ANALOG DEVICES ADV 7391 BCPZ Datasheet

Page 1
Low Power, Chip Scale,
Data Sheet
ADV7390/ADV7391/ADV7392/ADV7393

FEATURES

3 high quality, 10-bit video DACs
16× (216 MHz) DAC oversampling for SD 8× (216 MHz) DAC oversampling for ED 4× (297 MHz) DAC oversampling for HD 37 mA maximum DAC output current
Multiformat video input support
4:2:2 YCrCb (SD, ED, and HD) 4:4:4 RGB (SD)
Multiformat video output support
Composite (CVBS) and S-Video (Y-C) Component YPrPb (SD, ED, and HD) Component RGB (SD, ED, and HD)
Lead frame chip scale package (LFCSP) options
32-lead, 5 mm × 5 mm LFCSP 40-lead, 6 mm × 6 mm LFCSP
Wafer level chip scale package (WLCSP) option
30-ball, 5 × 6 WLCSP with single DAC output
Advanced power management
Patented content-dependent low power DAC operation Automatic cable detection and DAC power-down Individual DAC on/off control Sleep mode with minimal power consumption
74.25 MHz 8-/10-/16-bit high definition input support Compliant with SMPTE 274M (1080i), 296M (720p),
and 240M (1035i) EIA/CEA-861B compliance support NTSC M, PAL B/D/G/H/I/M/N, PAL 60 support NTSC and PAL square pixel operation (24.54 MHz/29.5 MHz) Macrovision Rev 7.1.L1 (SD) and Rev 1.2 (ED) compliant Copy generation management system (CGMS) Closed captioning and wide screen signaling (WSS) Integrated subcarrier locking to external video source Complete on-chip video timing generator On-chip test pattern generation Programmable features
Luma and chroma filter responses Vertical blanking interval (VBI) Subcarrier frequency (f Luma delay
High definition (HD) programmable features
(720p/1080i/1035i) 4× oversampling (297 MHz) Internal test pattern generator
Color and black bar, hatch, flat field/frame
Fully programmable YCrCb to RGB matrix
Rev. I Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
) and phase
SC
10-Bit SD/HD Video Encoder
Gamma correction Programmable adaptive filter control Programmable sharpness filter control CGMS (720p/1080i) and CGMS Type B (720p/1080i) Dual data rate (DDR) input support
Enhanced definition (ED) programmable features
(525p/625p) 8× oversampling (216 MHz output) Internal test pattern generator
Black bar, hatch, flat field/frame Individual Y and PrPb output delay Gamma correction Programmable adaptive filter control Fully programmable YCrCb to RGB matrix Undershoot limiter Macrovision Rev 1.2 (525p/625p) (ADV7390/ADV7392 only) CGMS (525p/625p) and CGMS Type B (525p) Dual data rate (DDR) input support
Standard definition (SD) programmable features
16× oversampling (216 MHz) Internal test pattern generator
Color and black bar Controlled edge rates for start and end of active video Individual Y and PrPb output delay Undershoot limiter Gamma correction Digital noise reduction (DNR) Multiple chroma and luma filters Luma-SSAF filter with programmable gain/attenuation PrPb SSAF Separate pedestal control on component and
composite/S-Video output VCR FF/RW sync mode Macrovision Rev 7.1.L1 (ADV7390/ADV7392 only) Copy generation management system (CGMS) Wide screen signaling (WSS) Closed captioning
Serial MPU interface with I
2.7 V or 3.3 V analog operation
1.8 V digital operation
1.8 V or 3.3 V I/O operation Temperature range: −40°C to +85°C W Grade automotive range: −40°C to +105°C Qualified for automotive applications
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2006–2015 Analog Devices, Inc. All rights reserved.
Technical Support www.analog.com
2
C compatibility
Page 2
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet

TABLE OF CONTENTS

Features .............................................................................................. 1
Revision History ............................................................................... 3
Applications ....................................................................................... 5
General Description ......................................................................... 5
Functional Block Diagrams ............................................................. 6
Specifications ..................................................................................... 7
Power Supply Specifications........................................................ 7
Input Clock Specifications .......................................................... 7
Analog Output Specifications ..................................................... 7
Digital Input/Output Specifications—3.3 V ............................. 8
Digital Input/Output Specifications—1.8 V ............................. 8
MPU Port Timing Specifications ............................................... 8
Digital Timing Specifications—3.3 V ........................................ 9
Digital Timing Specifications—1.8 V ...................................... 10
Video Performance Specifications ........................................... 11
Power Specifications .................................................................. 11
Timing Diagrams ........................................................................ 12
Absolute Maximum Ratings .......................................................... 18
Thermal Resistance .................................................................... 18
ESD Caution ................................................................................ 18
Pin Configurations and Function Descriptions ......................... 19
Typical Performance Characteristics ........................................... 21
MPU Port Description ................................................................... 26
I2C Operation .............................................................................. 26
Register Map Access ....................................................................... 28
Register Programming ............................................................... 28
Subaddress Register (SR7 to SR0) ............................................ 28
ADV7390/ADV7391 Input Configuration ................................. 46
Standard Definition .................................................................... 46
Enhanced Definition/High Definition .................................... 46
Enhanced Definition (at 54 MHz) ........................................... 46
ADV7392/ADV7393 Input Configuration ................................. 47
Standard Definition .................................................................... 47
Enhanced Definition/High Definition .................................... 48
Enhanced Definition (at 54 MHz) ........................................... 48
Output Configuration .................................................................... 49
Design Features ............................................................................... 50
Output Oversampling ................................................................ 50
HD Interlace External
ED/HD Timing Reset ................................................................ 51
HSYNC
and
VSYNC
Considerations .... 51
Rev. I | Page 2 of 107
SD Subcarrier Frequency Lock ................................................. 51
SD VCR FF/RW Sync ................................................................ 52
Vertical Blanking Interval ......................................................... 52
SD Subcarrier Frequency Control ............................................ 52
SD Noninterlaced Mode ............................................................ 52
SD Square Pixel Mode ............................................................... 53
Filters ............................................................................................ 54
ED/HD Test Pattern Color Controls ....................................... 55
Color Space Conversion Matrix ............................................... 55
SD Luma and Color Scale Control ........................................... 57
SD Hue Adjust Control .............................................................. 57
SD Brightness Detect ................................................................. 57
SD Brightness Control ............................................................... 57
SD Input Standard Autodetection ............................................ 58
Double Buffering ........................................................................ 58
Programmable DAC Gain Control .......................................... 58
Gamma Correction .................................................................... 59
ED/HD Sharpness Filter and Adaptive Filter Controls ......... 60
ED/HD Sharpness Filter and Adaptive Filter Application
Examples ...................................................................................... 61
SD Digital Noise Reduction ...................................................... 62
SD Active Video Edge Control ................................................. 64
External Horizontal and Vertical Synchronization Control ....... 65
Low Power Mode ........................................................................ 66
Cable Detection .......................................................................... 66
DAC Autopower-Down ............................................................. 66
Sleep Mode .................................................................................. 66
Pixel and Control Port Readback ............................................. 67
Reset Mechanisms ...................................................................... 67
SD Teletext Insertion ................................................................. 67
Printed Circuit Board Layout and Design .................................. 69
Unused Pins ................................................................................ 69
DAC Configurations .................................................................. 69
Video Output Buffer and Optional Output Filter .................. 69
Printed Circuit Board (PCB) Layout ....................................... 70
Additional Layout Considerations for the WLCSP Package ....... 71
Typical Applications Circuits .................................................... 72
Copy Generation Management System ....................................... 74
SD CGMS .................................................................................... 74
ED CGMS .................................................................................... 74
Page 3
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
HD CGMS .................................................................................... 74
CGMS CRC Functionality ......................................................... 74
SD Wide Screen Signaling .............................................................. 77
SD Closed Captioning .................................................................... 78
Internal Test Pattern Generation ................................................... 79
SD Test Patterns ........................................................................... 79
ED/HD Test Patterns .................................................................. 79
SD Timing ........................................................................................ 80
HD Timing ....................................................................................... 85
Video Output Levels ....................................................................... 86
SD YPrPb Output Levels—SMPTE/EBU N10 ........................ 86
ED/HD YPrPb Output Levels ................................................... 87

REVISION HISTORY

2/15—Rev. H to Rev. I
Changed ADV739x to ADV7390/ADV7391/ADV7392/
ADV7393 ............................................................................. Universal
Changes to Figure 19 ...................................................................... 19
Changes to Table 15 ........................................................................ 20
Changes to Figure 144 ..................................................................104
Updated Outline Dimensions ......................................................106
Changes to Ordering Guide .........................................................107
9/14—Rev. G to Rev. H
Changed Storage Temperature Range from −60°C to +100°C to
−60°C to +150°C; Table 13 ............................................................. 18
Updated Figure 145, Outline Dimensions .................................105
Changes to Ordering Guide .........................................................107
2/13—Rev. F to Rev. G
Change to Features Section .............................................................. 1
Changes to Table 14 ........................................................................ 18
Changes to Figure 62 ...................................................................... 48
Changes to Ordering Guide .........................................................107
11/12—Rev. E to Rev. F
Updated Outline Dimensions ......................................................105
Changes to Ordering Guide .........................................................107
2/12—Rev. D to Rev. E
Changes to Table 1 ............................................................................ 5
Changes to Digital Input/Output Specifications—
1.8 V Section ...................................................................................... 8
Changes to Table 15 ........................................................................ 21
Changes to Table 20 ........................................................................ 31
Changes to Table 23 ........................................................................ 34
Changes to Table 28 ........................................................................ 39
Changes to 16-Bit 4:4:4 RGB Mode Section ................................ 47
Added External Sync Polarity Section .......................................... 51
SD/ED/HD RGB Output Levels ................................................ 88
SD Output Plots .......................................................................... 89
Video Standards .............................................................................. 90
Configuration Scripts ..................................................................... 92
Standard Definition .................................................................... 92
Enhanced Definition .................................................................. 99
High Definition ......................................................................... 101
ADV7390/ADV7391/ADV7392/ADV7393 Evaluation Board .... 104
Outline Dimensions ...................................................................... 105
Ordering Guide ......................................................................... 107
Automotive Products ................................................................ 107
Deleted ED/HD Nonstandard Timing Mode Section, Figure 63,
and Table 41, Renumbered Sequentially ...................................... 51
Changed SD Subcarrier Frequency Lock, Subcarrier Phase Reset, and Timing Reset Section to SD Subcarrier Frequency
Lock Section ..................................................................................... 52
Deleted Subaddress 0x84, Bits[2:1] Section, Timing Reset (TR) Mode Section, Subcarrier Phase Reset (SCR) Mode Section,
Figure 64, and Figure 65 ................................................................. 52
Changes to Ordering Guide ......................................................... 121
11/11—Rev. C to Rev. D
Changes to Features Section ............................................................ 1
Updated Outline Dimensions and changes to Automotive
Products Section ............................................................................ 107
9/11—Rev. B to Rev. C
Changes to MPU Port Description Section ................................. 26
Changes to Ordering Guide ......................................................... 107
7/10—Rev. A to Rev. B
Changes to Features Section ............................................................ 1
Change to Applications Section ...................................................... 5
Changes to General Description ..................................................... 5
Added Table 2, Renumbered Subsequent Tables .......................... 5
Added Figure 2, Renumbered Subsequent Figures ...................... 6
Changes to Full-Drive Output Current Parameter, Table 5 ........ 7
Changes to Table 14 ........................................................................ 18
Added Figure 20 .............................................................................. 19
Changes to Table 15 ........................................................................ 19
Changes to ADV7390/ADV7391 Input Configuration
Section .............................................................................................. 45
Added Additional Layout Considerations for the WLCSP
Package Section ............................................................................... 71
Added Figure 97 .............................................................................. 73
Changes to Configuration Scripts Section ................................... 92
Changes to Subaddress 0x00, Table 66 ......................................... 93
Rev. I | Page 3 of 107
Page 4
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Changes to Subaddress 0x00, Table 66 ........................................ 93
Changes to Subaddress 0x00, Table 80 ........................................ 95
Changes to Subaddress 0x00, Table 8 3 ........................................ 95
Changes to Subaddress 0x00, Table 9 7 ........................................ 98
Updated Outline Dimensions, Added Figure 150 .................... 106
Changes to Ordering Guide ........................................................ 106
3/09—Rev. 0 to Rev. A
Changes to Features Section............................................................ 1
Deleted Detailed Features Section, Changes to Table 1 ............... 4
Changes to Figure 1, Added Figure 2 ............................................. 5
Changes to Table 2, Input Clock Specifications Section, and
Analog Output Specifications Section ........................................... 6
Changes to Digital Input/Output Specifications—3.3 V Section
and Table 5 ......................................................................................... 7
Added Digital Input/Output Specifications—1.8 V Section and
Table 6 ................................................................................................ 7
Changes to MPU Port Timing Specifications Section,
Default Conditions ........................................................................... 7
Changes to Digital Timing Specifications—3.3 V Section and
Table 8 ................................................................................................ 8
Added Digital Timing Specifications—1.8 V Section and
Table 9 ................................................................................................ 9
Added Video Performance Specifications Section, Default
Conditions ....................................................................................... 10
Added Power Specifications Section, Default Conditions ........ 10
Changes to Table 11 ........................................................................ 10
Changes to Figure 16 ...................................................................... 16
Changes to Table 12 ........................................................................ 17
Changes to Table 14, Pin 19 and Pin 1 Descriptions ................. 18
Changes to MPU Port Description Section ................................ 25
Changes to I
2
C Operation Section ............................................... 25
Added Table 15 ............................................................................... 25
Changes to Table 17 ........................................................................ 28
Changes to Table 19, 0x30 Bit Description ................................. 30
Changes to Table 27 ....................................................................... 37
Changes to Table 29, 0x8B Bit Description ................................. 39
Changes to Table 30 ....................................................................... 40
Changes to Table 3 1 ....................................................................... 41
Added Table 32 ............................................................................... 42
Renamed Features Section to Design Features Section ............. 48
Changes to ED/HD Nonstandard Timing Mode Section ......... 48
Added the HD Interlace External
HSYNC
and
VSYNC
Considerations Section .................................................................. 49
Changes to SD Subcarrier Frequency Lock, Subcarrier Reset,
and Timing Reset Section.............................................................. 49
Changes to Subaddress 0x8C to Subaddress 0x8F Section ....... 51
Changes to Programming the F
Section ................................... 51
SC
Changes to Subaddress 0x82, Bit 4 Section ................................. 51
Added SD Manual CSC Matrix Adjust Feature Section ............ 54
Added Table 47 ............................................................................... 55
Changes to Subaddress 0x9C to Subaddress 0x9F Section ....... 56
Changes to Subaddress 0xBA Section.......................................... 56
Added Sleep Mode Section ........................................................... 65
Changes to Pixel and Control Port Readback Section .............. 66
Changes to Reset Mechanisms Section ....................................... 66
Added SD Teletext Insertion Section ........................................... 66
Added Figure 87 ............................................................................. 67
Added Figure 88 ............................................................................. 68
Changes to DAC Configuration Section ..................................... 68
Added Unused Pins Section .......................................................... 68
Changes to Power Supply Sequencing Section ........................... 70
Changes to Internal Test Pattern Generation Section ............... 77
Changes to SD Timing, Mode 0 (CCIR-656)—Slave Option
(Subaddress 0x8A = XXXXX000) Section .................................. 78
10/06—Revision 0: Initial Version
Rev. I | Page 4 of 107
Page 5
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
720 × 480
I
29.97
27
ITU-R 720 × 576
P
50
27
ITU-R BT.1358
1280 × 720
P
60, 50, 30,
74.25
SMPTE 296M 1920 × 1080
I
29.97
74.1758
SMPTE 274M
640 × 480
I
29.97
24.54
NTSC Square

APPLICATIONS

Mobile handsets Digital still cameras Portable media and DVD players Portable game consoles Digital camcorders Set-top box (STB) Automotive infotainment (ADV7392 and ADV7393 only)

GENERAL DESCRIPTION

The ADV7390/ADV7391/ADV7392/ADV7393 are a family of high speed, digital-to-analog video encoders on single monolithic chips. Three 2.7 V/3.3 V, 10-bit video DACs (a single DAC for the WLCSP package) provide support for composite (CVBS), S-Video (Y-C), or component (YPrPb/RGB) analog outputs in either standard definition (SD) or high definition (HD) video formats. The single DAC WLCSP package supports CVBS (NTSC and PAL) output only in SD resolution (see Ta b l e 2).
Optimized for low power operation, occupying a minimal footprint, and requiring few external components, these encoders are ideally suited to portable and power-sensitive applications requiring TV-out functionality. Cable detection and DAC autopower-down features ensure that power consumption is kept to a minimum.
The ADV7390/ADV7391 have an 8-bit video input port that supports SD video formats over an SDR interface and HD video formats over a DDR interface. The ADV7392/ADV7393 have a 16-bit video input port that can be configured in a variety of ways. SD RGB input is supported.
All members of the family support embedded EAV/SAV timing codes, external video synchronization signals, and the I communication protocol. Tabl e 1 and Table 2 list the video standards directly supported by the ADV7390/ADV7391/
ADV7392/ADV7393 fa m i ly.
2
C® and
Table 1. Standards Directly Supported by the LFCSP Packages
Active Resolution I/P
720 × 240 P 59.94 27 720 × 288 P 50 27
720 × 576 I 25 27 ITU-R
640 × 480 I 29.97 24.54 NTSC Square
768 × 576 I 25 29.5 PAL Square
720 × 483 P 59.94 27 SMPTE 293M 720 × 483 P 59.94 27 BTA T-1004 720 × 483 P 59.94 27 ITU-R BT.1358
720 × 483 P 59.94 27 ITU-R BT.1362 720 × 576 P 50 27 ITU-R BT.1362 1920 × 1035 I 30 74.25 SMPTE 240M 1920 × 1035 I 29.97 74.1758 SMPTE 240M
1280 × 720 P 23.97,
1920 × 1080 I 30, 25 74.25 SMPTE 274M
1920 × 1080 P 30, 25, 24 74.25 SMPTE 274M 1920 × 1080 P 23.98, 29.97 74.1758 SMPTE 274M 1920 × 1080 P 24 74.25 ITU-R BT.709-5
1
I = interlaced, P = progressive.
Frame
1
Rate (Hz)
25, 24
59.94, 29.97
Clock Input (MHz) Standard
BT.601/656
BT.601/656
Pixel
Pixel
74.1758 SMPTE 296M
Table 2. Standards Directly Supported by the WLCSP Package
I/P
Frame
1
Rate (Hz)
Active Resolution
720 × 480 I 29.97 27 ITU-R
720 × 576 I 25 27 ITU-R
Clock Input (MHz)
Standard
BT.601/656
BT.601/656
Pixel
768 × 576 I 25 29.5 PAL Square
Pixel
1
I = interlaced, P = progressive.
Rev. I | Page 5 of 107
Page 6
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet

FUNCTIONAL BLOCK DIAGRAMS

DGND (2)
(2)
V
DD
SCL SDA ALSB SFL
AGND
V
AA
GND_IO
V
DD_IO
8-BIT SD
8-BIT ED/HD
OR
VBI DATA SERVICE
INSERTION
SDR/DDR
SD/ED/HD INPUT
4:2:2 TO 4:4:4
DEINTERLEAVE
ASYNC
BYPASS
YCrCb
HDTV TEST
PATTERN
GENERATOR
POWER
MANAGEMENT
CONTROL
RESET HSYNC VSYNC
VIDEO TI MING GENERATO R
MPU PORT
ADD
SYNC
ADD
BURST
PROGRAMMABLE
ED/HD FILTERS
SHARPNESS AND
ADAPTIVE FILTER
CONTROL
PROGRAM MABLE
LUMINANCE
FILTER
PROGRAM MABLE
CHROMI NANCE
FILTER
SUBCARRIER FREQ UENCY
LOCK (SFL)
YCrCb
TO
RGB
SIN/COS DDS
BLOCK
YCbCr
TO
RGB MATRI X
16×/4× OVERSAMPLI NG PLL
CLKIN PV
ADV7390/ADV7391
16×
FILTER
16×
FILTER
MULTIPLEXER
FILTER
PGND EXT_LF COMP
DD
11-BIT DAC 1
11-BIT DAC 2
11-BIT DAC 3
REFERENCE AND CABLE
DETECT
DAC 1
DAC 2
DAC 3
R
SET
06234-001
Figure 1. ADV7390/ADV7391 (32-Lead LFCSP)
(2)
GND_IO
V
DD_IO
8-BIT SD
DGND (2)
VBI DATA SERVI CE
INSERTION
SDR/DDR
SD INPUT
4:2:2 TO 4:4:4
DEINTERLEAVE
V
DD
SCL SDA ALSB
MPU PORT
ADD
SYNC
ADD
BURST
PROGRAM MABLE
LUMINANCE
FILTER
PROGRAM MABLE
CHROMI NANCE
FILTER
SFL
SUBCARRIER FREQ UENCY
LOCK (SFL )
SIN/CO S DDS
BLOCK
16×
FILTER
16×
FILTER
ADV7390BCBZ
MULTIPLEXER
AGND
11-BIT DAC 1
V
AA
DAC 1
POWER
MANAGEMENT
CONTROL
RESET HSYNC VSYNC
VIDEO TIMING GENERATOR
16× OVERSAMPLI NG PLL
CLKIN PV
PGND EXT_LF COMP
DD
REFERENCE AND CABLE
DETECT
R
SET
06234-146
Figure 2. ADV7390BCBZ-A (30-Ball WLCSP)
AGND
12-BIT DAC 1
12-BIT DAC 2
12-BIT DAC 3
REFERENCE
AND CABLE
DETECT
V
AA
DAC 1
DAC 2
DAC 3
R
SET
06234-145
GND_IO
V
DD_IO
8-/10-/16-B IT SD
8-/10-/16-B IT ED/H D
OR
V
(2)
DGND (2)
VBI DATA SERVICE
INSERTION
SDR/DDR
SD/ED/HD INPUT
4:2:2 TO 4:4:4
DEINTERLEAVE
POWER
MANAGEM ENT
CONTROL
RESET HSYNC VSYNC
DD
RGB
TO
YCrCb
MATRIX
ASYNC
BYPASS
YCrCb
HDTV TEST
PATTERN
GENERATOR
VIDEO T IMI NG GENERA TOR
SCL SDA ALSB SFL
MPU PORT
ADD
SYNC
ADD
BURST
PROGRAMMABLE
ED/HD FILTERS
SHARPNESS AND
ADAPTIVE FILTER
CONTROL
Figure 3. ADV7392/ADV7393 (40-Lead LFCSP)
PROGRAMMABLE
LUMINANCE
FILTER
PROGRAMMABLE
CHROMI NANCE
FILTER
SUBCARRIER FREQ UENCY
LOCK (SFL)
YCrCb
TO
RGB
SIN/CO S DDS
BLOCK
YCbCr
TO
RGB MATRI X
16x/4x OVERSAMPLING PLL
CLKIN PV
PGND EXT_LF COM P
DD
ADV7392/ADV7393
16×
FILTER
16×
FILTER
MULTIPLEXER
FILTER
Rev. I | Page 6 of 107
Page 7
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
DAC-to-DAC Matching
DAC 1, DAC 2, DAC 3
2.0 %

