ATMEL AT90PWM216 User Manual

BDTIC www.bdtic.com/ATMEL

Features

High Performance, Low Power AVR ® 8-bit Microcontroller
Advanced RISC Architecture
– 129 Powerful Instructions - Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation – Up to 1 MIPS throughput per MHz – On-chip 2-cycle Multiplier
– 16K Bytes Flash of In-System Programmable Program Memory
• Endurance: 10,000 Write/Erase Cycles
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by On-chip Boot Program
True Read-While-Write Operation
– 512 Bytes of In-System Programmable EEPROM
Endurance: 100,000 Write/Erase Cycles
– 1024 Bytes Internal SRAM – Programming Lock for Flash Program and EEPROM Data Security
On Chip Debug Interface (debugWIRE)
Peripheral Features
– Two or three 12-bit High Speed PSC (Power Stage Controllers) with 4-bit
Resolution Enhancement
• Non Overlapping Inverted PWM Output Pins With Flexible Dead-Time
• Variable PWM duty Cycle and Frequency
• Synchronous Update of all PWM Registers
• Auto Stop Function for Event Driven PFC Implementation
• Less than 25 Hz Step Width at 150 kHz Output Frequency
• PSC2 with four Output Pins and Output Matrix
– One 8-bit General purpose Timer/Counter with Separate Prescaler and Capture
Mode
– One 16-bit General purpose Timer/Counter with Separate Prescaler, Compare
Mode and Capture Mode
– Programmable Serial USART
• Standard UART mode
• 16/17 bit Biphase Mode for DALI Communications – Master/Slave SPI Serial Interface – 10-bit ADC
• Up To 11 Single Ended Channels and 2 Fully Differential ADC Channel Pairs
• Programmable Gain (5x, 10x, 20x, 40x on Differential Channels)
• Internal Reference Voltage – 10-bit DAC – Two or three Analog Comparator with Resistor-Array to Adjust Comparison
Voltage – 4 External Interrupts – Programmable Watchdog Timer with Separate On-Chip Oscillator
Special Microcontroller Features
– Low Power Idle, Noise Reduction, and Power Down Modes – Power On Reset and Programmable Brown Out Detection – Flag Array in Bit-programmable I/O Space (4 bytes)
8-bit Microcontroller with 16K Bytes In-System Programmable Flash
AT90PWM216 AT90PWM316
Summary
7710CS–AVR–01/08
AT90PWM216/316
– In-System Programmable via SPI Port – Internal Calibrated RC Oscillator ( 8 MHz) – On-chip PLL for fast PWM ( 32 MHz, 64 MHz) and CPU (16 MHz)
Operating Voltage: 2.7V - 5.5V
Extended Operating Temperature:
– -40°C to +105°
ADC
Product Package 12 bit PWM with deadtime
AT90PWM216 SO24 2 x 2 8 1 2 One fluorescent ballast
AT90PWM316
SO32, QFN32
3 x 2 11 2 3
Input
ADC Diff
Analog Compar Application
HID ballast, fluorescent ballast, Motor control

1. History

Product Revision
AT90PWM216 AT90PWM316
First revision of parts

2. Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max val­ues will be available after the device is characterized.
2
7710CS–AVR–01/08

3. Pin Configurations

Figure 3-1. SOIC 24-pin Package
AT90PWM216/316
Figure 3-2. SOIC 32-pin Package
7710CS–AVR–01/08
3
AT90PWM216/316
Figure 3-3. QFN32 (7*7 mm) Package.
1 2 3 4 5 6 7 8
24 23 22 21 20 19 18 17
(PSCIN2/OC1A/MISO_A) PD2
(TXD/DALI/OC0A/SS/MOSI_A) PD3
(PSCIN1/OC1B) PC1
VCC
GND
(T0/PSCOUT22) PC2
(T1/PSCOUT23) PC3
(MISO/PSCOUT20) PB0
PB4 (AMP0+) PB3 (AMP0-) PC6 (ADC10/ACMP1) AREF AGND AVCC PC5 (ADC9/AMP1+) PC4 (ADC8/AMP1-)
32313029282726
25
9101112131415
16
(MOSI/PSCOUT21) PB1
(OC0B/XTAL1) PE1
(ADC0/XTAL2) PE2
(ADC2/ACMP2 ) PD5
(ADC3/ACMPM/INT0) PD6
(ACMP0) PD7
(ADC5/INT1) PB2
PD1
(PSCIN0/CLKO)
PE0
(RESET/OCD)
PC0
(INT3/PSCOUT10)
PD0
(PSCOUT00/XCK/SS_A)
PB7 (ADC4/PSCOUT01/SCK)
PB6 (ADC7/PSCOUT11/ICP1B)
PB5 (ADC6/INT2)
PC7 (D2A)
AT90PWM316

