°C)
8.Package Information
SO2424-Lead, Small Outline Package
SO3232-Lead, Small Outline Package
QFN3232-Lead, Quad Flat No lead
7710CS–AVR–01/08
Package Type
17
AT90PWM216/316
8.1SO24
18
7710CS–AVR–01/08
8.2SO32
AT90PWM216/316
7710CS–AVR–01/08
19
AT90PWM216/316
8.3QFN32
20
7710CS–AVR–01/08
AT90PWM216/316
7710CS–AVR–01/08
21
AT90PWM216/316
9.Errata
9.1Errata AT90PWM216/316 revA
• DAC Driver linearity above 3.6V
1. DAC Driver linearity above 3.6V
With 5V Vcc, the DAC driver linearity is poor when DAC output level is above Vcc-1V. At 5V,
DAC output for 1023 will be around 5V - 40mV.
Work around:
Use, when Vcc=5V, Vref below Vcc-1V
Or, when Vref=Vcc=5V, do not uses codes above 800.
22
7710CS–AVR–01/08
10. Datasheet Revision History for AT90PWM216/316
Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.
10.1Rev. 7710A
1. Document creation.
10.2Rev. 7710B
1. Updated “Section “In-System Reprogrammable Flash Program Memory”, page 18