SPECIFICATIONS

POWER SUPPLY SPECIFICATIONS

All specifications T
Table 3.
Parameter Min Typ Max Unit
SUPPLY VOLTAGES
VDD 1.71 1.8 1.89 V V
1.71 3.3 3.63 V
DD_IO
PVDD 1.71 1.8 1.89 V VAA 2.6 3.3 3.465 V
POWER SUPPLY REJECTION RATIO 0.002 %/%

INPUT CLOCK SPECIFICATIONS

VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, V All specifications T
Table 4.
Parameter Conditions1 Min Typ Max Unit
f
SD/ED 27 MHz
CLKIN
ED (at 54 MHz) 54 MHz HD 74.25 MHz CLKIN High Time, t9 40 % of one clock cycle CLKIN Low Time, t10 40 % of one clock cycle CLKIN Peak-to-Peak Jitter Tolerance 2 ±ns
1
SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition.
MIN
MIN
to T
to T
(−40°C to +85°C), unless otherwise noted.
MAX
(−40°C to +85°C), unless otherwise noted.
MAX
= 1.71 V to 3.63 V.
DD_IO

ANALOG OUTPUT SPECIFICATIONS

VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, V All specifications T
MIN
to T
(−40°C to +85°C), unless otherwise noted.
MAX
Table 5.
Parameter Conditions Min Typ Max Unit
Full-Drive Output Current R
= 510 Ω, RL = 37.5 Ω 33 34.6 37 mA
SET
All DACs enabled R
= 510 Ω, RL = 37.5 Ω 31.5 33.5 37 mA
SET
DAC 1 enabled only1 Low-Drive Output Current R
= 4.12 kΩ, RL = 300 Ω 4.3 mA
SET
Output Compliance, VOC 0 1.4 V Output Capacitance, C
10 pF
OUT
Analog Output Delay2 6 ns DAC Analog Output Skew DAC 1, DAC 2, DAC 3 1 ns
1
The recommended method of bringing this value back to the ideal value is by adjusting Register 0x0B to the recommended value of 0x12.
2
Output delay measured from the 50% point of the rising edge of the input clock to the 50% point of the DAC output full-scale transition.
= 1.71 V to 3.63 V.
DD_IO
Rev. I | Page 7 of 107
Page 8
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Parameter
Conditions
Min
Typ
Max
Unit

DIGITAL INPUT/OUTPUT SPECIFICATIONS—3.3 V

VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, V All specifications T
MIN
to T
(−40°C to +85°C), unless otherwise noted.
MAX
Table 6.
Parameter Conditions Min Typ Max Unit
Input High Voltage, VIH 2.0 V Input Low Voltage, VIL 0.8 V Input Leakage Current, IIN VIN = V
±10 µA
DD_IO
Input Capacitance, CIN 4 pF Output High Voltage, VOH I Output Low Voltage, VOL I
= 400 µA 2.4 V
SOURCE
= 3.2 mA 0.4 V
SINK
Three-State Leakage Current VIN = 0.4 V, 2.4 V ±1 µA Three-State Output Capacitance 4 pF

DIGITAL INPUT/OUTPUT SPECIFICATIONS—1.8 V

When V V
= 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, V
DD
All specifications T
Table 7.
Parameter Conditions Min Typ Max Unit
Input High Voltage, VIH 0.7 V Input Low Voltage, VIL 0.3 V Input Capacitance, CIN 4 pF Output High Voltage, VOH I Output Low Voltage, VOL I Three-State Output Capacitance 4 pF
is set to 1.8 V, all the digital video inputs and control inputs, such as I2C, HS, and VS, should use 1.8 V levels.
DD_IO
MIN
to T
(−40°C to +85°C), unless otherwise noted.
MAX
= 400 µA V
SOURCE
= 3.2 mA 0.4 V
SINK
= 2.97 V to 3.63 V.
DD_IO
= 1.71 V to 1.89 V.
DD_IO
V
DD_IO
– 0.4 V
DD_IO
DD_IO
V

MPU PORT TIMING SPECIFICATIONS

VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, V All specifications T
MIN
to T
(−40°C to +85°C), unless otherwise noted.
MAX
Table 8.
MPU PORT, I2C MODE1 See Figure 17
SCL Frequency 0 400 kHz SCL High Pulse Width, t1 0.6 µs SCL Low Pulse Width, t2 1.3 µs Hold Time (Start Condition), t3 0.6 µs Setup Time (Start Condition), t4 0.6 µs Data Setup Time, t5 100 ns SDA, SCL Rise Time, t6 300 ns SDA, SCL Fall Time, t7 300 ns Setup Time (Stop Condition), t8 0.6 µs
1
Guaranteed by characterization.
= 1.71 V to 3.63 V.
DD_IO
Rev. I | Page 8 of 107
Page 9
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
ED/HD-SDR or ED/HD-DDR
2.3
ns
Component Outputs (2×)
SD oversampling disabled
78 Clock cycles

DIGITAL TIMING SPECIFICATIONS—3.3 V

VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, V All specifications T
MIN
to T
(−40°C to +85°C), unless otherwise noted.
MAX
Table 9.
Parameter Conditions1 Min Typ Max Unit
VIDEO DATA AND VIDEO CONTROL PORT
Data Input Setup Time, t
4
SD 2.1 ns
11
2, 3
ED/HD-SDR 2.3 ns ED/HD-DDR 2.3 ns ED (at 54 MHz) 1.7 ns Data Input Hold Time, t
4
SD 1.0 ns
12
ED/HD-SDR 1.1 ns ED/HD-DDR 1.1 ns ED (at 54 MHz) 1.0 ns Control Input Setup Time, t
4
SD 2.1 ns
11
= 2.97 V to 3.63 V.
DD_IO
ED (at 54 MHz) 1.7 ns Control Input Hold Time, t
4
SD 1.0 ns
12
ED/HD-SDR or ED/HD-DDR 1.1 ns ED (at 54 MHz) 1.0 ns Control Output Access Time, t
4
SD 12 ns
13
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 10 ns Control Output Hold Time, t
4
SD 4.0 ns
14
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 3.5 ns
PIPELINE DELAY5
SD1
CVBS/Y-C Outputs (2×) SD oversampling disabled 68 Clock cycles CVBS/Y-C Outputs (8×) SD oversampling enabled 79 Clock cycles CVBS/Y-C Outputs (16×) SD oversampling enabled 67 Clock cycles
Component Outputs (8×) SD oversampling enabled 69 Clock cycles Component Outputs (16×) SD oversampling enabled 84 Clock cycles
ED1
Component Outputs (1×) ED oversampling disabled 41 Clock cycles Component Outputs (4×) ED oversampling enabled 49 Clock cycles Component Outputs (8×) ED oversampling enabled 46 Clock cycles
HD1
Component Outputs (1×) HD oversampling disabled 40 Clock cycles Component Outputs (2×) HD oversampling enabled 42 Clock cycles Component Outputs (4×) HD oversampling enabled 44 Clock cycles
CONTROL
RESET
Low Time 100 ns
RESET
1
SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate.
2
Video data: P[15:0] for ADV7392/ADV7393 or P[7:0] for ADV7390/ADV7391.
3
Video control:
4
Guaranteed by characterization.
5
Guaranteed by design.
HSYNC
and
VSYNC
.
Rev. I | Page 9 of 107
Page 10
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
ED/HD-SDR or ED/HD-DDR
1.2
ns
Component Outputs (2×)
SD oversampling disabled
78 Clock cycles

DIGITAL TIMING SPECIFICATIONS—1.8 V

VDD = 1.71 V to 1.89 V, PVDD = 1.71 V to 1.89 V, VAA = 2.6 V to 3.465 V, V All specifications T
MIN
to T
(−40°C to +85°C), unless otherwise noted.
MAX
Table 10.
Parameter Conditions1 Min Typ Max Unit
VIDEO DATA AND VIDEO CONTROL PORT
Data Input Setup Time, t
4
SD 1.4 ns
11
2, 3
ED/HD-SDR 1.9 ns ED/HD-DDR 1.9 ns ED (at 54 MHz) 1.6 ns Data Input Hold Time, t
4
SD 1.4 ns
12
ED/HD-SDR 1.5 ns ED/HD-DDR 1.5 ns ED (at 54 MHz) 1.3 ns Control Input Setup Time, t
4
SD 1.4 ns
11
= 1.71 V to 1.89 V.
DD_IO
ED (at 54 MHz) 1.0 ns Control Input Hold Time, t
4
SD 1.4 ns
12
ED/HD-SDR or ED/HD-DDR 1.0 ns ED (at 54 MHz) 1.0 ns Control Output Access Time, t
4
SD 13 ns
13
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 12 ns Control Output Hold Time, t
4
SD 4.0 ns
14
ED/HD-SDR, ED/HD-DDR, or ED (at 54 MHz) 5.0 ns
PIPELINE DELAY5
SD1
CVBS/Y-C Outputs (2×) SD oversampling disabled 68 Clock cycles CVBS/Y-C Outputs (8×) SD oversampling enabled 79 Clock cycles CVBS/Y-C Outputs (16×) SD oversampling enabled 67 Clock cycles
Component Outputs (8×) SD oversampling enabled 69 Clock cycles Component Outputs (16×) SD oversampling enabled 84 Clock cycles
ED1
Component Outputs (1×) ED oversampling disabled 41 Clock cycles Component Outputs (4×) ED oversampling enabled 49 Clock cycles Component Outputs (8×) ED oversampling enabled 46 Clock cycles
HD1
Component Outputs (1×) HD oversampling disabled 40 Clock cycles Component Outputs (2×) HD oversampling enabled 42 Clock cycles Component Outputs (4×) HD oversampling enabled 44 Clock cycles
CONTROL
RESET
Low Time 100 ns
RESET
1
SD = standard definition, ED = enhanced definition (525p/625p), HD = high definition, SDR = single data rate, DDR = dual data rate.
2
Video data: P[15:0] for ADV7392/ADV7393 or P[7:0] for ADV7390/ADV7391.
3
Video control:
4
Guaranteed by characterization.
5
Guaranteed by design.
HSYNC
and
VSYNC
.
Rev. I | Page 10 of 107
Page 11
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Signal-to-Noise Ratio (SNR)3
Luma ramp
58 dB
IDD
5 µA

VIDEO PERFORMANCE SPECIFICATIONS

VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, V
Table 11.
Parameter Conditions Min Typ Max Unit
STATIC PERFORMANCE
Resolution 10 Bits Integral Nonlinearity (INL)1 R Differential Nonlinearity (DNL)
1, 2
R
STANDARD DEFINTION (SD) MODE
Luminance Nonlinearity 0.5 ±% Differential Gain NTSC 0.5 % Differential Phase NTSC 0.6 Degrees
Flat field full bandwidth 75 dB
ENHANCED DEFINITION (ED) MODE
Luma Bandwidth 12.5 MHz Chroma Bandwidth 5.8 MHz
HIGH DEFINITION (HD) MODE
Luma Bandwidth 30.0 MHz Chroma Bandwidth 13.75 MHz
1
Measured on DAC 1, DAC 2, and DAC 3.
2
Differential nonlinearity (DNL) measures the deviation of the actual DAC output voltage step from the ideal. For +ve DNL, the actual step value lies above the ideal
step value. For −ve DNL, the actual step value lies below the ideal step value.
3
Measured on the ADV7392/ADV7393 operating in 10-bit input mode.
= 3.3 V, TA = +25°C.
DD_IO
= 510 Ω, RL = 37.5 Ω 0.5 LSBs
SET
= 510 Ω, RL = 37.5 Ω 0.5 LSBs
SET

POWER SPECIFICATIONS

VDD = 1.8 V, PVDD = 1.8 V, VAA = 3.3 V, V
Table 12.
Parameter Conditions Min Typ Max Unit
NORMAL POWER MODE
3
I
SD (16× oversampling enabled), CVBS (only one DAC turned on) 33 mA
DD
1, 2
SD (16× oversampling enabled), YPrPb (three DACs turned on) 68 mA ED (8× oversampling enabled)4 59 mA HD (4× oversampling enabled)4 81 101 mA I
1 10 mA
DD_IO
5
I
One DAC enabled 50 mA
AA
All DACs enabled 122 151 mA I
4 10 mA
PLL
SLEEP MODE
IAA 0.3 µA I
0.2 µA
DD_IO
I
0.1 µA
PLL
1
R
= 510 Ω (all DACs operating in full-drive mode).
SET
2
75% color bar test pattern applied to pixel data pins.
3
IDD is the continuous current required to drive the digital core.
4
Applicable to both single data rate (SDR) and dual data rate (DDR) input modes.
5
IAA is the total current required to supply all DACs.
= 3.3 V, TA = +25°C.
DD_IO
Rev. I | Page 11 of 107
Page 12
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
t
9
CLKIN
t
10
CONTRO
L
OUTPUTS
HSYNC VSYNC
Cr2
Cb2Cr0Cb0
IN MASTER/SLA
VE MODE
IN SL
AVE MODE
Y0
Y1 Y2
PIXE
L PORT
CONTROL
INPUTS
t
12
t
1
1
t
13
t
14
06234-002
IN MASTER/SLAVE MODE
IN SLAVE MODE
CLKIN
CONTROL
OUTPUTS
t
9t10
Cr2
Cb2
Cr0Cb0
Y0
Y1
Y2
Y3
t
12
t
14
t
11
t
13
HSYNC VSYNC
CONTROL
INPUTS
PIXEL PORT
PIXEL PORT
06234-003
t

TIMING DIAGRAMS

The following abbreviations are used in Figure 4 to Figure 11:
t
= clock high time
9
t
= clock low time
10
t
= data setup time
11
t
= data hold time
12
= control output access time
13
t
= control output hold time
14
In addition, see Table 35 for the ADV7390/ADV7391 pixel port input configuration and Tabl e 36 for the ADV7392/ADV7393 pixel port input configuration.
Figure 4. SD Input, 8-/10-Bit 4:2:2 YCrCb, Input Mode 000
Figure 5. SD Input, 16-Bit 4:2:2 YCrCb, Input Mode 000
Rev. I | Page 12 of 107
Page 13
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
CONTROL
OUTPUTS
t
9t10
t
11
G0 G1 G2
B0 B1 B2
R0 R1 R2
t
12
t
14
t
13
PIXEL PORT
PIXEL PORT
PIXEL PORT
CLKIN
HSYNC VSYNC
CONTROL
INPUTS
06234-004
CONTROL
OUTPUTS
PIXEL PORT
PIXEL PORT
Y0 Y1 Y2
Y3 Y4 Y5
Cr4Cb4C
r2C
b2Cr0Cb0
CLKIN
t9t
10
t
12
t
11
t
14
t
13
HSYNC VSYNC
CONTROL
INPUTS
06234-005
CLKIN*
CONTROL
OUTPUTS
Cr2Y2
Cb2
Y1Cr0
Y0Cb0
t
9
t
10
t
12
t
11
t
12
t
11
t
14
t
13
PIXEL PORT
HSYNC
VSYNC
CONTRO
L
INPUTS
*LUMA/CHROM A CLOCK RELATIONSHIP CAN BE INVERTED USI NG SUBADDRESS 0x01, BITS 1 AND 2.
06234-006
Figure 6. SD Input, 16-Bit 4:4:4 RGB, Input Mode 000
Figure 7. ED/HD-SDR Input, 16-Bit 4:2:2 YCrCb, Input Mode 001
Figure 8. ED/HD-DDR Input, 8-/10-Bit 4:2:2 YCrCb (
Rev. I | Page 13 of 107
HSYNC/VSYNC
), Input Mode 010
Page 14
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
CONTROL
OUTPUTS
PIXEL PORT
*LUMA/CHROM A CLOCK RELATIONSHIP CAN BE INVERTED USI NG SUBADDRESS 0x01, BITS 1 AND 2.
Y1Cr0Y0Cb0XY00003FF
CLKIN*
t
9
t
10
t
12
t
11
t
12
t
11
t
14
t
13
06234-007
CLKIN
CONTROL
OUTPUTS
Y1Cr0Y0Cb0 Cr2
Y2
Cb2
t9t
10
t
12
t
11
t
13
t
14
PIXEL PORT
HSYNC
VSYNC
CONTROL
INPUTS
06234-008
CLKIN
CONTROL
OUTPUTS
3FF
00 00 XY Cb0
Y0 Cr0 Y1
PIXEL PORT
t
11
t
12
t
10
t
9
t
14
t
13
06234-009
Figure 9. ED/HD-DDR Input, 8-/10-Bit 4:2:2 YCrCb (EAV/SAV), Input Mode 010
Figure 10. ED (at 54 MHz) Input, 8-/10-Bit 4:2:2 YCrCb (
HSYNC/VSYNC
), Input Mode 111
Figure 11. ED (at 54 MHz) Input, 8-/10-Bit 4:2:2 YCrCb (EAV/SAV), Input Mode 111
Rev. I | Page 14 of 107
Page 15
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Y0 Y1
Y2
Y3
a
Cr2
Cb2Cr0Cb0
b
Y OUTPUT
HSYNC
VSYNC
a = AS PER RELEV ANT STANDARD. b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET. A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME
EQUAL TO THE PIPELINE DELAY.
PIXEL PORT
PIXEL PORT*
06234-010
Cb0 Y0
Cr0 Y1
a
a(MIN) = 244 CL OCK CYCLES FOR 525p. a(MIN) = 264 CL OCK CYCLES FOR 625p.
b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING SPECIFICATION SECTION OF THE DATA SHEET.
A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A SYNC FALLING EDGE ON THE OUTPUT AFTER A TIME EQUAL TO THE PIPELINE DELAY.
HSYNC
VSYNC
b
Y OUTPUT
PIXEL PORT
06234-011
Figure 12. ED-SDR, 16-Bit 4:2:2 YCrCb (
HSYNC/VSYNC
) Input Timing Diagram
Figure 13. ED-DDR, 8-/10-Bit 4:2:2 YCrCb (
HSYNC/VSYNC
Rev. I | Page 15 of 107
) Input Timing Diagram
Page 16
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Y0 Y1
Y2
Y3
a
Cr2Cb2
Cr0
Cb0
b
Y OUTPUT
HSYNC
VSYNC
a = AS PER RELEV ANT STANDARD. b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET. A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT
AFTER A TIME EQUAL TO THE PIPELINE DELAY.
PIXEL PORT
PIXEL PORT
06234-012
PIXEL PORT
Cb0 Y0
Cr0 Y1
a
HSYNC
VSYNC
b
Y OUTPUT
a = AS PER RELEV ANT STANDARD. b = PIPELINE DELAY. PLEASE REFER TO RELEVANT PIPELINE DELAY. THIS CAN BE FOUND IN THE DIGITAL TIMING
SPECIFICATION SECTION OF THE DATA SHEET. A FALLING EDGE OF HSYNC INTO THE ENCODER GENERATES A FALLING EDGE OF TRI-LEVEL SYNC ON THE OUTPUT
AFTER A TIME EQUAL TO THE PIPELINE DELAY.
06234-013
Figure 14. HD-SDR, 16-Bit 4:2:2 YCrCb (
HSYNC/VSYNC
) Input Timing Diagram
Figure 15. HD-DDR, 8-/10-Bit 4:2:2 YCrCb (
HSYNC/VSYNC
) Input Timing Diagram
Rev. I | Page 16 of 107
Page 17
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Cb Y
Cr
Y
PAL = 264 CLOCK CY CLES NTSC = 244 CLOCK CY CLES
PIXEL PORT
VSYNC
HSYNC
06234-014
t
3
t
3
t
4
t
7
t
8
t
5
SDA
SCL
t
1
t
2
t
6
06234-015
Figure 16. SD Input Timing Diagram (Timing Mode 1)
Figure 17. MPU Port Timing Diagram (I
2
C Mode)
Rev. I | Page 17 of 107
Page 18
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
VDD to DGND
−0.3 V to +2.3 V
32-Lead LFCSP
27
32
1.2
°C/W
40-Lead LFCSP
26
32 1 °C/W

ABSOLUTE MAXIMUM RATINGS

Table 13.
Parameter1 Rating
VAA to AGND −0.3 V to +3.9 V
PVDD to PGND −0.3 V to +2.3 V V
to GND_IO −0.3 V to +3.9 V
DD_IO
AGND to DGND −0.3 V to +0.3 V AGND to PGND −0.3 V to +0.3 V AGND to GND_IO −0.3 V to +0.3 V DGND to PGND −0.3 V to +0.3 V DGND to GND_IO −0.3 V to +0.3 V PGND to GND_IO −0.3 V to +0.3 V Digital Input Voltage to GND_IO −0.3 V to V
DD_IO
+ 0.3 V Analog Outputs to AGND −0.3 V to VAA Max CLKIN Input Frequency 80 MHz Storage Temperature Range (tS) −60°C to +150°C Junction Temperature (tJ) 150°C Lead Temperature (Soldering, 10 sec) 260°C
1
Analog output short circuit to any power supply or common can be of an
indefinite duration.
Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
JA
2
θ
1
JC-TOP
3
θ
JC-BOTTOM
4
Unit
Table 14. Thermal Resistance
Package Type θ
30-Ball WLCSP 35 1 N/A °C/W
1
Values are based on a JEDEC 4-layer test board.
2
With the exposed metal paddle on the underside of the LFCSP soldered to
the PCB ground.
3
This is the thermal resistance of the junction to the top of the package.
4
This is the thermal resistance of the junction to the bottom of the package.
The ADV7390/ADV7391/ADV7392/ADV7393 are RoHS­compliant, Pb-free products. The lead finish is 100% pure Sn electroplate. The device is suitable for Pb-free applications up to 255°C (±5°C) IR reflow (JEDEC STD-20).
The ADV7390/ADV7391/ADV7392/ADV7393 are backward compatible with conventional SnPb soldering processes. The electroplated Sn coating can be soldered with SnPb solder pastes at conventional reflow temperatures of 220°C to 235°C.