3.1 Pin Descriptions

Table 3-1. Pin out description
S024 Pin
Number
7 9 5 GND Power Ground: 0V reference
18 24 20 AGND Power Analog Ground: 0V reference for analog part
SO32 Pin
Number
4
:
QFN32 Pin
Number Mnemonic Type Name, Function & Alternate Function
7710CS–AVR–01/08
Table 3-1. Pin out description (Continued)
AT90PWM216/316
S024 Pin
Number
6 8 4 VCC power Power Supply:
17 23 19 AVCC Power
19 25 21 AREF Power
8 12 8 PBO I/O
9 13 9 PB1 I/O
16 20 16 PB2 I/O
20 27 23 PB3 I/O AMP0- (Analog Differential Amplifier 0 Input Channel )
21 28 24 PB4 I/O AMP0+ (Analog Differential Amplifier 0 Input Channel )
22 30 26 PB5 I/O
23 31 27 PB6 I/O
SO32 Pin
Number
QFN32 Pin
Number Mnemonic Type Name, Function & Alternate Function
Analog Power Supply: This is the power supply voltage for analog
part
For a normal use this pin must be connected.
Analog Reference : reference for analog converter . This is the reference voltage of the A/D converter. As output, can be used by external analog
MISO (SPI Master In Slave Out)
PSCOUT20 output
MOSI (SPI Master Out Slave In)
PSCOUT21 output
ADC5 (Analog Input Channel5 )
INT1
ADC6 (Analog Input Channel 6)
INT 2
ADC7 (Analog Input Channel 7)
ICP1B (Timer 1 input capture alternate input)
PSCOUT11 output (see note 1)
24 32 28 PB7 I/O
2 30 PC0 I/O
7 3 PC1 I/O
10 6 PC2 I/O
NA
11 7 PC3 I/O
21 17 PC4
22 18 PC5 I/O
26 22 PC6 I/O
29 25 PC7 I/O D2A : DAC output
I/O ADC8 (Analog Input Channel 8)
PSCOUT01 output
ADC4 (Analog Input Channel 4)
SCK (SPI Clock)
PSCOUT10 output (see note 1)
INT3
PSCIN1 (PSC 1 Digital Input)
OC1B (Timer 1 Output Compare B)
T0 (Timer 0 clock input)
PSCOUT22 output
T1 (Timer 1 clock input)
PSCOUT23 output
AMP1- (Analog Differential Amplifier 1 Input Channel )
ADC9 (Analog Input Channel 9)
AMP1+ (Analog Differential Amplifier 1 Input Channel )
ADC10 (Analog Input Channel 10)
ACMP1 (Analog Comparator 1 Positive Input )
7710CS–AVR–01/08
5
AT90PWM216/316
Table 3-1. Pin out description (Continued)
S024 Pin
Number
1 1 29 PD0 I/O
3 4 32 PD1 I/O
4 5 1 PD2 I/O
5 6 2 PD3 I/O
12 16 12 PD4 I/O
13 17 13 PD5 I/O
14 18 14 PD6 I/O
SO32 Pin
Number
QFN32 Pin
Number Mnemonic Type Name, Function & Alternate Function
PSCOUT00 output
XCK (UART Transfer Clock)
SS_A (Alternate SPI Slave Select)
PSCIN0 (PSC 0 Digital Input )
CLKO (System Clock Output)
PSCIN2 (PSC 2 Digital Input)
OC1A (Timer 1 Output Compare A)
MISO_A (Programming & alternate SPI Master In Slave Out)
TXD (Dali/UART Tx data)
OC0A (Timer 0 Output Compare A)
SS (SPI Slave Select)
MOSI_A (Programming & alternate Master Out SPI Slave In)
ADC1 (Analog Input Channel 1)
RXD (Dali/UART Rx data)
ICP1A (Timer 1 input capture)
SCK_A (Programming & alternate SPI Clock)
ADC2 (Analog Input Channel 2)
ACMP2 (Analog Comparator 2 Positive Input )
ADC3 (Analog Input Channel 3 )
ACMPM reference for analog comparators
INT0
15 19 15 PD7 I/O ACMP0 (Analog Comparator 0 Positive Input )
2 3 31 PE0 I/O or I
10 14 10 PE1 I/O
11 15 11 PE2 I/O
RESET (Reset Input)
OCD (On Chip Debug I/O)
XTAL1: XTAL Input
OC0B (Timer 0 Output Compare B)
XTAL2: XTAL OuTput
ADC0 (Analog Input Channel 0)
1. PSCOUT10 & PSCOUT11 are not present on 24 pins package

4. Overview

The AT90PWM216/316 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC a r chitectur e . By execut i n g pow e r f u l ins t r u c tions i n a single clock cycle, the AT90PWM216/316 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
6
7710CS–AVR–01/08

4.1 Block Diagram

16Kx8 Flash
Program Memory
Instruction
Register
Instruction
Decoder
Program
Counter
Control Lines
32 x 8
General
Purpose
Registrers
ALU
Status
and Control
I/O Lines
EEPROM 512 bytes
Data Bus 8-bit
Data SRAM 1024 bytes
Direct Addressing
Indirect Addressing
Interrupt
Unit
SPI
Unit
Watchdog
Timer
3 Analog
Comparators
DAC
ADC
PSC 2/1/0
Timer 1
Timer 0
DALI USART
AT90PWM216/316
Figure 4-1. Block Diagram
7710CS–AVR–01/08
The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than con­ventional CISC microcontrollers.
The AT90PWM216/316 provides the following features: 16K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1024 bytes SRAM, 53 general purpose I/O lines, 32 general purpose working registers,three Power Stage Controllers, two flex­ible Timer/Counters with compare modes and PWM, one USART with DALI mode, an 11­channel 10-bit ADC with two differential input stage with programmable gain, a 10-bit DAC, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, an On-chip Debug system and four software selectable power saving modes.
7
AT90PWM216/316
The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI ports and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. The ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, to minimize switch­ing noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption.
The device is manufactured using Atmel’s high-density nonvolatile memory technology. The On­chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel AT90PWM216/316 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The AT90PWM216/316 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emula­tors, and evaluation kits.

4.2 Pin Descriptions

4.2.1 VCC

Digital supply voltage.

