FEATURES
Differential Nonlinearity: 61/2 LSB
Nonlinearity: 0.05%
Fast Settling Time: 250 ns
High Compliance: –5 V to +10 V
Differential Outputs: 0 to 4 mA
Guaranteed Monotonicity: 12 Bits
Low Full-Scale Tempco: 10 ppm/8C
Circuit Interface to TTL, CMOS, ECL, PMOS/NMOS
Low Power Consumption: 225 mW
Industry Standard AM6012 Pinout
Available In Die Form
GENERAL DESCRIPTION
The DAC312 series of 12-bit multiplying digital-to-analog converters provide high speed with guaranteed performance to
0.012% differential nonlinearity over the full commercial operating temperature range.
The DAC312 combines a 9-bit master D/A converter with a
3-bit (MSBs) segment generator to form an accurate 12-bit D/A
converter at low cost. This technique guarantees a very uniform
step size (up to ±1/2 LSB from the ideal), monotonicity to
12-bits and integral nonlinearity to 0.05% at its differential current outputs. In order to provide the same performance with a
12-bit R-2R ladder design, an integral nonlinearity over temperature of 1/2 LSB (0.012%) would be required.
The 250 ns settling time with low glitch energy and low power
consumption are achieved by careful attention to the circuit design and stringent process controls. Direct interface with all
popular logic families is achieved through the logic threshold
terminal.
FUNCTIONAL BLOCK DIAGRAM
D/A Converter
DAC312
PIN CONNECTIONS
20-Pin Hermetic DIP (R-Suffix),
20-Pin Plastic DIP (P-Suffix),
20-Pin SOL (S-Suffix)
High compliance and low drift characteristics (as low as
10 ppm/°C) are also features of the DAC312 along with an excellent power supply rejection ratio of ± .001% FS/%∆V. Operating over a power supply range of +5/–11 V to ± 18 V the
device consumes 225 mW at the lower supply voltages with an
absolute maximum dissipation of 375 mW at the higher supply
levels.
With their guaranteed specifications, single chip reliability and
low cost, the DAC312 device makes excellent building blocks
for A/D converters, data acquisition systems, video display drivers, programmable test equipment and other applications where
low power consumption and complete input/output versatility
are required.
REV. C
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
NOTE
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.
15
FS+
FS–
D
V+ = +13.5 V to +16.5 V, V– = –15 V±0.001±0.001
V– = –13.5 V to –16.5 V, V+ = +15 V±0.001±0.001%/%max
= +15 V77
S
≤ 1.0 mA–18–18mA max
REF
= +15 V
S
I
≤ 1.0 mA375375mW max
REF
–2–2µA max
DICE CHARACTERISTICS
DIE SIZE 0.141 × 0.096 inch, 13,536 sq. mils (3.58 × 2.44 mm, 8.74 sq. mm)
Absolute maximum ratings apply to both DICE and packaged parts, unless
otherwise noted.
2
θJA is specified for worst case mounting conditions, i.e., θJA is specified for device
in socket for cerdip and P-DIP packages; θJA is specified for device soldered to
printed circuit board for SOL package.
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection.
Although the DAC312 features proprietary ESD protection circuitry, permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD
precautions are recommended to avoid performance degradation or loss of functionality.
1
REV. C
–5–
Loading...
+ 9 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.