ESD CAUTION

Rev. I | Page 18 of 107
Page 19
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
O
R

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

D
DD
HSYNC
V
SFL
VSYNC
DGN
P0
GND_IO
P1
31
30
32
V
1
DD_IO
V
DD
NOTES
1. THE EXPOSED PAD SHOULD BE CONNECTED TO ANALO G GROUND (AG ND).
2P2 3P3 4P4 5 6DGND 7P5 8P6
PIN 1 INDICATOR
ADV7390/
ADV7391
TOP VIEW
(Not to Scale)
9
11
10
P7
SDA
ALSB
Figure 18. ADV7390/ADV7391 Pin Configuration
P1
P2
P3
GND_I
40
39
38
37
V
1
DD_IO
2
P4
3
V
DGND
P10
P5
4
P6
5
P7
6
DD
7 8
P8
9
P9
10
ADV7392/
ADV7393
TOP VIEW
(Not to Scale)
25
26
27
28
29
R
24
SET
23 COMP 22 DAC 1 21 DAC 2 20 DAC 3 19 V
AA
18 AGND 17 PV
DD
12
13
14
15
16
SCL
PGND
CLKIN
XT_LF
RESET
E
06234-017
DD
P0
DGND
SFL
VSYNC
V
HSYNC
31
32
36
35
34
33
R
30
SET
29
COMP
28
DAC 1 DAC 2
27
DAC 3
26
V
25
AA
AGND
24
PV
23
DD
EXT_LF
22
PGND
21
BALL A1 CORNE
234
1
R
A
SET
DAC1
B
V
C
AA
D
AGND
E
PV
DD
PGND SDA SCL CLKIN P7
F
V
HSYNC
VSYNC
COMP DGND P3 P4
GND_IO
EXT_LF
DD
SFL P1 P2
RESET
ALSB P5 P6
TOP VIEW
(BALL SIDE DOWN)
Not to Scal e
VDDDGND
5
V
P0
DD_IO
Figure 20. ADV7390BCBZ-A Pin Configuration
06234-147
11
13
12
14
15
P11
P12
SCL
SDA
ALSB
NOTES
1. THE EXPOSED PAD SHOULD BE CONNECTED TO ANALOG GROUND (AG ND).
20
19
18
16
17
ET
P14
P13
P15
LKIN C
RES
6234-018
Figure 19. ADV7392/ADV7393 Pin Configuration
Table 15. Pin Function Descriptions
Pin No.1
ADV7390/ ADV7391
9 to 7, 4 to 2, 31, 30
N/A
ADV7392/ ADV7393
N/A
18 to 15, 11 to 8, 5 to 2, 39 to
ADV7390
WLCSP
F5, E5, E4, C5,
Mnemonic
P7 to P0 I
C4, B5, B4, A4 N/A P15 to P0 I
Input/ Output Description
8-Bit Pixel Port (P7 to P0). P0 is the LSB. See Table 35 for input modes (ADV7390/ADV7391).
16-Bit Pixel Port (P15 to P0). P0 is the LSB. See Table 36 for input modes (ADV7392/ADV7393).
37, 34
13 19 F4 CLKIN I
Pixel Clock Input for HD (74.25 MHz), ED or SD (27 MHz).
27 33 A2
HSYNC
I/O
Horizontal Synchronization Signal. This pin can also be configured to output an SD, ED, or HD horizontal synchronization signal. See the External Horizontal and Vertical Synchronization Control section.
26 32 B2
VSYNC
I/O
Vertical Synchronization Signal. This pin can also be configured to output an SD, ED, or HD vertical synchronization signal. See the External Horizontal and Vertical Synchronization Control section.
25 31 B3 SFL I/O Subcarrier Frequency Lock (SFL) Input.
2
(27 MHz or 54 MHz),
Rev. I | Page 19 of 107
Page 20
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
22, 21, 20
28, 27, 26
N/A
DAC 1, DAC 2,
O
DAC Outputs. Full-drive and low-drive capable DACs.
Pin No.1
ADV7390/ ADV7391
24 30 A1 R
ADV7392/ ADV7393
ADV7390
WLCSP
Mnemonic
I Controls the amplitudes of the DAC 1, DAC 2, and DAC 3
SET
23 29 C2 COMP O Compensation Pin. Connect a 2.2 nF capacitor from COMP
N/A N/A B1 DAC 1 O DAC Output. Full-drive and low-drive capable DAC
DAC 3 12 14 F3 SCL I I2C Clock Input. 11 13 F2 SDA I/O I2C Data Input/Output. 10 12 E3 ALSB I ALSB sets up the LSB3 of the MPU I2C address. 14 20 D3
I Resets the on-chip timing generator and sets the
RESET
19 25 C1 VAA P Analog Power Supply (2.7 V or 3.3 V). 5, 28 6, 35 A3, D4 VDD P Digital Power Supply (1.8 V). For dual-supply
1 1 A5 V
P Input/Output Digital Power Supply (1.8 V or 3.3 V).
DD_IO
17 23 E1 PVDD P PLL Power Supply (1.8 V). For dual-supply configurations,
16 22 E2 EXT_LF I External Loop Filter for the Internal PLL. 15 21 F1 PGND G PLL Ground Pin. 18 24 D1 AGND G Analog Ground Pin. 6, 29 7, 36 C3, D5 DGND G Digital Ground Pin. 32 40 D2 GND_IO G Input/Output Supply Ground Pin. EPAD G Exposed Pad. Connect to analog ground (AGND).
1
N/A means not applicable.
2
ED = enhanced definition = 525p and 625p.
3
LSB = least significant bit. In the ADV7390/ADV7392, setting the LSB to 0 sets the I2C address to 0xD4. Setting it to 1 sets the I2C address to 0xD6. In the
ADV7391/ADV7393, setting the LSB to 0 sets the I
2
C address to 0x54. Setting it to 1 sets the I2C address to 0x56.
Input/ Output Description
outputs. For full-drive operation (for example, into a 37.5 Ω load), a 510 Ω resistor must be connected from R AGND. For low-drive operation (for example, into a 300 Ω load), a 4.12 kΩ resistor must be connected from R AGND.
.
to V
AA
ADV7390/ADV7391/ADV7392/ADV7393 into its default
mode.
configurations, VDD can be connected to other 1.8 V supplies through a ferrite bead or suitable filtering.
PVDD can be connected to other 1.8 V supplies through a ferrite bead or suitable filtering.
SET
SET
to
to
Rev. I | Page 20 of 107
Page 21
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393

TYPICAL PERFORMANCE CHARACTERISTICS

ED Pr/Pb RESPONSE. LINEAR INT ERP FROM 4:2:2 TO 4:4:4
0
–10
–20
–30
–40
GAIN (dB)
–50
–60
–70
–80
FREQUENCY (MHz)
20020 40 60 80 100 120 140 160 1800
Figure 21. ED 8× Oversampling, PrPb Filter (Linear) Response
EDPr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4
0
–10
–20
–30
–40
GAIN (dB)
–50
–60
–70
–80
FREQUENCY (MHz)
20020 40 60 80 100 120 140 16 0 1800
Figure 22. ED 8× Oversampling, PrPb Filter (SSAF™) Response
Y RESPONSE IN ED 8× OVERSAMPL ING MODE
0
–10
–20
–30
–40
GAIN (dB)
–50
–60
–70
–80
FREQUENCY (MHz)
20020 40 60 80 100 120 14 0 160 1800
Figure 23. ED 8× Oversampling, Y Filter Response
1.0
0.5
–0.5
–1.0
GAIN (dB)
–1.5
–2.0
–2.5
–3.0
06234-019
Figure 24. ED 8× Oversampling, Y Filter Response (Focus on Pass Band)
10
0
–10
–20
–30
–40
–50
GAIN (dB)
–60
–70
–80
–90
–100
06234-020
Figure 25. HD 4× Oversampling, PrPb (SSAF) Filter Response
–10
–20
–30
–40
–50
GAIN (dB)
–60
–70
–80
–90
–100
06234-021
Figure 26. HD 4× Oversampling, PrPb (SSAF) Filter Response
Y RESPONSE IN ED 8× OVERSAMPLING MODE
0
FREQUENCY (MHz)
HD Pr/Pb RESPONSE. SSAF INTERP FROM 4:2:2 TO 4:4:4
FREQUENCY (MHz)
(4:2:2 Input)
HD Pr/Pb RES PONSE. 4: 4:4 INPUT MODE
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140
FREQUENCY (M Hz)
(4:4:4 Input)
122468100
06234-022
148.018.5 37.0 55. 5 74.0 92.5 111.0 129.50
06234-023
06234-024
Rev. I | Page 21 of 107
Page 22
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
10
–10
–20
–30
–40
–50
GAIN (dB)
–60
–70
–80
–90
–100
3.0
1.5
–1.5
–3.0
–4.5
GAIN (dB)
–6.0
–7.5
–9.0
–10.5
–12.0
27.750 46.250
Figure 28. HD 4× Oversampling, Y Filter Response (Focus on Pass Band)
Y RESPONSE I N HD 4× OVERSAMPL ING MODE
0
FREQUENCY ( MHz)
Figure 27. HD 4× Oversampling, Y Filter Response
Y PASS BAND IN HD 4x OVERSAMPLING MODE
0
30.063 32.375 34.688 37.000 39.312 41. 625 43.937
FREQUENCY (MHz)
0
–10
–20
–30
–40
MAGNITUDE (dB)
–50
–60
148.018.5 37.0 55. 5 74.0 92.5 111.0 129.50
06234-025
–70
FREQUENCY (MHz)
121086420
6234-028
Figure 30. SD PAL, Luma Low-Pass Filter Response
0
–10
–20
–30
–40
MAGNITUDE (dB)
–50
–60
–70
06234-026
FREQUENCY (MHz)
121086420
06234-029
Figure 31. SD NTSC, Luma Notch Filter Response
0
–10
–20
–30
–40
MAGNITUDE (dB)
–50
–60
–70
FREQUENCY (MHz)
Figure 29. SD NTSC, Luma Low-Pass Filter Response
121086420
6234-027
Rev. I | Page 22 of 107
0
–10
–20
–30
–40
MAGNITUDE (dB)
–50
–60
–70
FREQUENCY (MHz)
121086420
06234-030
Figure 32. SD PAL, Luma Notch Filter Response
Page 23
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Y RESPONSE IN SD OVERSAMPLING MODE
0
–10
–20
–30
–40
GAIN (dB)
–50
–60
–70
–80
0 20 40 60 80 100 120 140 160 180 200
FREQUENCY (MHz)
Figure 33. SD 16× Oversampling, Y Filter Response
06234-031
5
4
3
2
MAGNITUDE ( dB)
1
0
–1
0
234
1
FREQUENCY (MHz)
Figure 36. SD Luma SSAF Filter, Programmable Gain
5
6
7
06234-034
0
–10
–20
–30
–40
MAGNITUDE ( dB)
–50
–60
–70
FREQUENCY (MHz)
Figure 34. SD Luma SSAF Filter Response up to 12 MHz
4
2
0
–2
–4
–6
MAGNITUDE ( dB)
–8
–10
–12
1
23
FREQUE NCY (MHz )
4
5
Figure 35. SD Luma SSAF Filter, Programmable Responses
1
0
–1
–2
MAGNITUDE (dB)
–3
–4
–5
121086420
06234-032
0
234
1
FREQUENCY (MHz)
5
6
7
6234-035
Figure 37. SD Luma SSAF Filter, Programmable Attenuation
0
–10
–20
–30
–40
MAGNITUDE (dB)
–50
–60
60
7
06234-033
–70
4
620
FREQUENCY (MHz)
8
12
10
06234-036
Figure 38. SD Luma CIF Low-Pass Filter Response
Rev. I | Page 23 of 107
Page 24
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
0
–10
–20
–30
–40
MAGNITUDE ( dB)
–50
–60
–70
4
620
FREQUENCY (M Hz)
Figure 39. SD Luma QCIF Low-Pass Filter Response
0
–10
–20
–30
–40
MAGNITUDE (dB)
–50
0
–10
–20
–30
–40
MAGNITUDE ( dB)
–50
–60
8
10
12
06234-037
–70
4
620
FREQUENCY (MHz)
8
10
12
06234-040
Figure 42. SD Chroma 1.3 MHz Low-Pass Filter Response
0
–10
–20
–30
–40
MAGNITUDE (dB)
–50
–60
–70
4
620
FREQUENCY (M Hz)
8
Figure 40. SD Chroma 3.0 MHz Low-Pass Filter Response
0
–10
–20
–30
–40
MAGNITUDE (dB)
–50
–60
–70
4
620
FREQUENCY (M Hz)
8
Figure 41. SD Chroma 2.0 MHz Low-Pass Filter Response
–60
12
10
06234-038
–70
4
620
FREQUENCY (M Hz)
10
8
12
6234-041
Figure 43. SD Chroma 1.0 MHz Low-Pass Filter Response
0
–10
–20
–30
–40
MAGNITUDE (dB)
–50
–60
12
10
06234-039
–70
4
620
FREQUENCY (MHz)
10
8
12
06234-042
Figure 44. SD Chroma 0.65 MHz Low-Pass Filter Response
Rev. I | Page 24 of 107
Page 25
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
FREQUENC
Y
(MHz)
0
12
MAGNITUDE (dB)
–10
–30
–50
–60
–70
–20
–40
10
8
4
6
20
06234-043
FREQUENCY (MHz)
0
12
MAGNITUDE (dB)
–10
–30
–50
–60
–70
–20
–40
10
8
4
620
06234-044
Figure 45. SD Chroma CIF Low-Pass Filter Response
Figure 46. SD Chroma QCIF Low-Pass Filter Response
Rev. I | Page 25 of 107
Page 26
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
1
Read
0xD7
1 1 0 1
0 1 A1 X
READ/WRITE
CONTROL 0 WRITE
1 READ
06234-045
ADDRESS CONTROL
SET UP BY
ALSB
0 1
0
1
0
1
A1
X
READ/WRITE
CONTROL 0 WRITE
1 READ
06234-046
ADDRESS CONTROL
SET UP BY
ALSB

MPU PORT DESCRIPTION

Devices such as a microprocessor can communicate with the
ADV7390/ADV7391/ADV7392/ADV7393 through a 2-wire
2
serial (I port is configured for I
C-compatible) bus. After power-up or reset, the MPU
2
C operation.

I2C OPERATION

The ADV7390/ADV7391/ADV7392/ADV7393 support a 2­wire serial (I multiple peripherals. This port operates in an open-drain configuration. Two wires, serial data (SDA) and serial clock (SCL), carry information between any device connected to the bus and the ADV7390/ADV7391/ADV7392/ADV7393. The slave address depends on the device (ADV7390, ADV7391,
ADV7392, or ADV7393), the operation (read or write), and the
state of the ALSB pin (0 or 1). See Table 16, Figure 47, and Figure 48. The LSB sets either a read or a write operation. Logic 1 corresponds to a read operation, and Logic 0 corresponds to a write operation. A1 is controlled by setting the ALSB pin of the
ADV7390/ADV7391/ADV7392/ADV7393 to Logic 0 or Logic 1.
Table 16. ADV7390/ADV7391/ADV7392/ADV7393 I Slave Addresses
Device ALSB Operation Slave Address
ADV7390
and
ADV7392
ADV7391
and
ADV7393
2
C-compatible) microprocessor bus driving
0 Write 0xD4 0 Read 0xD5 1 Write 0xD6
0 Write 0x54 0 Read 0x55 1 Write 0x56 1 Read 0x57
2
Figure 47. ADV7390/ADV7392 I
C Slave Address
2
C
The various devices on the bus use the following protocol. The master initiates a data transfer by establishing a start condition, defined by a high-to-low transition on SDA while SCL remains high. This indicates that an address/data stream follows. All peripherals respond to the start condition and shift the next eight bits (7-bit address plus the R/
W
bit).
The bits are transferred from MSB down to LSB. The peripheral that recognizes the transmitted address responds by pulling the data line low during the ninth clock pulse. This is known as an acknowledge bit. All other devices withdraw from the bus at this point and maintain an idle condition. The idle condition occurs when the device monitors the SDA and SCL lines waiting for the start condition and the correct transmitted address. The R/
W
bit determines the direction of the data.
Logic 0 on the LSB of the first byte means that the master writes information to the peripheral. Logic 1 on the LSB of the first byte means that the master reads information from the peripheral.
The ADV7390/ADV7391/ADV7392/ADV7393 act as a standard slave device on the bus. The data on the SDA pin is eight bits long, supporting the 7-bit addresses plus the R/
W
bit. It interprets the first byte as the device address and the second byte as the starting subaddress. There is a subaddress auto­increment facility. This allows data to be written to or read from registers in ascending subaddress sequence starting at any valid subaddress. A data transfer is always terminated by a stop condition. The user can also access any unique subaddress register on a one-by-one basis without updating all the registers.
Stop and start conditions can be detected at any stage during the data transfer. If these conditions are asserted out of sequence with normal read and write operations, they cause an immediate jump to the idle condition. During a given SCL high period, the user should issue only a start condition, a stop condition, or a stop condition followed by a start condition. If an invalid subaddress is issued by the user, the ADV7390/
ADV7391/ADV7392/ADV7393 do not issue an acknowledge
but returns to the idle condition. If the user uses the auto­increment method of addressing the encoder and exceeds the highest subaddress, the following actions are taken:
In read mode, the highest subaddress register contents are
output until the master device issues a no acknowledge. This indicates the end of a read. A no acknowledge condition occurs when the SDA line is not pulled low on the ninth pulse.
In write mode, the data for the invalid byte is not loaded
into any subaddress register, a no acknowledge is issued by the ADV7390/ADV7391/ADV7392/ADV7393, and the part returns to the idle condition.
Figure 48. ADV7391/ADV7393 I
2
C Slave Address
Rev. I | Page 26 of 107
Figure 49 shows an example of data transfer for a write sequence and the start and stop conditions. Figure 50 shows bus write and read sequences.
Page 27
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
SDA
SCL
1–7 8
START ADDR R/W ACK SUBADDRESS ACK DATA ACK STOP
9S1–7
Figure 49. I
9
8
2
C Data Transfer
1–7
8
P
9
06234-047
WRITE
SEQUENCE
READ
SEQUENCE
S SLAVE ADDR A(S ) SUBADDR A(S) DATA DATA A(S) P
LSB = 0
S SLAVE ADDR A(S) SUBADDR A(S) S SLAVE ADDR A(S) DATA DATAA(M) A(M) P
S = START BIT P = STOP BIT
A(S) = ACKNOWLEDGE BY SLAVE A(M) = ACKNOWLEDG E BY MASTER
Figure 50. I
2
C Read and Write Sequence
A(S)
LSB = 1
A (S) = NO-ACKNOWLEDGE BY SLAVE A (M) = NO-ACKNOWLEDGE BY MASTER
06234-048
Rev. I | Page 27 of 107
Page 28
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
mode off
1 1 0 Reserved.

REGISTER MAP ACCESS

A microprocessor can read from or write to all registers of the
ADV7390/ADV7391/ADV7392/ADV7393 via the MPU port,
except for registers that are specified as read-only or write-only registers.
The subaddress register determines the register accessed by the next read or write operation. All communication through the MPU port starts with an access to the subaddress register. A read/write operation is then performed from/to the target address, incrementing to the next address until the transaction is complete.
Table 17. Register 0x00
SR7 to Bit Number Register Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Setting Value
0x00 Power
mode
Sleep mode. With this control enabled, the current consumption is reduced to µA level. All DACs and the internal PLL circuit are disabled. Registers can be read from and written to in sleep mode.
PLL and oversampling control. This control allows the internal PLL circuit to be powered down and the oversampling to be switched off.
DAC 3: power on/off. 0 DAC 3 off
DAC 2: power on/off. 0 DAC 2 off
DAC 1: power on/off. 0 DAC 1 off
Reserved. 0 0 0

REGISTER PROGRAMMING

Table 17 to Table 34 describe the functionality of each register. All registers can be read from as well as written to, unless otherwise stated.