4.2.2 GND

Ground.

4.2.3 Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port B also serves the functions of various special features of the AT90PWM216/316 as listed on page 67.

4.2.4 Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port C is not available on 24 pins package.
8
Port C also serves the functions of special features of the AT90PWM216/316 as listed on page
70.
7710CS–AVR–01/08

4.2.5 Port D (PD7..PD0)

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the AT90PWM216/316 as listed on page 73.

4.2.6 Port E (PE2..0) RESET/ XTAL1/ XTAL2

Port E is an 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.
If the RSTDISBL Fuse is programmed, PE0 is used as an I/O pin. Note that the electrical char­acteristics of PE0 differ from those of the other pins of Port C.
AT90PWM216/316

4.2.7 AVCC

4.2.8 AREF

If the RSTDISBL Fuse is unprogrammed, PE0 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 9-1 on page 45. Shorter pulses are not guaranteed to generate a Reset.
Depending on the clock selection fuse settings, PE1 can be used as input to the inverting Oscil­lator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PE2 can be used as output from the inverting Oscillator amplifier.
The various special features of Port E are elaborated in “Alternate Functions of Port E” on page
76 and “Clock Systems and their Distribution” on page 28.
AVCC is the supply voltage pin for the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low­pass filter.
This is the analog reference pin for the A/D Converter.

4.3 About Code Examples

This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documen­tation for more details.
7710CS–AVR–01/08
9
AT90PWM216/316

5. Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0xFF) PICR2H page 171
(0xFE) PICR2L page 171
(0xFD) PFRC2B PCAE2B PISEL2B PELEV2B PFLTE2B PRFM2B3 PRFM2B2 PRFM2B1 PRFM2B0 page 169
(0xFC) PFRC2A PCAE2A PISEL2A PELEV2A PFLTE2A PRFM2A3 PRFM2A2 PRFM2A1 PRFM2A0 page 169
(0xFB) PCTL2 PPRE21 PPRE20 PBFM2 PAOC2B PAOC2A PARUN2 PCCYC2 PRUN2 page 168
(0xFA) PCNF2 PFIFTY2 PALOCK2 PLOCK2 PMODE21 PMODE20 POP2 PCLKSEL2 POME2 page 165
(0xF9) OCR2RBH page 164
(0xF8) OCR2RBL page 164
(0xF7) OCR2SBH page 164
(0xF6) OCR2SBL page 164
(0xF5) OCR2RAH page 164
(0xF4) OCR2RAL page 164
(0xF3) OCR2SAH page 164
(0xF2) OCR2SAL page 164
(0xF1) POM2 POMV2B3 POMV2B2 POMV2B1 POMV2B0 POMV2A3 POMV2A2 POMV2A1 POMV2A0 page 171
(0xF0) PSOC2 POS23 POS22 PSYNC21 PSYNC20
(0xEF) PICR1H page 171
(0xEE) PICR1L page 171
(0xED) PFRC1B PCAE1B PISEL1B PELEV1B PFLTE1B PRFM1B3 PRFM1B2 PRFM1B1 PRFM1B0 page 169
(0xEC) PFRC1A PCAE1A PISEL1A PELEV1A PFLTE1A PRFM1A3 PRFM1A2 PRFM1A1 PRFM1A0 page 169
(0xEB) PCTL1 PPRE11 PPRE10 PBFM1 PAOC1B PAOC1A PARUN1 PCCYC1 PRUN1 page 167
(0xEA) PCNF1 PFIFTY1 PALOCK1 PLOCK1 PMODE11 PMODE10 POP1 PCLKSEL1 - page 165
(0xE9) OCR1RBH page 164
(0xE8) OCR1RBL page 164
(0xE7) OCR1SBH page 164
(0xE6) OCR1SBL page 164
(0xE5) OCR1RAH page 164
(0xE4) OCR1RAL page 164
(0xE3) OCR1SAH page 164
(0xE2) OCR1SAL page 164
(0xE1) Reserved
(0xE0) PSOC1 PSYNC11 PSYNC10 POEN1B POEN1A page 163
(0xDF) PICR0H page 170
(0xDE) PICR0L page 170
(0xDD) PFRC0B PCAE0B PISEL0B PELEV0B PFLTE0B PRFM0B3 PRFM0B2 PRFM0B1 PRFM0B0 page 169
(0xDC) PFRC0A PCAE0A PISEL0A PELEV0A PFLTE0A PRFM0A3 PRFM0A2 PRFM0A1 PRFM0A0 page 169
(0xDB) PCTL0 PPRE01 PPRE00 PBFM0 PAOC0B PAOC0A PARUN0 PCCYC0 PRUN0 page 166
(0xDA) PCNF0 PFIFTY0 PALOCK0 PLOCK0 PMODE01 PMODE00 POP0 PCLKSEL0 - page 165
(0xD9) OCR0RBH page 164
(0xD8) OCR0RBL page 164
(0xD7) OCR0SBH page 164
(0xD6) OCR0SBL page 164
(0xD5) OCR0RAH page 164
(0xD4) OCR0RAL page 164
(0xD3) OCR0SAH page 164
(0xD2) OCR0SAL page 164
(0xD1) Reserved
(0xD0) PSOC0 PSYNC01 PSYNC00 POEN0B POEN0A page 163
(0xCF) Reserved
(0xCE) EUDR EUDR7 EUDR6 EUDR5 EUDR4 EUDR3 EUDR2 EU DR1 EUDR0 page 222
(0xCD) MUBRRH MUBRR15 MUBRR014 MUBRR13 MUBRR12 MUBRR011 MUBRR010 MUBRR 9 MUBRR8 page 227
(0xCC) MUBRRL MUBRR7 MUBRR6 MUBRR5 MUBRR4 MUBRR3 MUBRR2 MUBRR1 MUBRR0 page 227
(0xCB) Reserved
(0xCA) EUCSRC FEM F1617 STP1 STP0 page 226
(0xC9) EUCSRB EUSART EUSBS EMCH BODR page 225
(0xC8) EUCSRA UTxS3 UTxS2 UTxS1 UTxS0 URxS3 URxS2 URxS1 URxS0 page 224
(0xC7) Reserved
(0xC6) UDR UDR07 UDR06 UDR05 UDR04 UDR03 UDR02 UDR01 UDR00 page 222 & page 203
(0xC5) UBRRH UBRR011 UBRR010 UBRR09 UBRR08 page 208
(0xC4) UBRRL UBRR07 UBRR06 UBRR05 UBRR04 UBRR03 UBRR02 UBRR01 UBRR00 page 208
(0xC3) Reserved
(0xC2) UCSRC UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 page 206
(0xC1) UCSRB RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 page 205
(0xC0) UCSRA RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 page 204
(0xBF) Reserved
POEN2D
POEN2B
POEN2C
POEN2A page 163
10
7710CS–AVR–01/08
AT90PWM216/316
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0xBE) Reserved
(0xBD) Reserved
(0xBC) Reserved
(0xBB) Reserved
(0xBA) Reserved
(0xB9) Reserved
(0xB8) Reserved
(0xB7) Reserved
(0xB6) Reserved
(0xB5) Reserved
(0xB4) Reserved
(0xB3) Reserved
(0xB2) Reserved
(0xB1) Reserved
(0xB0) Reserved
(0xAF) AC2CON AC2EN AC2IE AC2IS1 AC2IS0 AC2SADE- AC2M2 AC2M1 AC2M0 page 232
(0xAE) AC1CON AC1EN AC1IE AC1IS1 AC1IS0 AC1ICE AC1M2 AC1M1 AC1M0 page 231
(0xAD) AC0CON AC0EN AC0IE AC0IS1 AC0IS0 - A C0M2 AC0M1 AC0M0 page 230
(0xAC) DACH - / DAC9 - / DAC8 - / DAC7 - / DAC6 - / DAC5 - / DAC4 DAC9 / DAC3 DAC8 / DAC2 page 263
(0xAB) DACL DAC7 / DAC1 DAC6 /DAC0 DAC5 / - DAC4 / - DAC3 / - DAC2 / - DAC1 / - DAC0 / page 263
(0xAA) DACON DAATE DATS2 DATS1 DATS0 - DALA DAOE DAEN page 262
(0xA9) Reserved
(0xA8) Reserved
(0xA7) Reserved
(0xA6) Reserved
(0xA5) PIM2
(0xA4) PIFR2
(0xA3) PIM1
(0xA2) PIFR1
(0xA1) PIM0
(0xA0) PIFR0
(0x9F) Reserved
(0x9E) Reserved
(0x9D) Reserved
(0x9C) Reserved
(0x9B) Reserved
(0x9A) Reserved
(0x99) Reserved
(0x98) Reserved
(0x97) Reserved
(0x96) Reserved
(0x95) Reserved
(0x94) Reserved
(0x93) Reserved
(0x92) Reserved
(0x91) Reserved
(0x90) Reserved
(0x8F) Reserved
(0x8E) Reserved
(0x8D) Reserved
(0x8C) Reserved
(0x8B) OCR1BH OCR1B15 OCR1B14 OCR1B13 OCR1B12 OCR1B11 OCR1B10 OCR1B9 OCR1B8 page 128
(0x8A) OCR1BL OCR1B7 OCR1B6 OCR1B5 OCR1B4 OCR1B3 OCR1B2 OCR1B1 OCR1B0 page 128
(0x89) OCR1AH OCR1A15 OCR1A14 OCR1A13 OCR1A12 OCR1A11 OCR1A10 OCR1A9 OCR1A8 page 128
(0x88) OCR1AL OCR1A7 OCR1A6 OCR1A5 OCR1A4 OCR1A3 OCR1A2 OCR1A1 OCR1A0 page 128
(0x87) ICR1H ICR115 ICR114 ICR113 ICR112 ICR111 ICR110 ICR19 ICR18 page 128
(0x86) ICR1L ICR17 ICR16 ICR15 ICR14 ICR13 ICR12 ICR11 ICR10 page 128
(0x85) TCNT1H TCNT115 TCNT114 TCNT113 TCNT112 TCNT111 TCNT110 TCNT19 TCNT18 page 128
(0x84) TCNT1L TCNT17 TCNT16 TCNT15 TCNT14 TCNT13 TCNT12 TCNT11 TCNT10 page 128
(0x83) Reserved
(0x82) TCCR1C FOC1A FOC1B page 127
(0x81) TCCR1B ICNC1 ICES1 WGM13 WGM12 CS12 CS11 CS10 page 126
(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 WGM11 WGM10 page 124
(0x7F) DIDR1 ACMP0D AMP0PD AMP0ND
(0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D
(0x7D) Reserved
- - PSEIE2 PEVE2B PEVE2A - - PEOPE2
- - PSEI2 PEV2B PEV2A PRN21 PRN20 PEOP2
- - PSEIE1 PEVE1B PEVE1A - - PEOPE1
- - PSEI1 PEV1B PEV1A PRN11 PRN10 PEOP1
- - PSEIE0 PEVE0B PEVE0A - - PEOPE0
- - PSEI0 PEV0B PEV0A PRN01 PRN00 PEOP0
ADC3D/ACMPMD ADC2D/ACMP2D
ADC10D/ACMP1D ADC9D/AMP1PD ADC8D/AMP1ND
ADC1D ADC0D page 254
page 172
page 173
page 172
page 173
page 172
page 172
page 254
7710CS–AVR–01/08
11
AT90PWM216/316
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
(0x7C) ADMUX REFS1 REFS0 ADLAR MUX3 MUX2 MUX1 MUX0 page 249
(0x7B) ADCSRB ADHSM ADTS3 ADTS2 ADTS1 ADTS0 page 252
(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 page 251
(0x79) ADCH - / ADC9 - / ADC8 - / ADC7 - / ADC6 - / ADC5 - / ADC4 ADC9 / ADC3 ADC8 / ADC2 page 253
(0x78) ADCL AD C7 / ADC1 ADC6 / ADC0 ADC5 / - ADC4 / - ADC3 / - ADC2 / - ADC1 / - ADC0 / page 253
(0x77) AMP1CSR AMP1EN - AMP1G1 AMP1G0 - AMP1TS2 AMP1TS1 AMP1TS0 page 258
(0x76) AMP0CSR AMP0EN - AMP0G1 AMP0G0 - AMP0TS2 AMP0TS1 AMP0TS0 page 257
(0x75) Reserved
(0x74) Reserved
(0x73) Reserved
(0x72) Reserved
(0x71) Reserved
(0x70) Reserved
(0x6F) TIMSK1 ICIE1 OCIE1B OCIE1A TOIE1 page 129
(0x6E) TIMSK0 OCIE0B OCIE0A TOIE0 page 101
(0x6D) Reserved
(0x6C) Reserved
(0x6B) Reserved
(0x6A) Reserved
(0x69) EICRA ISC31 ISC30 ISC21 ISC20 ISC11 ISC10 ISC01 ISC00 page 80
(0x68) Reserved
(0x67) Reserved
(0x66) OSCCAL CA L6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 page 33
(0x65) Reserved
(0x64) PRR PRPSC2 PRPSC1 PRPSC0 PRTIM1 PRTIM0 PRSPI PRUSART PRADC page 41
(0x63) Reserved
(0x62) Reserved
(0x61) CLKPR CLKPCE CLKPS3 CLKPS2 CLKPS1 CLKPS0 page 37
(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 page 52