SUBADDRESS REGISTER (SR7 TO SR0)

The subaddress register is an 8-bit write-only register. After the MPU port is accessed and a read/write operation is selected, the subaddress is set up. The subaddress register determines which register performs the next operation.
0 Sleep
1 Sleep
mode on 0 PLL on 1 PLL off
1 DAC 3 on
1 DAC 2 on
1 DAC 1 on
0x12
Table 18. Register 0x01 to Register 0x09
SR7 to Bit Number1 Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x01 Mode
select
Reserved. 0 0x00 DDR clock edge alignment
(used only for ED DDR modes)
Reserved 0 Input mode
(see Subaddress 0x30, Bits[7:3] for ED/HD standard selection)
Reserved 0
2
and HD
0 0 Chroma clocked in on rising clock edge and
0 1 Reserved. 1 0 Reserved. 1 1 Luma clocked in on rising clock edge and
0 0 0 SD input. 0 0 1 ED/HD-SDR input.3 0 1 0 ED/HD-DDR input. 0 1 1 Reserved. 1 0 0 Reserved. 1 0 1 Reserved.
1 1 1 ED (at 54 MHz) input.
luma clocked in on falling clock edge.
chroma clocked in on falling clock edge.
Rev. I | Page 28 of 107
Page 29
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
0 Default.
1 Enable manual CSC matrix adjust.
1
SR7 to Bit Number1 Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x02 Mode
Register 0
0x03 ED/HD
CSC Matrix 0
0x04 ED/HD
CSC Matrix 1
0x05 ED/HD
CSC Matrix 2
0x06 ED/HD
CSC Matrix 3
0x07 ED/HD
CSC Matrix 4
0x08 ED/HD
CSC Matrix 5
0x09 ED/HD
CSC Matrix 6
1
x = Logic 0 or Logic 1.
2
ED = enhanced definition = 525p and 625p.
3
Available on the ADV7392/ADV7393 (40-pin devices) only.
4
Subaddress 0x31, Bit 2 must also be enabled (ED/HD). Subaddress 0x84, Bit 6 must also be enabled (SD).
Reserved 0 Zero must be written to this bit. 0x20 HD interlace external
and
HSYNC
VSYNC
1
If using HD
HSYNC/VSYNC
interlace mode, setting this bit to 1 is recommended (see the HD Interlace External
HSYNC
and
VSYNC
Considerations section for more information).
Test pattern black bar4 0 Disabled.
1 Enabled.
Manual CSC matrix adjust 0 Disable manual CSC matrix adjust.
Sync on RGB 0 No sync.
1 Sync on all RGB outputs.
RGB/YPrPb output select 0 RGB component outputs.
1 YPrPb component outputs.
SD sync output enable 0 No sync output.
1
Output SD syncs on
HSYNC
and
VSYNC
pins.
ED/HD sync output enable 0 No sync output.
Output ED/HD syncs on VSYNC
pins.
HSYNC
and
x x LSBs for GY. 0x03
x x LSBs for RV. 0xF0
x x LSBs for BU. x x LSBs for GV. x x LSBs for GU.
x x x x x x x x Bits[9:2] for GY. 0x4E
x x x x x x x x Bits[9:2] for GU. 0x0E
x x x x x x x x Bits[9:2] for GV. 0x24
x x x x x x x x Bits[9:2] for BU. 0x92
x x x x x x x x Bits[9:2] for RV. 0x7C
Rev. I | Page 29 of 107
Page 30
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
disabled.
1 DAC 1 low power enabled.
DAC 2 cable detect
0 Cable detected on
Unconnected DAC autopower-down
0 DAC autopower-down
0x17
Software reset
Reserved
0
0x00
clearing bit.
Table 19. Register 0x0B to Register 0x17
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x0B DAC 1, DAC 2,
DAC 3 output levels
0x0D DAC power
mode
Positive gain to DAC output voltage 0 0 0 0 0 0 0 0 0%. 0x00
0 0 0 0 0 0 0 1 +0.018%. 0 0 0 0 0 0 1 0 +0.036%. … … … … … … … … … 0 0 1 1 1 1 1 1 +7.382%. 0 1 0 0 0 0 0 0 +7.5%.
Negative gain to DAC output voltage 1 1 0 0 0 0 0 0 −7.5%.
1 1 0 0 0 0 0 1 −7.382%. 1 0 0 0 0 0 1 0 −7.364%. … … … … … … … … … 1 1 1 1 1 1 1 1 −0.018%.
DAC 1 low power mode 0 DAC 1 low power
0x00
DAC 2 low power mode 0 DAC 2 low power
disabled.
1 DAC 2 low power enabled.
DAC 3 low power mode 0 DAC 3 low power
disabled.
1 DAC 3 low power enabled.
SD/ED oversample rate select 0 SD = 16×, ED = 8×.
1 SD = 8×, ED = 4×.
Reserved 0 0 0 0
0x10 Cable detection DAC 1 cable detect 0 Cable detected on
DAC 1.
Read only 1 DAC 1 unconnected.
DAC 2. Read only 1 DAC 2 unconnected. Reserved 0 0
disable.
1 DAC autopower-down
enable. Reserved 0 0 0
0x13 Pixel Port
Readback A
0x14 Pixel Port
Readback B
0x16 Control port
readback
2
P[7:0] readback (ADV7390/ADV7391) x x x x x x x x Read only. 0xXX
2
P[15:8] readback (ADV7392/ADV7393)
P[7:0] readback (ADV7392/ADV7393) x x x x x x x x Read only. 0xXX
2
Reserved x x x Read only. 0xXX VSYNC
HSYNC
readback
readback
x
x
SFL readback x Reserved x x
0x00
1
x = Logic 0 or Logic 1.
2
For correct operation, Subaddress 0x01[6:4] must equal the default value of 000.
Software reset 0 Writing a 1 resets the
1
device; this is a self-
Reserved. 0 0 0 0 0 0
Rev. I | Page 30 of 107
Page 31
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
ED/HD standard2
0 0 0 0 0 SMPTE 293M, ITU-BT.1358
525p at 59.94 Hz
0 1 0 0 1 SMPTE 296M-7,
720p at
Table 20. Register 0x30
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Note Value
0x30 ED/HD Mode
Register 1
ED/HD output standard 0 0 EIA-770.2 output
EIA-770.3 output 0 1 EIA-770.1 output 1 0 Output levels for full
input range 1 1 Reserved
ED/HD input synchronization format
0 External
and field inputs
HSYNC, VSYNC
1 Embedded EAV/SAV
codes
0 0 0 1 0 BTA-1004, ITU-BT.1362 525p at 59.94 Hz 0 0 0 1 1 ITU-BT.1358 625p at 50 Hz 0 0 1 0 0 ITU-BT.1362 625p at 50 Hz 0 0 1 0 1 SMPTE 296M-1,
SMPTE 274M-2 0 0 1 1 0 SMPTE 296M-3 720p at 50 Hz 0 0 1 1 1 SMPTE 296M-4,
SMPTE 274M-5 0 1 0 0 0 SMPTE 296M-6 720p at 25 Hz
ED
0x00
HD
1
720p at 60 Hz/59.94 Hz
720p at 30 Hz/29.97 Hz
1
Synchronization can be controlled with a combination of either
2
See the HD Interlace External
HSYNC
and
0 1 0 1 0 SMPTE 240M 1035i at
0 1 0 1 1 Reserved 0 1 1 0 0 Reserved 0 1 1 0 1 SMPTE 274M-4,
0 1 1 1 0 SMPTE 274M-6 1080i at 25 Hz 0 1 1 1 1 SMPTE 274M-7,
1 0 0 0 0 SMPTE 274M-9 1080p at 25 Hz 1 0 0 0 1 SMPTE 274M-10,
1 0 0 1 0 ITU-R BT.709-5 1080Psf at 24 Hz
10011 to 11111 Reserved
and
VSYNC
Considerations section for more information.
HSYNC
VSYNC
inputs or
SMPTE 296M-8
24 Hz/23.98 Hz
60 Hz/59.94 Hz
1080i at
SMPTE 274M-5
30 Hz/29.97 Hz
1080p at
SMPTE 274M-8
30 Hz/29.97 Hz
1080p at
SMPTE 274M-11
and field inputs, depending on Subaddress 0x34, Bit 6.
HSYNC
24 Hz/23.98 Hz
Rev. I | Page 31 of 107
Page 32
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Table 21. Register 0x31 to Register 0x33
SR7 to Bit Number Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x31 ED/HD Mode
0x32 ED/HD Mode
0x33 ED/HD Mode
1
Available on the ADV7392/ADV7393 (40-pin devices) only.
Register 2
Register 3
Register 4
ED/HD pixel data valid 0 Pixel data valid off. 0x00
1 Pixel data valid on.
HD oversample rate select 0 4×.
1 2×.
ED/HD test pattern enable 0 HD test pattern off.
1 HD test pattern on.
ED/HD test pattern hatch/field 0 Hatch.
1 Field/frame.
ED/HD vertical blanking interval (VBI) open
ED/HD undershoot limiter 0 0 Disabled.
ED/HD sharpness filter 0 Disabled.
ED/HD Y delay with respect to the falling edge of
ED/HD color delay with respect to the falling edge of
ED/HD CGMS enable 0 Disabled.
ED/HD CGMS CRC enable 0 Disabled.
ED/HD Cr/Cb sequence 0
Reserved 0 0 must be written to this bit. ED/HD input format 0 8-bit input.
Sinc compensation filter on DAC 1, DAC 2, DAC 3
Reserved 0 0 must be written to this bit. ED/HD chroma SSAF filter 0 Disabled.
Reserved 1 1 must be written to this bit. ED/HD double buffering 0 Disabled.
HSYNC
HSYNC
0 Disabled. 1 Enabled.
0 1 −11 IRE. 1 06 IRE. 1 11.5 IRE.
1 Enabled. 0 0 0 0 clock cycles. 0x00 0 0 1 One clock cycle. 0 1 0 Two clock cycles. 0 1 1 Three clock cycles. 1 0 0 Four clock cycles. 0 0 0 0 clock cycles. 0 0 1 One clock cycle. 0 1 0 Two clock cycles. 0 1 1 Three clock cycles. 1 0 0 Four clock cycles.
1 Enabled.
1 Enabled.
Cb after falling edge of
1
1 10-bit input1. 0 Disabled. 1 Enabled.
1 Enabled.
1 Enabled.
Cr after falling edge of
HSYNC
HSYNC
0x68
. .
Rev. I | Page 32 of 107
Page 33
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Reserved
0 0 must be written to this bit.
Reserved
0
ED/HD adaptive filter 0
Mode A.
1 Enabled.
Table 22. Register 0x34 to Register 0x38
SR7 to Bit Number1 Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x34 ED/HD Mode
Register 5
ED/HD timing reset 0 Internal ED/HD timing counters enabled. 0x48
1 Resets the internal ED/HD timing counters.
ED/HD
HSYNC
control2
0
HSYNC
output control (see Table 55).
1
ED/HD
VSYNC
control2
0
VSYNC
output control (see Table 56).
1 Reserved 1 ED Macrovision® enable3 0 ED Macrovision disabled.
1 ED Macrovision enabled.
0 0 = Field input.
1
1 =
VSYNC
input. 0 Update field/line counter. 1 Field/line counter free running.
0x35 ED/HD Mode
VSYNC
ED/HD
input/field
input
ED/HD horizontal/vertical counter mode
4
Reserved 0 0x00
Register 6
ED/HD sync on PrPb 0 Disabled.
1 Enabled.
ED/HD color DAC swap 0 DAC 2 = Pb, DAC 3 = Pr
1 DAC 2 = Pr, DAC 3 = Pb.
ED/HD gamma correction curve select
ED/HD gamma correction enable
mode
ED/HD adaptive filter
0 Gamma Correction Curve A. 1 Gamma Correction Curve B. 0 Disabled. 1 Enabled.
1 Mode B. 0 Disabled.
enable
0x36 ED/HD Y level5 ED/HD Test Pattern Y level x x x x x x x x Y level value. 0xA0 0x37 ED/HD Cr level5 ED/HD Test Pattern Cr level x x x x x x x x Cr level value. 0x80 0x38 ED/HD Cb level5 ED/HD Test Pattern Cb level x x x x x x x x Cb level value. 0x80
1
x = Logic 0 or Logic 1.
2
Used in conjunction with ED/HD sync output enable in Subaddress 0x02, Bit 7 = 1.
3
Applies to the ADV7390 and ADV7392 only.
4
When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.
5
For use with ED/HD internal test patterns only (Subaddress 0x31, Bit 2 = 1).
Rev. I | Page 33 of 107
Page 34
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
INV_PBLANK_POL 0 Disabled
… … … … …
1
0
0
0
Gain B = −8
Table 23. Register 0x39 to Register 0x43
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x39 ED/HD Mode
Register 7
0X3A ED/HD Mode
Register 8
0x40 ED/HD
sharpness filter gain
Reserved 0 0 0 0 0 0x00 ED/HD EIA/CEA-861B
synchronization compliance
Reserved 0 0 INV_PHSYNC_POL 0 Disabled 0x00
INV_PVSYNC_POL 0 Disabled
Reserved 0 0 0 0 0 ED/HD sharpness filter gain
Value A
ED/HD sharpness filter gain Value B
0 Disabled 1 Enabled
1 Enabled
1 Enabled
1 Enabled
0 0 0 0 Gain A = 0 0x00 0 0 0 1 Gain A = +1
0 1 1 1 Gain A = +7 1 0 0 0 Gain A = −8 1 1 1 Gain A = −1 0 0 0 0 Gain B = 0 0 0 0 1 Gain B = +1 … … 0 1 1 1 Gain B = +7
0x41 ED/HD CGMS
Data 0
0x42 ED/HD CGMS
Data 1
0x43 ED/HD CGMS
Data 2
… 1 1 1 1 Gain B = −1
ED/HD CGMS data bits 0 0 0 0 C19 C18 C17 C16 CGMS C19 to C16 0x00
ED/HD CGMS data bits C15 C14 C13 C12 C11 C10 C9 C8 CGMS C15 to C8 0x00
ED/HD CGMS data bits C7 C6 C5 C4 C3 C2 C1 C0 CGMS C7 to C0 0x00
Rev. I | Page 34 of 107
Page 35
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
0x44
ED/HD Gamma A0
ED/HD Gamma Curve A (Point 24)
x
x
x
x
x
x
x
x
A0
0x00
0x4C
ED/HD Gamma A8
ED/HD Gamma Curve A (Point 192)
x
x
x
x
x
x
x
x
A8
0x00
0x55
ED/HD Gamma B7
ED/HD Gamma Curve B (Point 160)
x
x
x
x
x
x
x
x
B7
0x00
Table 24. Register 0x44 to Register 0x57
SR7 to Bit Number1 Register Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Setting Value
0x45 ED/HD Gamma A1 ED/HD Gamma Curve A (Point 32) x x x x x x x x A1 0x00 0x46 ED/HD Gamma A2 ED/HD Gamma Curve A (Point 48) x x x x x x x x A2 0x00 0x47 ED/HD Gamma A3 ED/HD Gamma Curve A (Point 64) x x x x x x x x A3 0x00 0x48 ED/HD Gamma A4 ED/HD Gamma Curve A (Point 80) x x x x x x x x A4 0x00 0x49 ED/HD Gamma A5 ED/HD Gamma Curve A (Point 96) x x x x x x x x A5 0x00 0x4A ED/HD Gamma A6 ED/HD Gamma Curve A (Point 128) x x x x x x x x A6 0x00 0x4B ED/HD Gamma A7 ED/HD Gamma Curve A (Point 160) x x x x x x x x A7 0x00
0x4D ED/HD Gamma A9 ED/HD Gamma Curve A (Point 224) x x x x x x x x A9 0x00 0x4E ED/HD Gamma B0 ED/HD Gamma Curve B (Point 24) x x x x x x x x B0 0x00 0x4F ED/HD Gamma B1 ED/HD Gamma Curve B (Point 32) x x x x x x x x B1 0x00 0x50 ED/HD Gamma B2 ED/HD Gamma Curve B (Point 48) x x x x x x x x B2 0x00 0x51 ED/HD Gamma B3 ED/HD Gamma Curve B (Point 64) x x x x x x x x B3 0x00 0x52 ED/HD Gamma B4 ED/HD Gamma Curve B (Point 80) x x x x x x x x B4 0x00 0x53 ED/HD Gamma B5 ED/HD Gamma Curve B (Point 96) x x x x x x x x B5 0x00 0x54 ED/HD Gamma B6 ED/HD Gamma Curve B (Point 128) x x x x x x x x B6 0x00
0x56 ED/HD Gamma B8 ED/HD Gamma Curve B (Point 192) x x x x x x x x B8 0x00 0x57 ED/HD Gamma B9 ED/HD Gamma Curve B (Point 224) x x x x x x x x B9 0x00
1
x = Logic 0 or Logic 1.
Rev. I | Page 35 of 107
Page 36
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
0
0
0
1
Gain B = +1
0
1
1
1
Gain A = +7
ED/HD Adaptive Filter Gain 3,
0
0
0
0
Gain B = 0
Table 25. Register 0x58 to Register 0x5D
SR7 to Bit Number1 Register Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Setting Value
0x58 ED/HD Adaptive Filter Gain 1 ED/HD Adaptive Filter Gain 1,
Value A
ED/HD Adaptive Filter Gain 1, Value B
0x59 ED/HD Adaptive Filter Gain 2 ED/HD Adaptive Filter Gain 2,
Value A
ED/HD Adaptive Filter Gain 2, Value B
0x5A ED/HD Adaptive Filter Gain 3 ED/HD Adaptive Filter Gain 3,
Value A
0 0 0 0 Gain A = 0 0x00 0 0 0 1 Gain A = +1 … … … … … 0 1 1 1 Gain A = +7 1 0 0 0 Gain A = −8 … … … … …
1 1 1 1 Gain A = −1 0 0 0 0 Gain B = 0 0 0 0 1 Gain B = +1 … … … … … 0 1 1 1 Gain B = +7 1 0 0 0 Gain B = −8 … … … … … 1 1 1 1 Gain B = −1 0 0 0 0 Gain A = 0 0x00 0 0 0 1 Gain A = +1 … … … … … 0 1 1 1 Gain A = +7 1 0 0 0 Gain A = −8 … … … … … 1 1 1 1 Gain A = −1 0 0 0 0 Gain B = 0
… … … … … 0 1 1 1 Gain B = +7 1 0 0 0 Gain B = −8 … … … … … 1 1 1 1 Gain B = −1 0 0 0 0 Gain A = 0 0x00 0 0 0 1 Gain A = +1 … … … … …
0x5B ED/HD Adaptive Filter
0x5C ED/HD Adaptive Filter
0x5D ED/HD Adaptive Filter
1
x = Logic 0 or Logic 1.
Threshold A
Threshold B
Threshold C
1 0 0 0 Gain A = −8 … … … … … 1 1 1 1 Gain A = −1
Value B
ED/HD Adaptive Filter Threshold A x x x x x x x x Threshold A 0x00
ED/HD Adaptive Filter Threshold B x x x x x x x x Threshold B 0x00
ED/HD Adaptive Filter Threshold C x x x x x x x x Threshold C 0x00
Rev. I | Page 36 of 107
0 0 0 1 Gain B = +1 … … … … … 0 1 1 1 Gain B = +7 1 0 0 0 Gain B = −8 … … … … … 1 1 1 1 Gain B = −1
Page 37
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
ED/HD CGMS Type B
H5
H4
H3
H2
H1
H0
H5 to H0
0x69
ED/HD CGMS Type B
ED/HD CGMS Type B
P87
P86
P85
P84
P83
P82
P81
P80
P87 to P80
0x00
Table 26. Register 0x5E to Register 0x6E
SR7 to Bit Number Register Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Setting Value
0x5E ED/HD CGMS Type B
Register 0
0x5F ED/HD CGMS Type B
Register 1
0x60 ED/HD CGMS Type B
Register 2
0x61 ED/HD CGMS Type B
Register 3
0x62 ED/HD CGMS Type B
Register 4
0x63 ED/HD CGMS Type B
Register 5
0x64 ED/HD CGMS Type B
Register 6
0x65 ED/HD CGMS Type B
Register 7
0x66 ED/HD CGMS Type B
Register 8
0x67 ED/HD CGMS Type B
Register 9
0x68 ED/HD CGMS Type B
Register 10
ED/HD CGMS Type B enable
ED/HD CGMS Type B CRC enable
header bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data dits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits
0 Disabled 0x00 1 Enabled 0 Disabled 1 Enabled
P7 P6 P5 P4 P3 P2 P1 P0 P7 to P0 0x00
P15 P14 P13 P12 P11 P10 P9 P8 P15 to P8 0x00
P23 P22 P21 P20 P19 P18 P17 P16 P23 to P16 0x00
P31 P30 P29 P28 P27 P26 P25 P24 P31 to P24 0x00
P39 P38 P37 P36 P35 P34 P33 P32 P39 to P32 0x00
P47 P46 P45 P44 P43 P42 P41 P40 P47 to P40 0x00
P55 P54 P53 P52 P51 P50 P49 P48 P55 to P48 0x00
P63 P62 P61 P60 P59 P58 P57 P56 P63 to P56 0x00
P71 P70 P69 P68 P67 P66 P65 P64 P71 to P64 0x00
P79 P78 P77 P76 P75 P74 P73 P72 P79 to P72 0x00
Register 11
0x6A ED/HD CGMS Type B
Register 12
0x6B ED/HD CGMS Type B
Register 13
0x6C ED/HD CGMS Type B
Register 14
0x6D ED/HD CGMS Type B
Register 15
0x6E ED/HD CGMS Type B
Register 16
data bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits ED/HD CGMS Type B
data bits
P95 P94 P93 P92 P91 P90 P89 P88 P95 to P88 0x00
P103 P102 P101 P100 P99 P98 P97 P96 P103 to P96 0x00
P111 P110 P109 P108 P107 P106 P105 P104 P111 to P104 0x00
P119 P118 P117 P116 P115 P114 P113 P112 P119 to P112 0x00
P127 P126 P125 P124 P123 P122 P121 P120 P127 to P120 0x00
Rev. I | Page 37 of 107
Page 38
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
SD luma filter
0
0
0
LPF NTSC
0
0
1 0.65 MHz
1 Enabled
0x83
SD Mode
SD pedestal YPrPb output 0
No pedestal on YPrPb
0x04 1
Enabled
1
1 Closed captioning on both fields
Table 27. Register 0x80 to Register 0x83
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x80 SD Mode
Register 1
0x82 SD Mode
Register 2
SD standard 0 0 NTSC 0x10
0 1 PAL B, PAL D, PAL G, PAL H, PAL I 1 0 PAL M 1 1 PAL N
0 0 1 LPF PAL 0 1 0 Notch NTSC 0 1 1 Notch PAL 1 0 0 Luma SSAF 1 0 1 Luma CIF 1 1 0 Luma QCIF 1 1 1 Reserved
SD chroma filter 0 0 0 1.3 MHz
0 1 0 1.0 MHz 0 1 1 2.0 MHz 1 0 0 Reserved 1 0 1 Chroma CIF 1 1 0 Chroma QCIF 1 1 1 3.0 MHz
SD PrPb SSAF filter 0 Disabled 0x0B
1 Enabled
SD DAC Output 1 0
1 Reserved 0 SD pedestal 0 Disabled
See
Tab le 37
Register 3
SD square pixel mode 0 Disabled
1 Enabled SD VCR FF/RW sync 0 Disabled
1 Enabled SD pixel data valid 0 Disabled
1 Enabled SD active video edge
control
SD Output Levels Y 0 Y = 700 mV/300 mV
SD Output Levels PrPb 0 0 700 mV p-p (PAL), 1000 mV p-p (NTSC)
SD vertical blanking interval (VBI) open
SD closed captioning field control
Reserved 0 Reserved
0 Disabled
1 Enabled
1 7.5 IRE pedestal on YPrPb
1 Y = 714 mV/286 mV
0 1 700 mV p-p
1 0 1000 mV p-p
1 1 648 mV p-p
0 Disabled
0 0 Closed captioning disabled
0 1 Closed captioning on odd field only
1 0 Closed captioning on even field only
Rev. I | Page 38 of 107
Page 39
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
0x84
SD Mode
Reserved
0 0x00
SD color bars 0
Disabled.
1 DAC 2 = chroma, DAC 3 = luma.
Macrovision compliance).
1 1 Reserved.
SD hue adjust 0
Disabled.
1
Enabled.
Table 28. Register 0x84 to Register 0x87
SR7 to Bit Number Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
Register 4
0x86 SD Mode
Register 5
0x87 SD Mode
Register 6
SD SFL/SCR/TR mode select 0 0 Disabled.
1 1 SFL mode enabled.
SD active video length 0 720 pixels.
1 710 (NTSC), 702 (PAL).
SD chroma 0 Chroma enabled.
1 Chroma disabled.
SD burst 0 Enabled.
1 Disabled.
1 Enabled.
SD luma/chroma swap 0 DAC 2 = luma, DAC 3 = chroma.
NTSC color subcarrier adjust (delay from
HSYNC
the falling edge of output
pulse to
the start of color burst)
0 0 5.17 μs. 0x02 0 1 5.31 μs. 1 0 5.59 μs (must be set for
Reserved 0 SD EIA/CEA-861B synchronization
compliance
0 Disabled.
1 Enabled. Reserved 0 0 SD horizontal/vertical counter mode1 0 Update field/line counter.
1 Field/line counter free running. SD RGB color swap2 0 Normal.
1 Color reversal enabled. SD luma and color scale control 0 Disabled. 0x00
1 Enabled. SD luma scale saturation 0 Disabled.
1 Enabled.
1
When set to 0, the horizontal/vertical counters automatically wrap around at the end of the line/field/frame of the selected standard. When set to 1, the
horizontal/vertical counters are free running and wrap around when external sync signals indicate to do so.
2
Available on the ADV7392/ADV7393 (40-pin devices) only.
1 Enabled. SD brightness 0 Disabled.
1 Enabled. SD luma SSAF gain 0 Disabled.
SD input standard autodetection 0 Disabled.
1 Enabled. Reserved 0 0 must be written to this bit. SD RGB input enable2 0 SD YCrCb input.
1 SD RGB input.
Rev. I | Page 39 of 107
Page 40
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Table 29. Register 0x88 to Register 0x89
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x88 SD Mode Register 7 Reserved 0 0x00
SD noninterlaced mode 0 Disabled.
1 Enabled.
SD double buffering 0 Disabled.
1 Enabled.
SD input format 0 0 8-bit YCbCr input.
0 1 16-bit YCbCr input.1 1 0 10-bit YCbCr/16-bit SD RGB
1 1 Reserved.
SD digital noise reduction 0 Disabled.
1 Enabled.
SD gamma correction enable 0 Disabled.
1 Enabled.
SD gamma correction curve select 0 Gamma Correction Curve A.
1 Gamma Correction Curve B.
0x89 SD Mode Register 8 SD undershoot limiter 0 0 Disabled. 0x00
0 1 −11 IRE. 1 0 −6 IRE.
1 1 −1.5 IRE. Reserved 0 0 must be written to this bit. Reserved 0 Reserved. SD chroma delay 0 0 Disabled.
0 1 4 clock cycles.
1 0 8 clock cycles.
1 1 Reserved. Reserved 0 0 0 must be written to these bits.
1
Available on the ADV7392/ADV7393 (40-pin devices) only.
Table 30. Register 0x8A to Register 0x98
SR7 to Bit Number1 Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x8A SD Timing Register 0 SD slave/master mode 0 Slave mode. 0x08
1 Master mode.
SD timing mode 0 0 Mode 0.
0 1 Mode 1. 1 0 Mode 2.
1 1 Mode 3. Reserved 1 SD luma delay 0 0 No delay.
0 1 Two clock cycles.
1 0 Four clock cycles.
1 1 Six clock cycles. SD minimum luma value 0 −40 IRE.
1 −7.5 IRE. SD timing reset
A low-high-low transition
x
1
input.
resets the internal SD timing counters.
Rev. I | Page 40 of 107
Page 41
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
X
0x94
SD Closed Captioning
Data on odd fields
x x x x x x x x Data Bits[15:8].
0x00
0x95
SD Pedestal Register 0
Pedestal on odd fields
17
16
15
14
13
12
11
10
Setting any of these bits
0x00
SR7 to Bit Number1 Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0x8B SD Timing Register 1
Note: Applicable in master modes only, that is, Subaddress 0x8A, Bit 0 = 1.
SD
SD
HSYNC
HSYNC
width
VSYNC
to
delay
0 0 t 0 1 ta = four clock cycles. 1 0 ta = 16 clock cycles. 1 1 ta = 128 clock cycles. 0 0 tb = 0 clock cycles. 0 1 tb = four clock cycles. 1 0 tb = eight clock cycles. 1 1 tb = 18 clock cycles.
SD
HSYNC
to
VSYNC
rising
edge delay (Mode 1 only)
VSYNC
SD
width (Mode 2 only)
0 0 One clock cycle.
2
0 t
2
1 t
X
0 1 Four clock cycles. 1 0 16 clock cycles. 1 1 128 clock cycles.
SD
HSYNC
to pixel data adjust
0 0 0 clock cycles. 0 1 One clock cycle. 1 0 Two clock cycles. 1 1 Three clock cycles.
0x8C SD FSC Register 03 Subcarrier Frequency Bits[7:0] x x x x x x x x Subcarrier Frequency
0x8D
0x8E
0x8F
SD F
SD F
SD F
Register 13
SC
Register 23
SC
Register 33
SC
Subcarrier Frequency Bits[15:8] x x x x x x x x Subcarrier Frequency
Subcarrier Frequency Bits[23:16] x x x x x x x x Subcarrier Frequency
Subcarrier Frequency Bits[31:24] x x x x x x x x Subcarrier Frequency
0x90 SD FSC Phase Subcarrier Phase Bits[9:2] x x x x x x x x Subcarrier Phase Bits[9:2]. 0x00 0x91 SD Closed Captioning Extended data on even fields x x x x x x x x Extended Data Bits[7:0]. 0x00 0x92 SD Closed Captioning Extended data on even fields x x x x x x x x Extended Data Bits[15:8]. 0x00 0x93 SD Closed Captioning Data on odd fields x x x x x x x x Data Bits[7:0]. 0x00
= one clock cycle. 0x00
a
= tb.
c
= tb + 32 µs.
c
0x1F
Bits[7:0].
0x7C
Bits[15:8].
0xF0
Bits[23:16].
0x21
Bits[31:24].
0x96 SD Pedestal Register 1 Pedestal on odd fields 25 24 23 22 21 20 19 18 0x00 0x97 SD Pedestal Register 2 Pedestal on even fields 17 16 15 14 13 12 11 10 0x00 0x98 SD Pedestal Register 3 Pedestal on even fields 25 24 23 22 21 20 19 18 0x00
1
x = Logic 0 or Logic 1.
2
X = don’t care.
3
SD subcarrier frequency registers default to NTSC subcarrier frequency values.
to 1 disables the pedestal on the line number indicated by the bit settings.
Rev. I | Page 41 of 107
Page 42
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
0x99
SD CGMS/WSS 0
SD CGMS data
x x x x CGMS Data Bits[C19:C16]
0x00
0x9A
SD CGMS/WSS 1 SD CGMS/WSS data
x
x
x x x x CGMS Data Bits[C13:C8] or 0x00
0xA0
SD hue adjust
SD hue adjust value
x
x
x
x
x
x
x
x
SD Hue Adjust Bits[7:0]
0x00
0xA2
SD luma SSAF SD luma SSAF gain/attenuation
0
0
0
0
−4 dB
0x00
0
1
1
1
+7/16 [−7/8]
Table 31. Register 0x99 to Register 0xA5
SR7 to Bit Number1 Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
SD CGMS CRC 0 Disabled
1 Enabled
SD CGMS on odd fields 0 Disabled
1 Enabled
SD CGMS on even fields 0 Disabled
1 Enabled
SD WSS 0 Disabled
1 Enabled
WSS Data Bits[W13:W8]
SD CGMS data x x CGMS Data Bits[C15:C14]
0x9B SD CGMS/WSS 2 SD CGMS/WSS data x x x x x x x x CGMS Data Bits[C7:C0] or
0x9C SD scale LSB LSBs for SD Y scale value x x SD Y Scale Bits[1:0] 0x00
LSBs for SD Cb scale value x x SD Cb Scale Bits[1:0] LSBs for SD Cr scale value x x SD Cr Scale Bits[1:0]
LSBs for SD FSC phase x x Subcarrier Phase Bits[1:0] 0x9D SD Y scale SD Y scale value x x x x x x x x SD Y Scale Bits[9:2] 0x00 0x9E SD Cb scale SD Cb scale value x x x x x x x x SD Cb Scale Bits[9:2] 0x00 0x9F SD Cr scale SD Cr scale value x x x x x x x x SD Cr Scale Bits[9:2] 0x00
0xA1 SD brightness/WSS SD brightness value x x x x x x x SD Brightness Bits[6:0] 0x00
SD blank WSS data 0 Disabled
1 Enabled
(only applicable if Subaddress
0x87, Bit 4 = 1)
Reserved 0 0 0 0 0xA3 SD DNR 0 Coring gain border (in DNR
mode, the values in brackets
apply)
Coring gain data (in DNR
mode, the values in brackets
apply)
… … … … … 0 1 1 0 0 dB … … … … … 1 1 0 0 +4 dB
0 0 0 0 No gain 0x00 0 0 0 1 +1/16 [−1/8] 0 0 1 0 +2/16 [−2/8] 0 0 1 1 +3/16 [−3/8] 0 1 0 0 +4/16 [−4/8] 0 1 0 1 +5/16 [−5/8] 0 1 1 0 +6/16 [−6/8] 0 1 1 1 +7/16 [−7/8] 1 0 0 0 +8/16 [−1] 0 0 0 0 No gain 0 0 0 1 +1/16 [−1/8] 0 0 1 0 +2/16 [−2/8] 0 0 1 1 +3/16 [−3/8] 0 1 0 0 +4/16 [−4/8] 0 1 0 1 +5/16 [−5/8] 0 1 1 0 +6/16 [−6/8]
WSS Data Bits[W7:W0]
0x00
1 0 0 0 +8/16 [−1]
Rev. I | Page 42 of 107
Page 43
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
SR0
Register
Bit Description
7
6 5 4
3
2
1
0
Register Setting
Value
0xAC
SD Gamma A6
SD Gamma Curve A (Point 128)
x
x
x
x
x
x
x
x
A6
0x00
0xB6
SD Gamma B6
SD Gamma Curve B (Point 128)
x
x
x
x
x
x
x
x
B6
0x00
SR7 to Bit Number1 Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0xA4 SD DNR 1 DNR threshold 0 0 0 0 0 0 0 0x00
0 0 0 0 0 1 1 … … … … … … … 1 1 1 1 1 0 62 1 1 1 1 1 1 63
Border area 0 Two pixels
1 Four pixels
Block size 0 Eight pixels
1 16 pixels
0xA5 SD DNR 2 DNR input select 0 0 1 Filter A 0x00
0 1 0 Filter B 0 1 1 Filter C 1 0 0 Filter D
DNR mode 0 DNR mode
1 DNR sharpness mode
DNR block offset 0 0 0 0 0 pixel offset
0 0 0 1 One pixel offset … … … … … 1 1 1 0 14 pixel offset 1 1 1 1 15 pixel offset
1
x = Logic 0 or Logic 1.
Table 32. Register 0xA6 to Register 0xBB
SR7 to Bit Number1 Reset
0xA6 SD Gamma A0 SD Gamma Curve A (Point 24) x x x x x x x x A0 0x00 0xA7 SD Gamma A1 SD Gamma Curve A (Point 32) x x x x x x x x A1 0x00 0xA8 SD Gamma A2 SD Gamma Curve A (Point 48) x x x x x x x x A2 0x00 0xA9 SD Gamma A3 SD Gamma Curve A (Point 64) x x x x x x x x A3 0x00 0xAA SD Gamma A4 SD Gamma Curve A (Point 80) x x x x x x x x A4 0x00 0xAB SD Gamma A5 SD Gamma Curve A (Point 96) x x x x x x x x A5 0x00
0xAD SD Gamma A7 SD Gamma Curve A (Point 160) x x x x x x x x A7 0x00 0xAE SD Gamma A8 SD Gamma Curve A (Point 192) x x x x x x x x A8 0x00 0xAF SD Gamma A9 SD Gamma Curve A (Point 224) x x x x x x x x A9 0x00 0xB0 SD Gamma B0 SD Gamma Curve B (Point 24) x x x x x x x x B0 0x00 0xB1 SD Gamma B1 SD Gamma Curve B (Point 32) x x x x x x x x B1 0x00 0xB2 SD Gamma B2 SD Gamma Curve B (Point 48) x x x x x x x x B2 0x00 0xB3 SD Gamma B3 SD Gamma Curve B (Point 64) x x x x x x x x B3 0x00 0xB4 SD Gamma B4 SD Gamma Curve B (Point 80) x x x x x x x x B4 0x00 0xB5 SD Gamma B5 SD Gamma Curve B (Point 96) x x x x x x x x B5 0x00
0xB7 SD Gamma B7 SD Gamma Curve B (Point 160) x x x x x x x x B7 0x00 0xB8 SD Gamma B8 SD Gamma Curve B (Point 192) x x x x x x x x B8 0x00 0xB9 SD Gamma B9 SD Gamma Curve B (Point 224) x x x x x x x x B9 0x00 0xBA SD brightness detect SD brightness value x x x x x x x x Read only 0xXX
Rev. I | Page 43 of 107
Page 44
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Reserved
0 0 0 Reserved
0xC9
Teletext control
Teletext enable 0
Disabled.
0x00
SR7 to Bit Number1 Reset SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0xBB Field count Field count x x x Read only 0x0X
Encoder version code 0 0 Read only; first
encoder version
2
0 1 Read only; second
encoder version
1
x = Logic 0 or Logic 1.
2
See the HD Interlace External
HSYNC
and
VSYNC
Considerations section for information about the first encoder version.
Table 33. Register 0xC9 to Register 0xCE
SR7 to Bit Number Reset
SR0 Register Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
1 Enabled.
Teletext request mode 0 Line request signal.
1 Bit request signal.
Teletext input pin
1
select
0
VSYNC
1 P0.
.
Reserved 0 0 0 0 0 Reserved.
0xCA Teletext request
control
Teletext request falling edge position control
0 0 0 0 0 clock cycles. 0x00 0 0 0 1 One clock cycle.
1 1 1 0 14 clock cycles. 1 1 1 1 15 clock cycles.
Teletext request rising edge position control
0 0 0 0 0 clock cycles. 0 0 0 1 One clock cycle. … … … … … 1 1 1 0 14 clock cycles.
1 1 1 1 15 clock cycles. 0xCB TTX Line Enable 0 Teletext on odd fields 22 21 20 19 18 17 16 15 Setting any of these bits 0xCC TTX Line Enable 1 Teletext on odd fields 14 13 12 11 10 9 8 7 0x00 0xCD TTX Line Enable 2 Teletext on even fields 22 21 20 19 18 17 16 15 0x00 0xCE TTX Line Enable 3 Teletext on even fields 14 13 12 11 10 9 8 7 0x00
1
The use of P0 as the teletext input pin is available on the ADV7392/ADV7393 (40-pin devices) only.
to 1 enables teletext on the line number indicated by the bit settings.
0x00
Rev. I | Page 44 of 107
Page 45
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
0xE9
Macrovision
MV control bits
x
x
x
x
x
x
x
x 0x00
0xF1
Macrovision
MV control bits
0 0 0 0 0 0 0
x
Bits[7:1] must be 0.
0x00
Table 34. Register 0xE0 to Register 0xF1
SR7 to Bit Number1 Reset
SR0 Register2 Bit Description 7 6 5 4 3 2 1 0 Register Setting Value
0xE0 Macrovision MV control bits x x x x x x x x 0x00 0xE1 Macrovision MV control bits x x x x x x x x 0x00 0xE2 Macrovision MV control bits x x x x x x x x 0x00 0xE3 Macrovision MV control bits x x x x x x x x 0x00 0xE4 Macrovision MV control bits x x x x x x x x 0x00 0xE5 Macrovision MV control bits x x x x x x x x 0x00 0xE6 Macrovision MV control bits x x x x x x x x 0x00 0xE7 Macrovision MV control bits x x x x x x x x 0x00 0xE8 Macrovision MV control bits x x x x x x x x 0x00
0xEA Macrovision MV control bits x x x x x x x x 0x00 0xEB Macrovision MV control bits x x x x x x x x 0x00 0xEC Macrovision MV control bits x x x x x x x x 0x00 0xED Macrovision MV control bits x x x x x x x x 0x00 0xEE Macrovision MV control bits x x x x x x x x 0x00 0xEF Macrovision MV control bits x x x x x x x x 0x00 0xF0 Macrovision MV control bits x x x x x x x x 0x00
1
x = Logic 0 or Logic 1.
2
Macrovision registers are available on the ADV7390 and the ADV7392 only.
Rev. I | Page 45 of 107
Page 46
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
MPEG2
DECODER
CLKIN
P[7:0]
27MHz
YCrCb
ADV7390/
ADV7391
VSYNC, HSYNC
2
8
06234-049
3FF 00 00 XY Y0 Y1Cr0
CLKIN
NOTES
1. SUBADDRESS 0x01 [2:1] S HOULD BE SET TO 00 IN THIS CASE.
P[7:0]
Cb0
06234-050
3FF 00 00
XY Cb0 Cr0Y1
CLKIN
P[7:0] Y0
NOTES
1. SUBADDRESS 0x01 [2:1] S HOULD BE SET TO 11 IN THI S CAS E .
06234-051
MPEG2
DECODER
CLKIN
P[7:0]
INTERLACED TO
PROGRESSIVE
YCrCb
ADV7390/
ADV7391
VSYNC, HSYNC
8
2
YCrCb
06234-052
3FF 00 00 XY Cb0 Y0 Y1Cr0
CLKIN
P[7:0]
06234-053