0x3F (0x5F) SREG I T H S V N Z C page 12
0x3E (0x5E) SPH SP15 SP14 SP13 SP12 SP11 S P10 SP9 SP8 page 14
0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 page 14
0x3C (0x5C) Reserved
0x3B (0x5B) Reserved
0x3A (0x5A) Reserved
0x39 (0x59) Reserved
0x38 (0x58) Reserved
0x37 (0x57) SPMCSR SPMIE RWWSB RWWSRE BLBSET PGWRT PGERS SPMEN page 272
0x36 (0x56) Reserved
0x35 (0x55) MCUCR SPIPS PUD IVSEL IVCE page 58 & page 67
0x34 (0x54) MCUSR WDRF BORF EXTRF PORF page 48
0x33 (0x53) SMCR SM2 SM1 SM0 SE page 39
0x32 (0x52) MSMCR Monitor Stop Mode Control Register reserved
0x31 (0x51) MONDR Monitor Data Register reserved
0x30 (0x50) ACSR A CCKDIV AC2IF AC1IF AC0IF AC2O AC1O AC0O page 233
0x2F (0x4F) Reserved
0x2E (0x4E) SPDR SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0 page 183
0x2D (0x4D) SPSR SPIF WCOL SPI2X page 182
0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 page 181
0x2B (0x4B) Reserved
0x2A (0x4A) Reserved
0x29 (0x49) PLLCSR - - - - - PLLF PLLE PLOCK page 35
0x28 (0x48) OCR0B OCR0B7 OCR0B6 OCR0B5 OCR0B4 OCR0B3 OCR0B2 OCR0B1 OCR0B0 page 101
0x27 (0x47) OCR0A OCR0A7 OCR0A6 OCR0A5 OCR0A4 OCR0A3 OCR0A2 OCR0A1 OCR0A0 page 101
0x26 (0x46) TCNT0 TCNT07 TCNT06 TCNT05 TCNT04 TCNT03 TCNT02 TCNT01 TCNT00 page 101
0x25 (0x45) TCCR0B FOC0A FOC0B WGM02 CS02 CS01 CS00 page 100
0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 WGM01 WGM00 page 97
0x23 (0x43) GTCCR TSM ICPSEL1 PSRSYNC page 83
0x22 (0x42) EEARH EEAR11 EEAR10 EEAR9 EEAR8 page 20
0x21 (0x41) EEARL EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 page 20
0x20 (0x40) EEDR EEDR7 EEDR6 EEDR5 EEDR4 EEDR3 EEDR2 EEDR1 EEDR0 page 21
0x1F (0x3F) EECR EERIE EEMWE EEWE EERE page 21
0x1E (0x3E) GPIOR0 GPIOR07 GPIOR06 GPIOR05 GPIOR04 GPIOR03 GPIOR02 GPIOR01 GPIOR00 page 26
0x1D (0x3D) EIMSK INT3 INT2 INT1 INT0 page 81
0x1C (0x3C) EIFR INTF3 INTF2 INTF1 INTF0 page 81
0x1B (0x3B)
GPIOR3 GPIOR37 GPIOR36 GPIOR35 GPIOR34 GPIOR33 GPIOR32 GPIOR31 GPIOR30 page 27
12
7710CS–AVR–01/08
AT90PWM216/316
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
0x1A (0x3A) GPIOR2 GPIOR27 GPIOR26 GPIOR25 GPIOR24 GPIOR23 GPIOR22 GPIOR21 GPIOR20 page 26
0x19 (0x39) GPIOR1 GPIOR17 GPIOR16 GPIOR15 GPIOR14 GPIOR13 GPIOR12 GPIOR11 GPIOR10 page 26
0x18 (0x38) Reserved
0x17 (0x37) Reserved
0x16 (0x36) TIFR1 ICF1 OCF1B OCF1A TOV1 page 130
0x15 (0x35) TIFR0 OCF0B OCF0A TOV0 page 102
0x14 (0x34) Reserved
0x13 (0x33) Reserved
0x12 (0x32) Reserved
0x11 (0x31) Reserved
0x10 (0x30) Reserved
0x0F (0x2F) Reserved
0x0E (0x2E) PORTE PORTE2 PORTE1 PORTE0 page 79
0x0D (0x2D) DDRE DDE2 DDE1 DDE0 page 79
0x0C (0x2C) PINE PINE2 PINE1 PINE0 page 79
0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 page 78
0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 page 78
0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 page 79
0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 page 78
0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 page 78
0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 page 78
0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 page 78
0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 page 78
0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 page 78
0x02 (0x22) Reserved
0x01 (0x21) Reserved
0x00 (0x20) Reserved
Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The AT90PWM216/316 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.
7710CS–AVR–01/08
13
AT90PWM216/316

6. Instruction Set Summary

Mnemonics Operands Description Operation Flags #Clocks
ADD Rd, Rr Add two Registers Rd Rd + Rr Z,C,N,V,H 1
ADC Rd, Rr Add with Carry two Registers Rd Rd + Rr + C Z,C,N,V,H 1
ADIW Rdl,K Add Immediate to Word Rdh:Rdl Rdh:Rdl + K Z,C,N,V,S 2
SUB Rd, Rr Subtract two Registers Rd Rd - Rr Z,C,N,V,H 1
SUBI Rd, K Subtract Constant from Register Rd Rd - K Z,C,N,V,H 1
SBC Rd, Rr Subtract with Carry two Registers Rd Rd - Rr - C Z,C,N,V,H 1
SBCI Rd, K Subtract with Carry Constant from Reg. Rd Rd - K - C Z,C,N,V,H 1
SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl Rdh:Rdl - K Z,C,N,V,S 2
AND Rd, Rr Logical AND Registers Rd Rd Rr Z,N,V 1
ANDI Rd, K Logical AND Register and Constant Rd Rd K Z,N,V 1
OR Rd, Rr Logical OR Registers Rd Rd v Rr Z,N,V 1
ORI Rd, K Logical OR Register and Constant Rd Rd v K Z,N,V 1
EOR Rd, Rr Exclusive OR Registers Rd Rd Rr Z,N,V 1
COM Rd One’s Complement Rd 0xFF Rd Z,C,N,V 1
NEG Rd Two’s Complement Rd 0x00 Rd Z,C,N,V,H 1
SBR Rd,K Set Bit(s) in Register Rd Rd v K Z,N,V 1
CBR Rd,K Clear Bit(s) in Register Rd Rd (0xFF - K) Z,N,V 1
INC Rd Increment Rd Rd + 1 Z,N,V 1
DEC Rd Decrement Rd Rd 1 Z,N,V 1
TST Rd Test for Zero or Minus Rd Rd Rd Z,N,V 1
CLR Rd Clear Register Rd Rd Rd Z,N,V 1
SER Rd Set Register Rd 0xFF None 1
MUL Rd, Rr Multiply Unsigned R1:R0 Rd x Rr Z,C 2
MULS Rd, Rr Multiply Signed R1:R0 Rd x Rr Z,C 2
MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 Rd x Rr Z,C 2
FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 (Rd x Rr) << 1 Z,C 2
FMULS Rd, Rr Fractional Multiply Signed R1:R0 (Rd x Rr) << 1 Z,C 2
FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 (Rd x Rr) << 1 Z,C 2
RJMP k Relative Jump PC PC + k + 1 None 2
IJMP Indirect Jump to (Z) PC Z None 2
JMP k Direct Jump PC k None 3
RCALL k Relative Subroutine Call PC PC + k + 1 None 3
ICALL Indirect Call to (Z) PC Z None 3
CALL k Direct Call PC k None 4
RET Subroutine Return PC STACK None 4
RETI Interrupt Return PC STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC PC + 2 or 3 None 1/2/3
CP Rd,Rr Compare Rd Rr Z, N,V,C,H 1
CPC Rd,Rr Compare with Carry Rd Rr C Z, N,V,C,H 1
CPI Rd,K Compare Register with Immediate Rd K Z, N,V,C,H 1
SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC PC + 2 or 3 None 1/2/3
SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3
SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3
SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC PC + 2 or 3 None 1/2/3
BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PCPC+k + 1 None 1/2
BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2
BREQ k Branch if Equal if (Z = 1) then PC PC + k + 1 None 1/2
BRNE k Branch if Not Equal if (Z = 0) then PC PC + k + 1 None 1/2
BRCS k Branch if Carry Set if (C = 1) then PC PC + k + 1 None 1/2
BRCC k Branch if Carry Cleared if (C = 0) then PC PC + k + 1 None 1/2
BRSH k Branch if Same or Higher if (C = 0) then PC PC + k + 1 None 1/2
BRLO k Branch if Lower if (C = 1) then PC PC + k + 1 None 1/2
BRMI k Branch if Minus if (N = 1) then PC PC + k + 1 None 1/2
BRPL k Branch if Plus if (N = 0) then PC PC + k + 1 None 1/2
BRGE k Branch if Greater or Equal, Signed if (N V= 0) then PC PC + k + 1 None 1/2
BRLT k Branch if Less Than Zero, Signed if (N V= 1) then PC PC + k + 1 None 1/2
BRHS k Branch if Half Carry Flag Set if (H = 1) then PC PC + k + 1 None 1/2
BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC PC + k + 1 None 1/2
BRTS k Branch if T Flag Set if (T = 1) then PC PC + k + 1 None 1/2
BRTC k Branch if T Flag Cleared if (T = 0) then PC PC + k + 1 None 1/2
BRVS k Branch if Overflow Flag is Set if (V = 1) then PC PC + k + 1 None 1/2
BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC PC + k + 1 None 1/2
ARITHMETIC AND LOGIC INSTRUCTIONS
BRANCH INSTRUCTIONS
14
7710CS–AVR–01/08
AT90PWM216/316
Mnemonics Operands Description Operation Flags #Clocks
BRIE k Branch if Interrupt Enabled if ( I = 1) then PC PC + k + 1 None 1/2
BRID k Branch if Interrupt Disabled if ( I = 0) then PC PC + k + 1 None 1/2
SBI P,b Set Bit in I/O Register I/O(P,b) 1 None 2
CBI P,b Clear Bit in I/O Register I/O(P,b) 0 None 2
LSL Rd Logical Shift Left Rd(n+1) Rd(n), Rd(0) 0 Z,C,N,V 1
LSR Rd Logical Shift Right Rd(n) Rd(n+1), Rd(7) 0 Z,C,N,V 1
ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z ,C,N,V 1
ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z,C,N,V 1
ASR Rd Arithmetic Shift Right Rd(n) Rd(n+1), n=0..6 Z,C,N,V 1
SWAP Rd Swap Nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1
BSET s Flag Set SREG(s) 1 SREG(s) 1
BCLR s Flag Clear SREG(s) 0 SREG(s) 1
BST Rr, b Bit Store from Register to T T Rr(b) T 1
BLD Rd, b Bit load from T to Register Rd(b) T None 1
SEC Set Carry C 1 C 1
CLC Clear Carry C 0 C 1
SEN Set Negative Flag N 1 N 1
CLN Clear Negative Flag N 0 N 1
SEZ Set Zero Flag Z 1 Z 1
CLZ Clear Zero Flag Z 0 Z 1
SEI Global Interrupt Enable I 1 I 1
CLI Global Interrupt Disable I 0 I 1
SES Set Signed Test Flag S 1 S 1
CLS Clear Signed Test Flag S 0 S 1
SEV Set Twos Complement Overflow. V 1 V 1
CLV Clear Twos Complement Overflow V 0 V 1
SET Set T in SREG T 1 T 1
CLT Clear T in SREG T 0 T 1
SEH Set Half Carry Flag in SREG H 1 H 1
CLH Clear Half Carry Flag in SREG H 0 H 1
MOV Rd, Rr Move Between Registers Rd Rr None 1
MOVW Rd, Rr Copy Register Word
LDI Rd, K Load Immediate Rd K None 1
LD Rd, X Load Indirect Rd (X) None 2
LD Rd, X+ Load Indirect and Post-Inc. Rd (X), X X + 1 None 2
LD Rd, - X Load Indirect and Pre-Dec. X X - 1, Rd (X) None 2
LD Rd, Y Load Indirect Rd (Y) None 2
LD Rd, Y+ Load Indirect and Post-Inc. Rd (Y), Y Y + 1 None 2
LD Rd, - Y Load Indirect and Pre-Dec. Y Y - 1, Rd (Y) None 2
LDD Rd,Y+q Load Indirect with Displacement Rd (Y + q) None 2
LD Rd, Z Load Indirect Rd (Z) None 2
LD Rd, Z+ Load Indirect and Post-Inc. Rd (Z), Z Z+1 None 2
LD Rd, -Z Load Indirect and Pre-Dec. Z Z - 1, Rd (Z) None 2
LDD Rd, Z+q Load Indirect with Displacement Rd (Z + q) None 2
LDS Rd, k Load Direct from SRAM Rd (k) None 2
ST X, Rr Store Indirect (X) Rr None 2
ST X+, Rr Store Indirect and Post-Inc. (X) Rr, X X + 1 None 2
ST - X, Rr Store Indirect and Pre-Dec. X X - 1, (X) Rr None 2
ST Y, Rr Store Indirect (Y) Rr None 2
ST Y+, Rr Store Indirect and Post-Inc. (Y) Rr, Y Y + 1 None 2
ST - Y, Rr Store Indirect and Pre-Dec. Y Y - 1, (Y) Rr None 2
STD Y+q,Rr Store Indirect with Displacement (Y + q) Rr None 2
ST Z, Rr Store Indirect (Z) Rr None 2
ST Z+, Rr Store Indirect and Post-Inc. (Z) Rr, Z Z + 1 None 2
ST -Z, Rr Store Indirect and Pre-Dec. Z Z - 1, (Z) Rr None 2
STD Z+q,Rr Store Indirect with Displacement (Z + q) Rr None 2
STS k, Rr Store Direct to SRAM (k) Rr None 2
LPM Load Program Memory R0 (Z) None 3
LPM Rd, Z Load Program Memory Rd (Z) None 3
LPM Rd, Z+ Load Program Memory and Post-Inc Rd (Z), Z Z+1 None 3
SPM Store Program Memory (Z) R1:R0 None -
IN Rd, P In Port Rd P None 1
OUT P, Rr Out Port P Rr None 1
PUSH Rr Push Register on Stack STACK Rr None 2
BIT AND BIT-TEST INSTRUCTIONS
DATA TRANSFER INSTRUCTIONS
Rd+1:Rd Rr+1:Rr
None 1
7710CS–AVR–01/08
15
AT90PWM216/316
Mnemonics Operands Description Operation Flags #Clocks
POP Rd Pop Register from Stack Rd STACK None 2
NOP No Operation None 1
SLEEP Sleep (see specific descr. for Sleep function) None 1
WDR Watchdog Reset (see specific descr. for WDR/timer) None 1
BREAK Break For On-chip Debug Only None N/A
MCU CONTROL INSTRUCTIONS
16
7710CS–AVR–01/08
AT90PWM216/316