ADV7390/ADV7391 INPUT CONFIGURATION

The ADV7390/ADV7391 support a number of different input modes. The desired input mode is selected using Subaddress 0x01, Bits[6:4]. The ADV7390/ADV7391 default to standard definition (SD) mode on power-up. Table 35 provides an overview of all possible input configurations. Each input mode is described in detail in this section. Note that the WLCSP option is only configured to support SD as shown in Figure 51.
Table 35. ADV7390/ADV7391 Input Configuration
Input Mode P7 P6 P5 P4 P3 P2 P1 P0
000 SD YCrCb 010 ED/HD-DDR YCrCb 111 ED (at 54 MHz) YCrCb

STANDARD DEFINITION

Subaddress 0x01, Bits[6:4] = 000

SD YCrCb data can be input in an interleaved 4:2:2 format over an 8-bit bus rate of 27 MHz. A 27 MHz clock signal must be provided on the CLKIN pin. If required, external synchroni­zation signals can be provided on the
HSYNC
Embedded EAV/SAV timing codes are also supported. The ITU-R BT.601/656 input standard is supported. The interleaved pixel data is input on Pin P7 to Pin P0, with Pin P0 being the LSB.
and
VSYNC
pins.
The CrCb pixel data is also input on Pin P7 to Pin P0 on the opposite edge of CLKIN. Pin P0 is the LSB.
Whether the Y data is clocked in on the rising or falling edge of CLKIN is determined by Subaddress 0x01, Bits[2:1] (see Figure 52 and Figure 53).
Figure 52. ED/HD-DDR Input Sequence (EAV/SAV)—Option A
Figure 53. ED/HD-DDR Input Sequence (EAV/SAV)—Option B
Figure 51. SD Example Application

ENHANCED DEFINITION/HIGH DEFINITION

Subaddress 0x01, Bits[6:4] = 010

Enhanced definition (ED) or high definition (HD) YCrCb data can be input in an interleaved 4:2:2 format over an 8-bit DDR bus. The clock signal must be provided on the CLKIN pin. If required, external synchronization signals can be provided on
HSYNC
the codes are also supported.

8-Bit 4:2:2 ED/HD YCrCb Mode (DDR)

In 8-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is input on Pin P7 to Pin P0 on either the rising or falling edge of CLKIN. Pin P0 is the LSB.
and
VSYNC
pins. Embedded EAV/SAV timing
Figure 54. ED/HD-DDR Example Application

ENHANCED DEFINITION (AT 54 MHz)

Subaddress 0x01, Bits[6:4] = 111

ED YCrCb data can be input in an interleaved 4:2:2 format over an 8-bit bus rate of 54 MHz.
A 54 MHz clock signal must be provided on the CLKIN pin. Embedded EAV/SAV timing codes are supported. External synchronization signals are not supported in this mode.
The interleaved pixel data is input on Pin P7 to Pin P0, with Pin P0 being the LSB.
Figure 55. ED (at 54 MHz) Input Sequence (EAV/SAV)
Rev. I | Page 46 of 107
Page 47
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393

ADV7392/ADV7393 INPUT CONFIGURATION

The ADV7392/ADV7393 support a number of different input modes. The desired input mode is selected using Subaddress 0x01, Bits[6:4]. The ADV7392/ADV7393 default to standard definition (SD) mode on power-up. Table 36 provides an overview of all possible input configurations. Each input mode is described in detail in this section.

STANDARD DEFINITION

Subaddress 0x01, Bits[6:4] = 000

Standard definition YCrCb data can be input in 4:2:2 format over an 8-, 10-, or 16-bit bus. SD RGB data can be input in 4:4:4 format over a 16-bit bus.
A 27 MHz clock signal must be provided on the CLKIN pin. If required, external synchronization signals can be provided on
HSYNC
the codes are also supported in 8-bit and 10-bit modes.

8-Bit 4:2:2 YCrCb Mode

Subaddress 0x87, Bit 7 = 0; Subaddress 0x88, Bits[4:3] = 00
In 8-bit 4:2:2 YCrCb input mode, the interleaved pixel data is input on Pin P15 to Pin P8, with Pin P8 being the LSB. The ITU-R BT.601/656 input standard is supported.

10-Bit 4:2:2 YCrCb Mode

Subaddress 0x87, Bit 7 = 0; Subaddress 0x88, Bits[4:3] = 10
In 10-bit 4:2:2 YCrCb input mode, the interleaved pixel data is input on Pin P15 to Pin P6, with Pin P6 being the LSB. The ITU­R BT.601/656 input standard is supported.
Table 36. ADV7392/ADV7393 Input Configuration
Input Mode1 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0
000 SD2 8-bit YCrCb 10-bit YCrCb 16-bit3 Y CrCb
16-bit3 B G R 001 ED/HD-SDR (16-bit) Y CrCb 010 ED/HD-DDR4 8-bit YCrCb
10-bit YCrCb 111 ED (at 54 MHz) 8-bit YCrCb
10-bit YCrCb
1
The input mode is determined by Subaddress 0x01, Bits[6:4].
2
In SD mode, the width of the input data is determined by Subaddress 0x88, Bits[4:3].
3
External synchronization signals must be used in this input mode. Embedded EAV/SAV timing codes are not supported.
4
ED = enhanced definition = 525p and 625p.
and
VSYNC
pins. Embedded EAV/SAV timing
Rev. I | Page 47 of 107

16-Bit 4:2:2 YCrCb Mode

Subaddress 0x87, Bit 7 = 0; Subaddress 0x88, Bits[4:3] = 01
In 16-bit 4:2:2 YCrCb input mode, the Y pixel data is input on Pin P15 to Pin P8, with Pin P8 being the LSB.
The CrCb pixel data is input on Pin P7 to Pin P0, with Pin P0 being the LSB.
The pixel data is updated at half the rate of the clock, that is, at a rate of 13.5 MHz (see Figure 5).

16-Bit 4:4:4 RGB Mode

Embedded EAV/SAV timing codes are not supported with SD RGB mode. Also, master timing mode is not supported for SD RGB input mode, therefore, external synchronization must be used.
Subaddress 0x87, Bit 7 = 1
In 16-bit 4:4:4 RGB input mode, the red pixel data is input on Pin P4 to Pin P0, the green pixel data is input on Pin P10 to Pin P5, and the blue pixel data is input on Pin P15 to Pin P11. The P0, P5, and P11 pins are the respective bus LSBs.
The pixel data is updated at half the rate of the clock, that is, at a rate of 13.5 MHz (see Figure 6).
ADV7392/
MPEG2
DECODER
YCrCb
Figure 56. SD Example Application
2
27MHz
8/10
ADV7393
VSYNC, HSYNC
CLKIN
P[15:8]/P[15:6]
SD RGB input enable (0x87[7]) = 0
SD RGB input enable (0x87[7]) = 1
ED/HD input format (0x33[2]) = 0
ED/HD input format (0x33[2]) = 1
ED/HD input format (0x33[2]) = 0
ED/HD input format (0x33[2]) = 1
06234-054
Page 48
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
3FF
00 00
X
Y
Y0
Y1
Cr0
CLKIN
NOTES
1. SUBADDRESS 0x01 [2:1] S HOULD BE SET TO 00 IN THI S CAS E .
2. 10-BIT MODE IS ENABL E D US ING SUBADDRESS 0x33, BIT 2.
P[15:8]/
P]15:6]
Cb0
06234-055
3FF 00 00 XY Cb0 Cr0Y1
CLKIN
P[15:8]/
P[15:P6]
Y0
NOTES
1. SUBADDRESS 0x01 [2:1] S HOULD BE SET TO 11 IN THI S CAS E .
2. 10-BIT MODE IS ENABL E D US ING SUBADDRESS 0x33, BIT 2.
06234-056
M
PEG2
DECODER
CLKIN
P[7:0] P[15:8]
INTERLACED TO
PROGRESSIVE
YCrCb
ADV7392/
ADV7393
VSYNC HSYNC
8
CrCb
8
Y
2
06234-057
MPEG2
DECODER
CLKIN
P[15:8]/P[15:6]
INTERLACED TO
PROGRESSIVE
YCrCb
ADV7392/
ADV7393
VSYNC HSYNC
8/10
2
YCrCb
06234-058
3FF 00 00 XY Cb0
Y0 Y1Cr0
CLKIN
P[15:8]/P[15:6]
NOTES
1. 10-BIT MODE IS ENABL E D US ING SUBADDRESS 0x33, BIT 2.
06234-059
MPEG2
DECODER
CLKIN
P[15:8]/P[15:6]
54MHz
ADV7392/
ADV7393
VSYNC,
HSYNC
YCrCb
8/10
YCrCb
INTERLACE D TO
PROGRESSIVE
06234-060

ENHANCED DEFINITION/HIGH DEFINITION

Subaddress 0x01, Bits[6:4] = 001 or 010

ED or HD YCrCb data can be input in a 4:2:2 format over an 8-/10-bit DDR bus or a 16-bit SDR bus.
The clock signal must be provided on the CLKIN pin. If required, external synchronization signals can be provided on
HSYNC
the codes are also supported.

16-Bit 4:2:2 YCrCb Mode (SDR)

In 16-bit 4:2:2 YCrCb input mode, the Y pixel data is input on Pin P15 to Pin P8, with P8 being the LSB.
The CrCb pixel data is input on Pin P7 to Pin P0, with Pin P0 being the LSB.

8-/10-Bit 4:2:2 YCrCb Mode (DDR)

In 8-/10-bit DDR 4:2:2 YCrCb input mode, the Y pixel data is input on Pin P15 to Pin P8/P6 on either the rising or falling edge of CLKIN. Pin P8/P6 is the LSB.
The CrCb pixel data is also input on Pin P15 to Pin P8/P6 on the opposite edge of CLKIN. P8/P6 is the LSB.
The 10-bit mode is enabled using Subaddress 0x33, Bit 2. Whether the Y data is clocked in on the rising or falling edge of CLKIN is determined by Subaddress 0x01, Bits[2:1] (see Figure 57 and Figure 58).
Figure 57. ED/HD-DDR Input Sequence (EAV/SAV)—Option A
and
VSYNC
pins. Embedded EAV/SAV timing
Figure 59. ED/HD-SDR Example Application
Figure 60. ED/HD-DDR Example Application

ENHANCED DEFINITION (AT 54 MHz)

Subaddress 0x01, Bits[6:4] = 111

ED YCrCb data can be input in an interleaved 4:2:2 format on an 8-/10-bit bus at a rate of 54 MHz.
A 54 MHz clock signal must be provided on the CLKIN pin. Embedded EAV/SAV timing codes are supported. External synchronization signals are not supported in this mode.
The interleaved pixel data is input on Pin P15 to Pin P8/P6, with Pin P8/P6 being the LSB.
The 10-bit mode is enabled using Subaddress 0x33, Bit 2.
Figure 58. ED/HD-DDR Input Sequence (EAV/SAV)—Option B
Figure 61. ED (at 54 MHz) Input Sequence (EAV/SAV)
Figure 62 ED (at 54 MHz) Example Application
Rev. I | Page 48 of 107
Page 49
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
1 1 Y
Pr
Pb

OUTPUT CONFIGURATION

The ADV7390/ADV7391/ADV7392/ADV7393 support a number of different output configurations. Table 37 to Ta b l e 39 list all possible output configurations.
Table 37. SD Output Configurations
RGB/YPrPb Output Select1 (Subaddress 0x02, Bit 5)
0 0 0 G B R 1 0 0 Y Pb Pr 1 1 0 CVBS Luma Chroma 1 1 1 CVBS Chroma Luma
1
If SD RGB output is selected, a color reversal is possible using Subaddress 0x86, Bit 7.
Table 38. ED/HD Output Configurations
RGB/YPrPb Output Select (Subaddress 0x02, Bit 5)
0 0 G B R 0 1 G R B 1 0 Y Pb Pr
SD DAC Output 1 (Subaddress 0x82, Bit 1)
ED/HD Color DAC Swap (Subaddress 0x35, Bit 3) DAC 1 DAC 2 DAC 3
SD Luma/Chroma Swap (Subaddress 0x84, Bit 7) DAC 1 DAC 2 DAC 3
Table 39. ED (at 54 MHz) Output Configurations
RGB/YPrPb Output Select (Subaddress 0x02, Bit 5)
0 0 G B R 0 1 G R B 1 0 Y Pb Pr 1 1 Y Pr Pb
ED/HD Color DAC Swap (Subaddress 0x35, Bit 3) DAC 1 DAC 2 DAC 3
Rev. I | Page 49 of 107
Page 50
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
001/010
ED 1 X X ED (1×)
001/010
HD 0 X 0 HD (4×)
111
ED (at 54 MHz)
1 X X
ED (at 54 MHz) (1×)

DESIGN FEATURES

OUTPUT OVERSAMPLING

The ADV7390/ADV7391/ADV7392/ADV7393 include an on­chip phase-locked loop (PLL) that allows for oversampling of SD, ED, and HD video data. By default, the PLL is disabled. The PLL can be enabled using Subaddress 0x00, Bit 1 = 0.
Table 40 shows the various oversampling rates supported in the
ADV7390/ADV7391/ADV7392/ADV7393.

External Sync Polarity

For SD and ED/HD modes, the ADV7390/ADV7391/ADV7392/
ADV7393 parts typically expect HS and VS to be low during
their respective blanking periods. However, when the CEA861
Table 40. Output Oversampling Modes and Rates
Input Mode
(0x01, Bits[6:4])
000 SD 1 X X SD (2×) 000 SD 0 1 X SD (8×) 000 SD 0 0 X SD (16×)
PLL and Oversampling Control (0x00, Bit 1)
SD/ED Oversample Rate Select (0x0D, Bit 3)
compliance bit is enabled (0x39, Bit 5 for ED/HD modes and 0x86, Bit 3 for SD modes), the part expects the HS or VS to be active low or high depending on the input format selected (0x30, Bits[7:3]).
If a different polarity other than the default is required for ED/HD modes, 0x3A, Bits[2:0] can be used to invert PHSYNCB, PVSYNCB or PBLANKB individually regardless of whether CEA-861-B mode is enabled. It is not possible to invert S_HSYNC or S_VSYNC.
1
HD Oversample Rate Select (0x31, Bit 1)1
Oversampling Mode and Rate
001/010 ED 0 1 X ED (4×) 001/010 ED 0 0 X ED (8×) 001/010 HD 1 X X HD (1×) 001/010 HD 0 X 1 HD (2×)
111 ED (at 54 MHz) 0 1 X ED (at 54 MHz) (4×) 111 ED (at 54 MHz) 0 0 X ED (at 54 MHz) (8×)
1
X = don’t care
Rev. I | Page 50 of 107
Page 51
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
HD INTERLACE EXTERNAL HSYNC AND VSYNC CONSIDERATIONS
If the encoder revision code (Subaddress 0xBB, Bits[7:6]) = 01 or higher, the user should set Subaddress 0x02, Bit 1 to high. To ensure exactly correct timing in HD interlace modes when
HSYNC
using set to low, the first active pixel on each line is masked in HD interlace modes and the Pr and Pb outputs are swapped when using the YCrCb 4:2:2 input format. Setting Subaddress 0x02, Bit 1 to low causes the encoder to behave in the same way as the first version of silicon (that is, this setting is backward compatible).
If the encoder revision code (Subaddress 0xBB, Bits[7:6]) = 00, the setting of Subaddress 0x02, Bit 1 has no effect. In this version of the encoder, the first active pixel is masked and the Pr and Pb outputs are swapped when using YCrCb 4:2:2 input format. To avoid these limitations, use the newer revision of silicon or use a different type of synchronization.
These considerations apply only to the HD interlace modes with external mode is not affected and always has exactly correct timing).
There is no negative effect in setting Subaddress 0x02, Bit 0 to high, and this bit can remain high for all the other video standards.
VSYNC
and
HSYNC
synchronization signals. If this bit is
VSYNC
and
synchronization (EAV/SAV

ED/HD TIMING RESET

Subaddress 0x34, Bit 0

An ED/HD timing reset is achieved by setting the ED/HD timing reset control bit (Subaddress 0x34, Bit 0) to 1. In this state, the horizontal and vertical counters remain reset. When this bit is set back to 0, the internal counters resume counting. This timing reset applies to the ED/HD timing counters only.

SD SUBCARRIER FREQUENCY LOCK

Subcarrier Frequency Lock (SFL) Mode

In subcarrier frequency lock (SFL) mode (Subaddress 0x84, Bits[2:1] = 11), the ADV7390/ADV7391/ADV7392/ADV7393 can be used to lock to an external video source. The SFL mode allows the ADV7390/ADV7391/ADV7392/ADV7393 to automatically alter the subcarrier frequency to compensate for line length variations. When the part is connected to a device such as an ADV7403 video decoder that outputs a digital data stream in the SFL format, the part automatically changes to the compensated subcarrier frequency on a line-by-line basis (see Figure 63). This digital data stream is 67 bits wide, and the subcarrier is contained in Bit 0 to Bit 21. Each bit is two clock cycles long.
ADV7390/ADV7391/ ADV7392/ADV7393
CLKIN
LLC1
COMPOSI TE
VIDEO
H/L TRANSI TION COUNT START
RTC
TIME SLOT 01
1
FOR EXAMPLE, VCR OR CABLE.
2
FSCPLL INCREMENT IS 22 BITS LONG. VALUE LOADED I NTO ADV7390/ADV7391/ADV 7392/ADV7393 FSC DDS REGISTER IS F
PLL INCREMENTS BITS[21:0] PL US BITS[ 0:9] OF SUBCARRIER F REQUENC Y REGIS TERS.
SC
3
SEQUENCE BI T PAL: 0 = LINE NORMAL, 1 = LI NE INVERTED
NTSC: 0 = NO CHANGE
4
RESET ADV7390/ADV7391/ADV7392/ADV7393 DDS.
5
REFER TO THE ADV7390/ADV7391 AND ADV7392/ADV7393 INPUT CO NFIGUR ATION TABLES FOR PIXEL DATA PIN ASSIGNMENT S.
1
128
ADV7403
VIDEO DECODER
SUBCARRIER
LOW
13 0
14 BITS
PHASE
SFL
P19 TO
P10
142119
4 BITS RESERVED
SFL
PIXEL PORT
F
SC
VAL ID
SAMPLE
DAC 1
DAC 2
DAC 3
5
PLL INCREMENT
INVALID SAMPLE
2
SEQUENCE
BIT
0
8/LINE LOCKED CLOCK
RESET BIT
3
RESERVED
6768
5 BITS RESERVED
4
06234-064
Figure 63. SD Subcarrier Frequency Lock Timing and Connections Diagram (Subaddress 0x84, Bits [2:1] = 11)
Rev. I | Page 51 of 107
Page 52
32
2
MHz27
×
=
linevideooneincyclesclockof
Number
linevideo
oneinperiodssubcarrierofNumber
RegisterFrequencySubcarrier
569408543
2
1716
5.227
32
=×
 
  
=ValueRegisterSubcarrier
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet

SD VCR FF/RW SYNC

Subaddress 0x82, Bit 5

In DVD record applications where the encoder is used with a decoder, the VCR FF/RW sync control bit can be used for non­standard input video, that is, in fast forward or rewind modes.
In fast forward mode, the sync information at the start of a new field in the incoming video usually occurs before the correct number of lines/fields is reached. In rewind mode, this sync signal usually occurs after the total number of lines/fields is reached. Conventionally, this means that the output video has corrupted field signals because one signal is generated by the incoming video and another is generated when the internal line/field counters reach the end of a field.
When the VCR FF/RW sync control is enabled (Subaddress 0x82, Bit 5), the line/field counters are updated according to the incoming
the incoming
VSYNC
VSYNC
signal and when the analog output matches
signal. This control is available in all
slave-timing modes except Slave Mode 0.

VERTICAL BLANKING INTERVAL

Subaddress 0x31, Bit 4; Subaddress 0x83, Bit 4

The ADV7390/ADV7391/ADV7392/ADV7393 are able to accept input data that contains vertical blanking interval (VBI) data (such as CGMS, WSS, VITS) in SD, ED, and HD modes.
If VBI is disabled (Subaddress 0x31, Bit 4 for ED/HD; Subaddress 0x83, Bit 4 for SD), VBI data is not present at the output and the entire VBI is blanked. These control bits are valid in all master and slave timing modes.
For the SMPTE 293M (525p) standard, VBI data can be inserted on Line 13 to Line 42 of each frame or on Line 6 to Line 43 for the ITU-R BT.1358 (625p) standard. VBI data can be present on Line 10 to Line 20 for NTSC and on Line 7 to Line 22 for PAL.
In SD Timing Mode 0 (slave option), if VBI is enabled, the blanking bit in the EAV/SAV code is overwritten. It is possible to use VBI in this timing mode as well.
If CGMS is enabled and VBI is disabled, the CGMS data is, nevertheless, available at the output.

SD SUBCARRIER FREQUENCY CONTROL

Subaddress 0x8C to Subaddress 0x8F

The ADV7390/ADV7391/ADV7392/ADV7393 are able to generate the color subcarrier used in CVBS and S-Video (Y-C) outputs from the input pixel clock. Four 8-bit registers are used to set up the subcarrier frequency. The value of these registers is calculated using the following equation:
where the sum is rounded to the nearest integer.
Rev. I | Page 52 of 107
For example, in NTSC mode:
where: Subcarrier Register Value = 569408543d = 0×21F07C1F SD F
Register 0: 0x1F
SC
SD F
Register 1: 0x7C
SC
SD F
Register 2: 0xF0
SC
SD F
Register 3: 0x21
SC

Programming the FSC

The subcarrier frequency register value is divided into four FSC registers as shown in the previous example. The four subcarrier frequency registers must be updated sequentially, starting with Subcarrier Frequency Register 0 and ending with Subcarrier Frequency Register 3. The subcarrier frequency updates only after the last subcarrier frequency register byte is received by the ADV7390/ADV7391/ADV7392/ADV7393. The SD input standard autodetection feature must be disabled.

Typical FSC Values

Table 41 outlines the values that should be written to the subcarrier frequency registers for NTSC and PAL B/D/G/H/I.
Table 41. Typical F
Subaddress Description NTSC PAL B/D/G/H/I
0x8C FSC0 0x1F 0xCB 0x8D FSC1 0x7C 0x8A 0x8E FSC2 0xF0 0x09 0x8F FSC3 0x21 0x2A
Values
SC

SD NONINTERLACED MODE

Subaddress 0x88, Bit 1

The ADV7390/ADV7391/ADV7392/ADV7393 support an SD noninterlaced mode. Using this mode, progressive inputs at twice the frame rate of NTSC and PAL (240p/59.94 Hz and 288p/50 Hz, respectively) can be input into the ADV7390/
ADV7391/ADV7392/ADV7393. The SD noninterlaced mode
can be enabled using Subaddress 0x88, Bit 1.
A 27 MHz clock signal must be provided on the CLKIN pin. Embedded EAV/SAV timing codes or external horizontal and vertical synchronization signals provided on the VSYNC
pins can be used to synchronize the input pixel data.
All input configurations, output configurations, and features available in NTSC and PAL modes are available in SD noninter­laced mode. For 240p/59.94 Hz input, the ADV7390/ADV7391/
ADV7392/ADV7393 should be configured for NTSC operation
and Subaddress 0x88, Bit 1 should be set to 1.
For 288p/50 Hz input, the ADV7390/ADV7391/ADV7392/
ADV7393 should be configured for PAL operation and
Subaddress 0x88, Bit 1 should be set to 1.
HSYNC
and
Page 53
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Y
C
r
Y
FF0000X
Y
8
0
10801
0
FF00FFABABA
B
801
0
8 0
10FF0
0
0 0
XYC
b
Y
C
r
C b
Y
C
b
Y
C
r
EAV CODE
SAV CODE
ANCILLARY DATA
(HANC)
4 CLOCK
4 CLOCK
272 CLOCK
1280 CLOCK
4 CLOCK
4 CLOCK
344 CLOCK
1536 CLOCK
END OF ACTIVE
VIDEO LINE
START OF ACTIVE
VIDEO LINE
ANALOG
VIDEO
INPUT PIXELS
NTSC/PAL M SYSTEM
(525 LINES/ 60Hz )
PAL SYSTEM
(625 LINES/ 50Hz )
Y
06234-065
FIELD
PIXE
L
D
ATA
P
AL
= 308 CLOCK CYCLE S
NTSC = 236 CLOCK CY CLES
Cb
Y
Cr Y
HSYNC
06234-066

SD SQUARE PIXEL MODE

Subaddress 0x82, Bit 4

The ADV7390/ADV7391/ADV7392/ADV7393 support an SD square pixel mode (Subaddress 0x82, Bit 4). For NTSC operation, an input clock of 24.5454 MHz is required. The active resolution is 640 × 480. For PAL operation, an input clock of
29.5 MHz is required. The active resolution is 768 × 576.
For CVBS and S-Video (Y-C) outputs, the SD subcarrier frequency registers must be updated to reflect the input clock frequency used in SD square pixel mode. The SD input standard autodetection feature must be disabled in SD square pixel mode. In square pixel mode, the timing diagrams shown in Figure 64 and Figure 65 apply.
Figure 64. Square Pixel Mode EAV/SAV Embedded Timing
Figure 65. Square Pixel Mode Active Pixel Timing
Rev. I | Page 53 of 107
Page 54
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
SD Chroma 2.0 MHz
0x80
FREQUENCY (MHz)
0
GAIN (dB)
–10
–30
–50
–60
–20
–40
6543210
EXTENDED (SSAF) PrPb FI
L
TER MODE
06234-067
Luma Notch PAL
0.1
3.1/5.6/6.4

FILTERS

Table 42 shows an overview of the programmable filters available on the ADV7390/ADV7391/ADV7392/ADV7393.
Table 42. Selectable Filters
Filter Subaddress
SD Luma LPF NTSC 0x80 SD Luma LPF PAL 0x80 SD Luma Notch NTSC 0x80 SD Luma Notch PAL 0x80 SD Luma SSAF 0x80 SD Luma CIF 0x80 SD Luma QCIF 0x80 SD Chroma 0.65 MHz 0x80 SD Chroma 1.0 MHz 0x80 SD Chroma 1.3 MHz 0x80
SD Chroma 3.0 MHz 0x80 SD Chroma CIF 0x80 SD Chroma QCIF 0x80 SD PrPb SSAF 0x82 ED/HD Sinc Compensation Filter 0x33 ED/HD Chroma SSAF 0x33