7. Ordering Information

Speed (MHz) Power Supply Ordering Code Package Operation Range
16 2.7 - 5.5V AT90PWM316-16SE SO32 Engineering Samples
16 2.7 - 5.5V AT90PWM316-16ME QFN32 Engineering Samples
16 2.7 - 5.5V AT90PWM216-16SE SO24 Engineering Samples
16 2.7 - 5.5V AT90PWM316-16SU SO32
16 2.7 - 5.5V AT90PWM316-16MU QFN32
16 2.7 - 5.5V AT90PWM216-16SU SO24
Note: All packages are Pb free, fully LHF
Note: This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and
minimum quantities.
Note: Parts numbers are for shipping in sticks (SO) or in trays (QFN). These devices can also be supplied in Tape and Reel. Please
contact your local Atmel sales office for detailed ordering information and minimum quantities.
Extended (-4
Extended (-4
Extended (-4
0°C to
105°C)
0°C to
105°C)
0°C to
105°C)

8. Package Information

SO24 24-Lead, Small Outline Package
SO32 32-Lead, Small Outline Package
QFN32 32-Lead, Quad Flat No lead
7710CS–AVR–01/08
Package Type
17
AT90PWM216/316

8.1 SO24

18
7710CS–AVR–01/08

8.2 SO32

AT90PWM216/316
7710CS–AVR–01/08
19
AT90PWM216/316

8.3 QFN32

20
7710CS–AVR–01/08
AT90PWM216/316
7710CS–AVR–01/08
21
AT90PWM216/316

9. Errata

9.1 Errata AT90PWM216/316 revA

• DAC Driver linearity above 3.6V
1. DAC Driver linearity above 3.6V
With 5V Vcc, the DAC driver linearity is poor when DAC output level is above Vcc-1V. At 5V, DAC output for 1023 will be around 5V - 40mV.
Work around:
Use, when Vcc=5V, Vref below Vcc-1V
Or, when Vref=Vcc=5V, do not uses codes above 800.
22
7710CS–AVR–01/08

10. Datasheet Revision History for AT90PWM216/316

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

10.1 Rev. 7710A

1. Document creation.

10.2 Rev. 7710B

1. Updated “Section “In-System Reprogrammable Flash Program Memory”, page 18
2. Updated “Figure 6-1 on page 18
3. Updated “Figure 7-1 on page 29
4. Updated “Figure 7-7 on page 34
5. Updated “Table 21-1 on page 241
6. Updated “Section “ADC Noise Canceler”, page 243
7. Updated “Table 21-6 on page 252
8. Added “Table 21-7 on page 253
9. Updated “Section “Amplifier”, page 254
10. Updated “Figure 21-15 on page 256
11. Added “Figure 21-16 on page 256
12. Updated “Figure 21-17 on page 257
13. Updated “Section “Amplifier 0 Control and Status register – AMP0CSR”, page 257
14. Updated “Table 21-9 on page 258
15. Updated “Section “Amplifier 1Control and Status register – AMP1CSR”, page 258
16. Updated “Table 21-9 on page 258
17. Updated “Table 21-11 on page 259
18. Updated “Table 24-6 on page 279
19. Updated “Table 24-7 on page 279
20. Updated “Table 24-8 on page 280
21. Updated “Section “DC Characteristics”, page 302
22. Updated “Table 26-5 on page 308
23. Updated “Section “Example 1”, page 317
24. Updated “Section “Example 2”, page 317
25. Updated “Section “Example 3”, page 317
26. Added “Figure 27-22 on page 324
27. Updated “Section “Instruction Set Summary”, page 14
28. Added “Section “Errata”, page 22
AT90PWM216/316

10.3 Rev. 7710C

7710CS–AVR–01/08
1. Updated table page 2.
2. Updated Section “Internal Calibrated RC Oscillator Operating Modes(1)(2)” on page 33.
3. Updated Section “Features” on page 260.
4. Updated table in Section “Electrical Characteristics(1)” on page 301.
5. Added section Section “Calibrated Internal RC Oscillator Accuracy” on page 304.
23
AT90PWM216/316
6. Updated Table 26-5 on page 308.
7. Updated Figure 27-36 on page 331.
8. Updated Figure 27-37 on page 332.
9. Updated Figure 27-38 on page 332.
24
7710CS–AVR–01/08
Loading...