SD Internal Filter Response

Subaddress 0x80, Bits[7:2]; Subaddress 0x82, Bit 0
The Y filter supports several different frequency responses, including two low-pass responses, two notch responses, an extended (SSAF) response with or without gain boost atten­uation, a CIF response, and a QCIF response. The PrPb filter supports several different frequency responses, including six low-pass responses, a CIF response, and a QCIF response, as shown in Figure 38 and Figure 39.
If SD Luma SSAF gain is enabled (Subaddress 0x87, Bit 4), there are 13 response options in the range −4 dB to +4 dB. The desired response can be programmed using Subaddress 0xA2. Variation in frequency responses is shown in Figure 35 to Figure 37.
In addition to the chroma filters listed in Table 42, the
ADV7390/ADV7391/ADV7392/ADV7393 contain an SSAF
filter that is specifically designed for the color difference component outputs, Pr and Pb. This filter has a cutoff frequency of ~2.7 MHz and a gain of –40 dB at 3.8 MHz (see Figure 66). This filter can be controlled with Bit 0 of Sub-address 0x82, Bit
0.
If this filter is disabled, one of the chroma filters shown in Table 43 can be selected and used for the CVBS or luma/ chroma signal.
Table 43. Internal Filter Specifications
Filter
Luma LPF NTSC 0.16 4.24 Luma LPF PAL 0.1 4.81 Luma Notch NTSC 0.09 2.3/4.9/6.6
Luma SSAF 0.04 6.45 Luma CIF 0.127 3.02 Luma QCIF Monotonic 1.5 Chroma 0.65 MHz Monotonic 0.65 Chroma 1.0 MHz Monotonic 1 Chroma 1.3 MHz 0.09 1.395 Chroma 2.0 MHz 0.048 2.2 Chroma 3.0 MHz Monotonic 3.2 Chroma CIF Monotonic 0.65 Chroma QCIF Monotonic 0.5
1
Pass-band ripple is the maximum fluctuation from the 0 dB response in the
pass band, measured in decibels. The pass band is defined to have 0 Hz to fc (Hz) frequency limits for a low-pass filter and 0 Hz to f1 (Hz) and f2 (Hz) to infinity for a notch filter, where fc, f1, and f2 are the −3 dB points.
2
3 dB bandwidth refers to the −3 dB cutoff frequency.
Figure 66. PrPb SSAF Filter
Pass-Band Ripple (dB)
1
3 dB Bandwidth (MHz)
2
Rev. I | Page 54 of 107
Page 55
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
FREQUENC
Y (MHz)
0.5
–0.5
305
0
GAIN (dB)
10 15
20 25
0.4
0.1
–0.2
–0.3
–0.4
0.3
0.2
0
–0.1
06234-068
FREQUENCY (MHz)
0.5
–0.5
3050
GAIN (dB)
10 15 20 25
0.4
0.1
–0.2
–0.3
–0.4
0.3
0.2
0
–0.1
06234-069
Yellow
210
(0xD2)
146
(0x92)
16
(0x10)
Cyan
170
(0xAA)
16
(0x10)
166
(0xA6)

ED/HD Sinc Compensation Filter Response

Subaddress 0x33, Bit 3
The ADV7390/ADV7391/ADV7392/ADV7393 include a filter designed to counter the effect of sinc roll-off in DAC 1, DAC 2, and DAC 3 while operating in ED/HD mode. This filter is enabled by default. It can be disabled using Subaddress 0x33, Bit 3. The benefit of the filter is illustrated in Figure 67 and Figure 68.
Figure 67. ED/HD Sinc Compensation Filter Enabled
Table 44 shows sample color values that can be programmed into the color registers when the output standard selection is set to EIA770.2/EIA770.3 (Subaddress 0x30, Bits[1:0] = 00).
Table 44. Sample Color Values for EIA770.2/EIA770.3 ED/HD Output Standard Selection
Sample Color Y Value Cr Value Cb Value
White 235 (0xEB) 128 (0x80) 128 (0x80) Black 16 (0x10) 128 (0x80) 128 (0x80) Red 81 (0x51) 240 (0xF0) 90 (0x5A) Green 145 (0x91) 34 (0x22) 54 (0x36) Blue 41 (0x29) 110 (0x6E) 240 (0xF0)
Magenta 106 (0x6A) 222 (0xDE) 202 (0xCA)

COLOR SPACE CONVERSION MATRIX

Subaddress 0x03 to Subaddress 0x09

The internal color space conversion (CSC) matrix automatically performs all color space conversions based on the input mode programmed in the mode select register (Subaddress 0x01, Bits[6:4]). Table 45 and Ta b l e 46 show the options available in this matrix.
An SD color space conversion from RGB-in to YPrPb-out is possible on the ADV7392/ADV7393. An ED/HD color space conversion from RGB-in to YPrPb-out is not possible.
Figure 68. ED/HD Sinc Compensation Filter Disabled

ED/HD TEST PATTERN COLOR CONTROLS

Subaddress 0x36 to Subaddress 0x38

Three 8-bit registers at Subaddress 0x36 to Subaddress 0x38 are used to program the output color of the internal ED/HD test pattern generator (Subaddress 0x31, Bit 2 = 1), whether it be the lines of the crosshatch pattern or the uniform field test pattern. They are not functional as color controls for external pixel data input.
The values for the luma (Y) and color difference (Cr and Cb) signals used to obtain white, black, and saturated primary and complementary colors conform to the ITU-R BT.601-4 standard.
Rev. I | Page 55 of 107
Table 45. SD Color Space Conversion Options
Input Output
YPrPb/RGB Out (Subaddress 0x02,
1
Bit 5)
RGB In/YCrCb In (Subaddress 0x87, Bit 7)
YCrCb YPrPb 1 0 YCrCb RGB 0 0 RGB2 YPrPb 1 1 RGB2 RGB 0 1
1
CVBS/Y-C outputs are available for all CSC combinations.
2
Available on the ADV7392/ADV7393 (40-pin devices) only.
Table 46. ED/HD Color Space Conversion Options
YPrPb/RGB Out
Input Output
(Subaddress 0x02, Bit 5)
YCrCb YPrPb 1 YCrCb RGB 0

SD Manual CSC Matrix Adjust Feature

The SD manual CSC matrix adjust feature (available for the
ADV7392 and ADV7393 only) provides custom coefficient
manipulation for RGB to YPbPr conversion (for YPbPr to RGB conversion, this matrix adjustment is not available).
Normally, there is no need to modify the SD matrix coefficients because the CSC matrix automatically performs the color space conversion based on the output color space selected (see Table 46). Note that Bit 7 in subaddress 0x87 must be set to enable RGB input and, therefore, use the CSC manual adjustment.
Page 56
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
c3
0xC7
0x70
0x05
0x4E
The SD CSC matrix scalar uses the following equations:
Y = (a1 × R) + (a2 × G) + (a3 × B) + a4
Pr = (b1 × R) + (b2 × G) + (b3 × B) + b4
Pb = (c1 × R) + (c2 × G) + (c3 × B) + c4
The coefficients and their default values are located in the registers shown in Table 47.
On power-up, the CSC matrix is programmed with the default values shown in Table 48.
Table 48. ED/HD Manual CSC Matrix Default Values
Subaddress Default
0x03 0x03 0x04 0xF0
Table 47. SD Manual CSC Matrix Default Values
Coefficient Subaddress Default
a1 0xBD 0x42 a2 0xBE 0x81 a3 0xBF 0x19 a4 0xC0 0x10 b1 0xC1 0x70 b2 0xC2 0x5E b3 0xC3 0x12 b4 0xC4 0x80 c1 0xC5 0x26 c2 0xC6 0x4A
c4 0xC8 0x80

ED/HD Manual CSC Matrix Adjust Feature

The ED/HD manual CSC matrix adjust feature provides custom coefficient manipulation for color space conversions and is used in ED and HD modes only. The ED/HD manual CSC matrix adjust feature can be enabled using Subaddress 0x02, Bit 3.
Normally, there is no need to enable this feature because the CSC matrix automatically performs the color space conversion based on the input mode chosen (ED or HD) and the output color space selected (see Table 46). For this reason, the ED/HD manual CSC matrix adjust feature is disabled by default.
If RGB output is selected, the ED/HD CSC matrix scalar uses the following equations:
R = GY × Y + RV × Pr
G = GY × Y − (GU × Pb) − (GV × Pr)
B = GY × Y + BU × Pb
Note that subtractions are implemented in the hardware.
If YPrPb output is selected, the following equations are used:
Y = GY × Y
Pr = RV × Pr
Pb = BU × Pb
where:
GY = Subaddress 0x05, Bits[7:0] and Subaddress 0x03, Bits[1:0]. GU = Subaddress 0x06, Bits[7:0] and Subaddress 0x04, Bits[7:6]. GV = Subaddress 0x07, Bits[7:0] and Subaddress 0x04, Bits[5:4]. BU = Subaddress 0x08, Bits[7:0] and Subaddress 0x04, Bits[3:2]. RV = Subaddress 0x09, Bits[7:0] and Subaddress 0x04, Bits[1:0].
0x06 0x0E 0x07 0x24 0x08 0x92 0x09 0x7C
When the ED/HD manual CSC matrix adjust feature is enabled, the default coefficient values in Subaddress 0x03 to Subaddress 0x09 are correct for the HD color space only. The color components are converted according to the following 1080i and 720p standards (SMPTE 274M, SMPTE 296M):
R = Y + 1.575Pr
G = Y − 0.468Pr − 0.187Pb
B = Y + 1.855Pb
The conversion coefficients should be multiplied by 315 before being written to the ED/HD CSC matrix registers. This is reflected in the default values for GY = 0x13B, GU = 0x03B, GV = 0x093, BU = 0x248, and RV = 0x1F0.
If the ED/HD manual CSC matrix adjust feature is enabled and another input standard (such as ED) is used, the scale values for GY, GU, GV, BU, and RV must be adjusted according to this input standard color space. The user should consider that the color component conversion may use different scale values.
For example, SMPTE 293M uses the following conversion:
R = Y + 1.402Pr
G = Y − 0.714Pr − 0.344Pb
B = Y + 1.773Pb
The programmable CSC matrix is used for external ED/HD pixel data and is not functional when internal test patterns are enabled.

Programming the CSC Matrix

If custom manipulation of the ED/HD CSC matrix coefficients is required for a YCrCb-to-RGB color space conversion, use the following procedure:
1. Enable the ED/HD manual CSC matrix adjust feature
(Subaddress 0x02, Bit 3).
2. Set the output to RGB (Subaddress 0x02, Bit 5).
3. Disable sync on PrPb (Subaddress 0x35, Bit 2).
4. Enable sync on RGB (optional) (Subaddress 0x02, Bit 4).
The GY value controls the green signal output level, the BU value controls the blue signal output level, and the RV value controls the red signal output level.
Rev. I | Page 56 of 107
Page 57
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393

SD LUMA AND COLOR SCALE CONTROL

Subaddress 0x9C to Subaddress 0x9F

When enabled, the SD luma and color scale control feature can be used to scale the SD Y, Cb, and Cr output levels. This feature can be enabled using Subaddress 0x87, Bit 0. This feature affects all SD output signals, that is, CVBS, Y-C, YPrPb, and RGB.
When enabled, three 10-bit registers (SD Y scale, SD Cb scale, and SD Cr scale) control the scaling of the SD Y, Cb, and Cr output levels. The SD Y scale register contains the scaling factor used to scale the Y level from 0.0 to 1.5 times its initial level. The SD Cb scale and SD Cr scale registers contain the scaling factors to scale the Cb and Cr levels from 0.0 to 2.0 times their initial levels, respectively.
The values to be written to these 10-bit registers are calculated using the following equation:
Y, Cb, or Cr Scale Value = Scale Factor × 512
For example, if Scale Factor = 1.3
Y, Cb, or Cr Scale Value = 1.3 × 512 = 665.6
Y, Cb, or Cr Scale Value = 666 (rounded to the nearest integer)
Y, Cb, or Cr Scale Value = 1010011010b
Subaddress 0x9C, SD scale LSB = 0x2A Subaddress 0x9D, SD Y scale register = 0xA6 Subaddress 0x9E, SD Cb scale register = 0xA6 Subaddress 0x9F, SD Cr scale register = 0xA6
It is recommended that the SD luma scale saturation feature (Subaddress 0x87, Bit 1) be enabled when scaling the Y output level to avoid excessive Y output levels.

SD HUE ADJUST CONTROL

Subaddress 0xA0

When enabled, the SD hue adjust control register (Subaddress 0xA0) is used to adjust the hue on the SD composite and chroma outputs. This feature can be enabled using Subaddress 0x87, Bit 2.
Subaddress 0xA0 contains the bits required to vary the hue of the video data, that is, the variance in phase of the subcarrier during active video with respect to the phase of the subcarrier during the color burst. The
ADV7390/ADV7391/ADV7392/ADV7393 provide a range of
±22.5° in increments of 0.17578125°. For normal operation (zero adjustment), this register is set to 0x80. Value 0xFF and Value 0x00 represent the upper and lower limits, respectively, of the attainable adjustment in NTSC mode. Value 0xFF and Value 0x01 represent the upper and lower limits, respectively, of the attainable adjustment in PAL mode.
The hue adjust value is calculated using the following equation:
Hue Adjust (°) = 0.17578125° (HCR
Where HCR
= the hue adjust control register (decimal).
d
− 128)
d
For example, to adjust the hue by +4°, write 0x97 to the hue adjust control register.
 
17578125.0
4
 
d
97x0151128
where the sum is rounded to the nearest integer.
To adjust the hue by −4°, write 0x69 to the hue adjust control register.
 
17578125.0
4
 
d
96x0105128
where the sum is rounded to the nearest integer.

SD BRIGHTNESS DETECT

Subaddress 0xBA

The ADV7390/ADV7391/ADV7392/ADV7393 allow monitoring of the brightness level of the incoming video data. This feature is used to monitor the average brightness of the incoming Y signal on a field-by-field basis. The information is read from the I
2
C and, based on this information, the color saturation, contrast, and brightness controls can be adjusted (for example, to compensate for very dark pictures).
The luma data is monitored in the active video area only. The average brightness I every
VSYNC
2
C register is updated on the falling edge of
signal. The SD brightness detect register (Subad-
dress 0xBA) is a read-only register.

SD BRIGHTNESS CONTROL

Subaddress 0xA1, Bits[6:0]

When this feature is enabled, the SD brightness/WSS control register (Subaddress 0xA1) is used to control brightness by adding a programmable setup level onto the scaled Y data. This feature can be enabled using Subaddress 0x87, Bit 3.
For NTSC with pedestal, the setup can vary from 0 IRE to 22.5 IRE. For NTSC without pedestal (see Figure 69) and for PAL, the setup can vary from −7.5 IRE to +15 IRE.
NTSC WITHOUT PEDESTAL
100 IRE
0 IRE
NO SETUP
VALUE ADDED
Figure 69. Examples of Brightness Control Values
POSITIVE SETUP
VALUE ADDED
NEGATIVE SETUP
VALUE ADDED
The SD brightness control register is an 8-bit register. The seven LSBs of this 8-bit register are used to control the brightness level, which can be a positive or negative value.
For example, to add a +20 IRE brightness level to an NTSC signal with pedestal, write 0x28 to Subaddress 0xA1.
0 × (SD Brightness Value) =
0 × (IRE Value × 2.015631) =
0 × (20 × 2.015631) = 0 × (40.31262) ≈ 0x28
+7.5 IRE
–7.5 IRE
06234-070
Rev. I | Page 57 of 107
Page 58
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
CASE B
700mV
300mV
NEGATIVE GAIN PROGRAMMED IN DAC OUTPUT LEVEL REGISTERS, SUBADDRESS 0x0B
CASE A
GAIN PROG RAM M E D IN DAC OUTPUT LEVEL REGISTE RS , SUBADDRESS 0x0B
700mV
300mV
06234-071
To add a –7 IRE brightness level to a PAL signal, write 0x72 to Subaddress 0xA1.
0 × (SD Brightness Value) =
0 × (IRE Value × 2.075631) =
0 × (7 × 2.015631) = 0x(14.109417) ≈ 0001110b
0001110b into twos complement = 1110010b = 0x72
Table 49. Sample Brightness Control Values
Setup Level (NTSC) with Pedestal
Setup Level (NTSC) Without Pedestal
Setup Level (PAL)
1
Brightness Control Value
22.5 IRE 15 IRE 15 IRE 0x1E 15 IRE 7.5 IRE 7.5 IRE 0x0F
7.5 IRE 0 IRE 0 IRE 0x00 0 IRE −7.5 IRE −7.5 IRE 0x71
1
Values in the range of 0x3F to 0x44 may result in an invalid output signal.

SD INPUT STANDARD AUTODETECTION

Subaddress 0x87, Bit 5

The ADV7390/ADV7391/ADV7392/ADV7393 include an SD input standard autodetect feature that can be enabled by setting Subaddress 0x87, Bits[5:1].
When enabled, the ADV7390/ADV7391/ADV7392/ADV7393 can automatically identify an NTSC or a PAL B/D/G/H/I input stream. The ADV7390/ADV7391/ADV7392/ADV7393 automatically update the subcarrier frequency registers with the appropriate value for the identified standard. The ADV7390/
ADV7391/ADV7392/ADV7393 are also configured to correctly
encode the identified standard.
The SD standard bits (Subaddress 0x80, Bits[1:0]) and the subcarrier frequency registers are not updated to reflect the identified standard. All registers retain their default or user­defined values.

PROGRAMMABLE DAC GAIN CONTROL

Subaddress 0x0B

It is possible to adjust the DAC output signal gain up or down from its absolute level. This is illustrated in Figure 70.
DAC 1 to DAC 3 are controlled by Register 0x0B.
In Case A of Figure 70, the video output signal is gained. The absolute level of the sync tip and the blanking level increase with respect to the reference video output signal. The overall gain of the signal is increased from the reference signal.
In Case B of Figure 70, the video output signal is reduced. The absolute level of the sync tip and the blanking level decrease with respect to the reference video output signal. The overall gain of the signal is reduced from the reference signal.

DOUBLE BUFFERING

Subaddress 0x33, Bit 7 for ED/HD; Subaddress 0x88, Bit 2 for SD

Double-buffered registers are updated once per field. Double buffering improves overall performance because modifications to register settings are not be made during active video but take effect prior to the start of the active video on the next field.
Using Subaddress 0x33, Bit 7, double buffering can be activated on the following ED/HD registers: the ED/HD Gamma A and Gamma B curves and ED/HD CGMS registers.
Using Subaddress 0x88, Bit 2, double buffering can be activated on the following SD registers: the SD Gamma A and Gamma B curves, SD Y scale, SD Cr scale, SD Cb scale, SD brightness, SD closed captioning, and SD Macrovision Bits[5:0] (Subaddress 0xE0, Bits[5:0]).
Figure 70. Programmable DAC Gain—Positive and Negative Gain
The range of this feature is specified for ±7.5% of the nominal output from the DACs. For example, if the output current of the DAC is 4.33 mA, the DAC gain control feature can change this output current from 4.008 mA (−7.5%) to 4.658 mA (+7.5%).
Rev. I | Page 58 of 107
Page 59
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
...
...
...
16)16240(
16240
16
+
 
 
×
 
  
=γ
γ
n
n
The reset value of the control registers is 0x00; that is, nominal DAC current is output. Table 50 is an example of how the output current of the DACs varies for a nominal 4.33 mA output current.
Table 50. DAC Gain Control
DAC Current
Subaddress 0x0B
(mA) % Gain Note
0100 0000 (0x40) 4.658 7.5000% 0011 1111 (0x3F) 4.653 7.3820% 0011 1110 (0x3E) 4.648 7.3640%
... ... ...
... ... ...
0000 0010 (0x02) 4.43 0.0360% 0000 0001 (0x01) 4.38 0.0180% 0000 0000 (0x00) 4.33 0.0000% Reset value,
nominal 1111 1111 (0xFF) 4.25 −0.0180% 1111 1110 (0xFE) 4.23 −0.0360%
... ... ...
1100 0010 (0xC2) 4.018 −7.3640% 1100 0001 (0xC1) 4.013 −7.3820% 1100 0000 (0xC0) 4.008 −7.5000%

GAMMA CORRECTION

Subaddress 0x44 to Subaddress 0x57 for ED/HD; Subaddress 0xA6 to Subaddress 0xB9 for SD

Generally, gamma correction is applied to compensate for the nonlinear relationship between signal input and output brightness level (as perceived on a CRT). It can also be applied wherever nonlinear processing is used.
Gamma correction uses the function
Signal
where γ is the gamma correction factor.
Gamma correction is available for SD and ED/HD video. For both variations, there are twenty 8-bit registers. They are used to program Gamma Correction Curve A and Gamma Correction Curve B.
ED/HD gamma correction is enabled using Subaddress 0x35, Bit 5. ED/HD Gamma Correction Curve A is programmed at Subaddress 0x44 to Subaddress 0x4D, and ED/HD Gamma Correction Curve B is programmed at Subaddress 0x4E to Subaddress 0x57.
SD gamma correction is enabled using Subaddress 0x88, Bit 6. SD Gamma Correction Curve A is programmed at Subaddress 0xA6 to Subaddress 0xAF, and SD Gamma Correction Curve B is programmed at Subaddress 0xB0 to Subaddress 0xB9.
= (SignalIN)γ
OUT
Gamma correction is performed on the luma data only. The user can choose one of two correction curves, Curve A or Curve B. Only one of these curves can be used at a time. For ED/HD gamma correction, curve selection is controlled using Subaddress 0x35, Bit 4. For SD gamma correction, curve selection is controlled using Subaddress 0x88, Bit 7.
The shape of the gamma correction curve is controlled by defining the curve response at 10 different locations along the curve. By altering the response at these locations, the shape of the gamma correction curve can be modified. Between these points, linear interpolation is used to generate intermediate values. Considering the curve to have a total length of 256 points, the 10 programmable locations are at the following points: 24, 32, 48, 64, 80, 96, 128, 160, 192, and 224. The following locations are fixed and cannot be changed: 0, 16, 240, and 255.
From the curve locations, 16 to 240, the values at the program­mable locations and, therefore, the response of the gamma correction curve, should be calculated to produce the following result:
x
DESIRED
= (x
INPUT
where:
x
is the desired gamma corrected output.
DESIRED
x
is the linear input signal.
INPUT
γ is the gamma correction factor.
To program the gamma correction registers, calculate the 10 programmable curve values using the following formula:
where:
γn is the value to be written into the gamma correction register for point n on the gamma correction curve. n = 24, 32, 48, 64, 80, 96, 128, 160, 192, or 224. γ is the gamma correction factor.
For example, setting γ = 0.5 for all programmable curve data points results in the following y
= [(8/224)
y
24
y
= [(16/224)
32
= [(32/224)
y
48
= [(48/224)
y
64
y
= [(64/224)
80
= [(80/224)
y
96
y
= [(112/224)
128
= [(144/224)
y
160
y
= [(176/224)
192
= [(208/224)
y
224
0.5
× 224] + 16 = 58
0.5
× 224] + 16 = 76
0.5
× 224] + 16 = 101
0.5
× 224] + 16 = 120
0.5
× 224] + 16 = 136
0.5
× 224] + 16 = 150
0.5
× 224] + 16 = 174
0.5
× 224] + 16 = 195
0.5
× 224] + 16 = 214
0.5
× 224] + 16 = 232
values:
n
where the sum of each equation is rounded to the nearest integer.
Rev. I | Page 59 of 107
Page 60
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
A
The gamma curves in Figure 71 and Figure 72 are examples only; any user-defined curve in the range from 16 to 240 is acceptable.
GAMMA CORRECTIO N BLOCK OUTPUT TO A RAMP INPUT
300
250
200
150
100
CORRECTED AMPLITUDE
GAMM
50
0
0
Figure 71. Signal Input (Ramp) and Signal Output for Gamma 0.5
SIGNAL INPUT
50 100 150 200 250
SIGNAL OUTPUT
0.5
LOCATION
06234-072
GAMMA CORRECTIO N BLOCK TO A RAMP INPUT FO R
300
250
200
150
100
GAMMA CORRECTED AMPL ITUDE
50
0
0
Figure 72. Signal Input (Ramp) and Selectable Output Curves
VARIOUS GAMMA VALUES
0.3
0.5
T
U
P
1.5
N
I
L
A
N
G
I
S
50 100 150 200 250
1.8
LOCATION
06234-073

ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER CONTROLS

Subaddress 0x40; Subaddress 0x58 to Subaddress 0x5D

There are three filter modes available on the ADV7390/ADV7391/
ADV7392/ADV7393: sharpness filter mode and two adaptive
filter modes.

ED/HD Sharpness Filter Mode

To enhance or attenuate the Y signal in the frequency ranges shown in Figure 73, the ED/HD sharpness filter must be enabled (Subaddress 0x31, Bit 7 = 1) and the ED/HD adaptive filter must be disabled (Subaddress 0x35, Bit 7 = 0).
To select one of the 256 individual responses, the corresponding gain values, ranging from −8 to +7 for each lter, must be programmed into the ED/HD sharpness filter gain register at Subaddress 0x40.

ED/HD Adaptive Filter Mode

In ED/HD adaptive filter mode, the following registers are used:
ED/HD Adaptive Filter Threshold A ED/HD Adaptive Filter Threshold B ED/HD Adaptive Filter Threshold C ED/HD Adaptive Filter Gain 1 ED/HD Adaptive Filter Gain 2 ED/HD Adaptive Filter Gain 3 ED/HD sharpness filter gain
To activate the adaptive filter control, the ED/HD sharpness filter and the ED/HD adaptive filter must be enabled (Subaddress 0x31, Bit 7 = 1, and Subaddress 0x35, Bit 7 = 1, respectively).
The derivative of the incoming signal is compared to the three programmable threshold values: ED/HD adaptive filter (Threshold A, Threshold B, and Threshold C ) registers (Subaddress 0x5B, Subaddress 0x5C, and Subaddress 0x5D). The recommended threshold range is 16 to 235, although any value in the range of 0 to 255 can be used.
The edges can then be attenuated with the settings in the ED/HD adaptive filter (Gain 1, Gain 2, and Gain 3) registers (Subaddress 0x58, Subaddress 0x59 and Subaddress 0x5A), and the ED/HD sharpness filter gain register (Subaddress 0x40).
There are two adaptive filter modes available. The mode is selected using the ED/HD adaptive filter mode control (Subaddress 0x35, Bit 6) as follows:
Mode A is used when the ED/HD adaptive filter mode
control is set to 0. In this case, Filter B (LPF) is used in the adaptive filter block. In addition, only the programmed values for Gain B in the ED/HD sharpness filter gain register and ED/HD adaptive filter (Gain 1, Gain 2, and Gain 3) registers are applied when needed. The Gain A values are fixed and cannot be changed.
Mode B is used when ED/HD adaptive filter mode control is
set to 1. In this mode, a cascade of Filter A and Filter B is used. Both settings for Gain A and Gain B in the ED/HD sharpness filter gain register and ED/HD adaptive filter (Gain 1, Gain 2, and Gain 3) registers become active when needed.
Rev. I | Page 60 of 107
Page 61
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
S
SHARPNESS AND ADAPTIVE FILTER CONTROL BLO CK
FREQUENCY ( MHz)
FILTER A RESPONSE (Gain Ka)
1.5
1.4
1.3
1.2
1.1
1.0
0.9
MAGNITUDE
0.8
0.7
0.6
0.5
Figure 73. ED/HD Sharpness and Adaptive Filter Control
FREQUENCY (MHz)
FILTER B RESPONSE (Gain Kb)
1.6
1.5
1.4
1.3
1.2
1.1
MAGNITUDE RESPONSE (Linear Scale)
1.0 02
FREQUENCY RESPONSE IN SHARPNESS
FILTER MODE WIT H Ka = 3 AND Kb = 7
6
4
FREQUENCY (MHz )
8
10 12
06234-074
INPUT
IGNAL
STEP
1.5
1.4
1.3
1.2
1.1
1.0
0.9
MAGNITUDE
0.8
0.7
0.6
0.5
R2
R4
1
CH1 500mV M 4.00µs CH1
REF A 500mV 4.00 µs 1
Block
9.99978ms
ALL FIELDS
Figure 74. ED/HD Sharpness Filter Control with Different Gain Settings for ED/HD Sharpness Filter Gain Values

ED/HD SHARPNESS FILTER AND ADAPTIVE FILTER APPLICATION EXAMPLES

Sharpness Filter Application

The ED/HD sharpness filter can be used to enhance or attenuate the Y video output signal. The register settings in Table 51 are used to achieve the results shown in Figure 74. Input data is generated by an external signal source.
Table 51. ED/HD Sharpness Control Settings for Figure 74
Subaddress Register Setting Reference1
0x00 0xFC 0x01 0x10 0x02 0x20 0x30 0x00 0x31 0x81 0x40 0x00 a 0x40 0x08 b 0x40 0x04 c 0x40 0x40 d 0x40 0x80 e 0x40 0x22 f
1
See Figure 74.
Rev. I | Page 61 of 107
a
1
b
R1
c
R2
CH1 500mV M 4.00µs CH1
REF A 500mV 4. 00µs 1
9.99978ms
ALL FIELDS

Adaptive Filter Control Application

The register settings in Table 52 are used to obtain the results shown in Figure 76, that is, to remove the ringing on the input Y signal, as shown in Figure 75. Input data is generated by an external signal source.
Table 52. Register Settings for Figure 76
Subaddress Register Setting
0x00 0xFC 0x01 0x38 0x02 0x20 0x30 0x00 0x31 0x81 0x35 0x80 0x40 0x00 0x58 0xAC 0x59 0x9A 0x5A 0x88 0x5B 0x28 0x5C 0x3F 0x5D 0x64
d
e
f
06234-075
Page 62
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Y
A
In DNR mode, if the absolute value of the filter output is smaller than the threshold, it is assumed to be noise. A programmable amount (coring gain border, coring gain data) of this noise signal is subtracted from the original signal. In DNR sharpness mode, if the absolute value of the filter output is less than the programmed threshold, it is assumed to be noise as before. However, if the level exceeds the threshold, now being identified as a valid signal, a fraction of the signal (coring gain border, coring gain data) is added to the original signal to boost high frequency components and sharpen the video image.
In MPEG systems, it is common to process the video information
06234-076
Figure 75. Input Signal to ED/HD Adaptive Filter
in blocks of 8 pixels × 8 pixels for MPEG2 systems or 16 pixels × 16 pixels for MPEG1 systems (block size control). DNR can be applied to the resulting block transition areas known to contain noise. Generally, the block transition area contains two pixels. It is possible to define this area to contain four pixels (border area).
It is also possible to compensate for variable block positioning or differences in YCrCb pixel timing with the use of the DNR block offset.
The digital noise reduction registers are three 8-bit registers. They are used to control the DNR processing.
06234-077
Figure 76. Output Signal from ED/HD Adaptive Filter (Mode A)
When the adaptive filter mode is changed to Mode B (Subaddress 0x35, Bit 6), the output shown in Figure 77 can be obtained.
06234-078
Figure 77. Output Signal from ED/HD Adaptive Filter (Mode B)

SD DIGITAL NOISE REDUCTION

Subaddress 0xA3 to Subaddress 0xA5

Digital noise reduction (DNR) is applied to the Y data only. A filter block selects the high frequency, low amplitude compo­nents of the incoming signal (DNR input select). The absolute value of the filter output is compared to a programmable threshold value (DNR threshold control). There are two DNR modes available: DNR mode and DNR sharpness mode.
Rev. I | Page 62 of 107
DAT INPUT
Y DATA
INPUT
DNR MODE
NOISE SIGNAL PATH
INPUT FILTER
BLOCK
MAIN SIGNAL PATH
DNR SHARPNESS MODE
NOISE SIGNAL PATH
INPUT FILTER
BLOCK
MAIN SIGNAL PATH
Figure 78. SD DNR Block Diagram
DNR CONTROL
BLOCK SIZE CONTROL
BORDER AREA
BLOCK OFFSET
GAIN
CORING G AIN DATA
CORING GAI N BORDER
FILTER
OUTPUT
< THRESHOL D?
FILTER OUTPUT
> THRESHOLD
DNR CONTROL
BLOCK SIZE CONTROL
BORDER AREA
BLOCK OFFSET
GAIN
CORING GAI N DATA
CORING G AIN BORDER
FILTER
OUTPUT
> THRESHOLD?
FILTER OUTPUT < THRESHOLD
SUBTRACT SIGNAL I N THRESHOLD RANGE FROM ORIGINAL SIGNAL
+
DNR OUT
ADD SIGNAL ABOVE THRESHOLD RANGE FROM ORIGINAL SIGNAL
+
+
DNR OUT
06234-079
Page 63
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
OXXXXXXOOXXXXXXO
OXXXXXXOOXXXXXXO
OXXXXXXOOXXXXXXO
DNR27 T
O DNR24 = 0x01
OFFSET CAUSED B
Y V
ARIA
TIONS IN
INPUT TIMING
APP
LY BORDER
CORING GAIN
APPL
Y DATA
CORING GAIN
06234-080
720 × 485 PIXELS
(NTSC)
8 × 8 PIXEL BLOCK
TWO-PIXEL
BORDER
DATA
8 × 8 PIXEL BLOCK
06234-081
FI
LTER C
FIL
TER B
FILTER A
FIL
TER D
FREQUENC
Y (MHz)
0
0.2
0.4
0.6
MAGNITUDE
0.8
1.0
0
1
2
3
4
5
6
06234-082

Coring Gain Border—Subaddress 0xA3, Bits[3:0]

These four bits are assigned to the gain factor applied to border areas. In DNR mode, the range of gain values is 0 to 1 in increments of 1/8. This factor is applied to the DNR filter output that lies below the set threshold range. The result is then subtracted from the original signal.
In DNR sharpness mode, the range of gain values is 0 to 0.5 in increments of 1/16. This factor is applied to the DNR filter output that lies above the threshold range. The result is added to the original signal.

Coring Gain Data—Subaddress 0xA3, Bits[7:4]

These four bits are assigned to the gain factor applied to the luma data inside the MPEG pixel block. In DNR mode, the range of gain values is 0 to 1 in increments of 1/8. This factor is applied to the DNR filter output that lies below the set threshold range. The result is then subtracted from the original signal.
In DNR sharpness mode, the range of gain values is 0 to 0.5 in increments of 1/16. This factor is applied to the DNR filter output that lies above the threshold range. The result is added to the original signal.

Block Size—Subaddress 0xA4, Bit 7

This bit is used to select the size of the data blocks to be processed. Setting the block size control function to Logic 1 defines a 16 pixel × 16 pixel data block, and Logic 0 defines an 8 pixel × 8 pixel data block, where one pixel refers to two clock cycles at 27 MHz.

DNR Input Select—Subaddress 0xA5, Bits[2:0]

These three bits are assigned to select the filter that is applied to the incoming Y data. The signal that lies in the pass band of the selected filter is the signal processed by DNR. Figure 81 shows the filter responses selectable with this control.
Figure 79. SD DNR Offset Control

DNR Threshold—Subaddress 0xA4, Bits[5:0]

These six bits are used to define the threshold value in the range of 0 to 63. The range is an absolute value.

Border Area—Subaddress 0xA4, Bit 6

When this bit is set to Logic 1, the block transition area can be defined to consist of four pixels. If this bit is set to Logic 0, the border transition area consists of two pixels, where one pixel refers to two clock cycles at 27 MHz.
Figure 80. SD DNR Border Area

DNR Mode—Subaddress 0xA5, Bit 3

This bit controls the DNR mode selected. Logic 0 selects DNR mode; Logic 1 selects DNR sharpness mode.
DNR works on the principle of defining low amplitude, high frequency signals as probable noise and subtracting this noise from the original signal.
In DNR mode, it is possible to subtract a fraction of the signal that lies below the set threshold, assumed to be noise, from the original signal. The threshold is set in DNR Register 1.
When DNR sharpness mode is enabled, it is possible to add a fraction of the signal that lies above the set threshold to the original signal because this data is assumed to be valid data and not noise. The overall effect is that the signal is boosted (similar to using the extended SSAF filter).

Block Offset Control—Subaddress 0xA5, Bits[7:4]

Four bits are assigned to this control, which allows a shift in the data block of 15 pixels maximum. The coring gain positions are fixed. The block offset shifts the data in steps of one pixel such that the border coring gain factors can be applied at the same
Rev. I | Page 63 of 107
position regardless of variations in input timing of the data.
Figure 81. SD DNR Input Select
Page 64
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
100 IRE
0 IRE
100 IRE
12.5 IRE
87.5 IRE
0 IRE
50 IRE
LUM
A
CHANNEL
WITH
AC
TIVE VIDEO EDGE
DISABLED
LUMA
CHANNE
L
WITH
AC
TIVE VIDEO EDGE
ENABLED
06234-083
VOLTS
0 2 4
F2 L135
6 8 10 12
IRE:FLT
–50
0
0
50
100
0.5
06234-084
VOL
TS
0 2–2 4
6 8 10 12
F2 L135
IRE:FLT
–50
0
50
100
0
0.5
06234-085

SD ACTIVE VIDEO EDGE CONTROL

Subaddress 0x82, Bit 7

The ADV7390/ADV7391/ADV7392/ADV7393 are able to control fast rising and falling signals at the start and end of active video to minimize ringing.
When the active video edge control feature is enabled (Subaddress 0x82, Bit 7 = 1), the first three pixels and the last
three pixels of the active video on the luma channel are scaled so that maximum transitions on these pixels are not possible.
At the start of active video, the first three pixels are multiplied by 1/8, 1/2, and 7/8, respectively. Approaching the end of active video, the last three pixels are multiplied by 7/8, 1/2, and 1/8, respectively. All other active video pixels pass through unpro­cessed.
Figure 82. Example of Active Video Edge Functionality
Figure 83. Example of Video Output with Subaddress 0x82, Bit 7 = 0
Figure 84. Example of Video Output with Subaddress 0x82, Bit 7 = 1
Rev. I | Page 64 of 107
Page 65
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Signal
Pin
Condition
X X 0
1
See the SD Timing

EXTERNAL HORIZONTAL AND VERTICAL SYNCHRONIZATION CONTROL

For timing synchronization purposes, the ADV7390/ADV7391/ADV7392/ADV7393 are able to accept either EAV/SAV time codes embedded in the input pixel data or external synchronization signals provided on the possible to output synchronization signals on the
HSYNC
and
VSYNC
pins (see Table 54 to Tabl e 56).
HSYNC
Table 53. Timing Synchronization Signal Input Options
Signal Pin Condition
HSYNC
SD SD ED/HD ED/HD
1
SD and ED/HD timing synchronization outputs must also be disabled (Subaddress 0x02[7:6] = 00).
VSYNC
HSYNC VSYNC
In
/FIELD In
In
/FIELD In
HSYNC VSYNC HSYNC VSYNC
SD slave timing (Mode 1, Mode 2, or Mode 3) selected (Subaddress 0x8A[2:0]) SD slave timing (Mode 1, Mode 2, or Mode 3) selected (Subaddress 0x8A[2:0]) ED/HD timing synchronization inputs enabled (Subaddress 0x30, Bit 2 = 0) ED/HD timing synchronization inputs enabled (Subaddress 0x30, Bit 2 = 0)
Table 54. Timing Synchronization Signal Output Options
HSYNC
SD SD ED/HD ED/HD
1
ED/HD timing synchronization outputs must also be disabled (Subaddress 0x02, Bit 7 = 0).
2
ED/HD timing synchronization inputs must also be disabled; that is, embedded EAV/SAV timing codes must be enabled (Subaddress 0x30, Bit 2 = 1).
Table 55.
VSYNC
HSYNC VSYNC
Out
/FIELD Out
Out
/FIELD Out
HSYNC
Output Control
ED/HD Input Sync Format (Subaddress 0x30, Bit 2)
HSYNC VSYNC HSYNC VSYNC
1, 2
HSYNC Control
ED/HD (Subaddress 0x34, Bit 1)
X X 0 0 Tristate N/A
0 0 1 X
1 0 1 X
X 1 1 X
1
In all ED/HD standards where there is an
2
X = don’t care.
Table 56.
ED/HD Input Sync Format (Subaddress 0x30, Bit 2)
VSYNC
Output Control
VSYNC
ED/HD Control (Subaddress 0x34, Bit 2)
HSYNC
output, the start of the
1, 2
ED/HD Sync Output Enable (Subaddress 0x02, Bit 7)
x x 0 0 x Tristate N/A x x 0 1 Interlaced
0 0 1 x x
1 0 1 x All HD interlaced
1 0 1 x All ED/HD
SD timing synchronization outputs enabled (Subaddress 0x02, Bit 6 = 1) SD timing synchronization outputs enabled (Subaddress 0x02, Bit 6 = 1) ED/HD timing synchronization outputs enabled (Subaddress 0x02, Bit 7 = 1) ED/HD timing synchronization outputs enabled (Subaddress 0x02, Bit 7 = 1)
ED/HD Sync Output Enable (Subaddress 0x02, Bit 7)
HSYNC
pulse is aligned with the falling edge of the embedded
SD Sync Output Enable (Subaddress 0x02, Bit 6)
SD Sync Output Enable (Subaddress 0x02, Bit 6) Video Standard
standards
progressive standards
VSYNC
and
Signal on
Pipelined SD
Pipelined ED/HD
Pipelined ED/HD
pins (see Table 53). It is also
HSYNC Pin
HSYNC
HSYNC
HSYNC
based on AV Code H bit Pipelined ED/HD
HSYNC based on horizontal counter
HSYNC
Signal on
Pipelined SD
Pipelined ED/HD
VSYNC Pin
VSYNC
/field
VSYNC or field signal Pipelined field signal based on AV Code F bit
VSYNC
Pipelined
based
on AV Code V bit
1
1
2
2
Duration
section. As per
timing. Same as line
blanking interval. Same as embedded
HSYNC
in the output video.
Duration
See the SD Timing section.
As per field signal timing.
Field.
Vertical blanking interval.
1
1
HSYNC
.
VSYNC
or
Rev. I | Page 65 of 107
Page 66
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
VSYNC
ED/HD Input Sync Format (Subaddress 0x30, Bit 2)
X 1 1 X All ED/HD standards
X 1 1 X 525p
1
In all ED/HD standards where there is a
2
X = don’t care.
ED/HD Control (Subaddress 0x34, Bit 2)
ED/HD Sync Output Enable (Subaddress 0x02, Bit 7)
VSYNC
output, the start of the
SD Sync Output Enable (Subaddress 0x02, Bit 6) Video Standard
except 525p
VSYNC
pulse is aligned with the falling edge of the embedded
Signal on
Pipelined ED/HD based on the vertical counter
Pipelined ED/HD based on the vertical counter
VSYNC Pin
VSYNC
VSYNC
VSYNC
Duration
Aligned with serration lines.
Vertical blanking interval.
in the output video.

LOW POWER MODE

Subaddress 0x0D, Bits[2:0]

For power-sensitive applications, the ADV7390/ADV7391/
ADV7392/ADV7393 support an Analog Devices, Inc.,
proprietary low power mode of operation. To u s e this low power mode, the DACs must be operating in full-drive mode (R
= 510 Ω, RL = 37.5 Ω). Low power mode is not available in
SET
low-drive mode (R
= 4.12 kΩ, RL = 300 Ω). Low power mode
SET
can be independently enabled or disabled on each DAC using Subaddress 0x0D, Bits[2:0]. Low power mode is disabled by default on all DACs.
In low-power mode, DAC current consumption is content dependent and, on a typical video stream, it can be reduced by as much as 40%. For applications requiring the highest possible video performance, low power mode should be disabled.

CABLE DETECTION

Subaddress 0x10, Bits[1:0]

The ADV7390/ADV7391/ADV7392/ADV7393 include an Analog Devices proprietary cable detection feature. The cable detection feature is available on DAC 1 and DAC 2 when operating in full-drive mode (R assuming a connected cable). The feature is not available in low­drive mode (R
= 4.12 kΩ, RL = 300 Ω). For a DAC to be
SET
monitored, the DAC must be powered up in Subaddress 0x00.
The cable detection feature can be used with all SD, ED, and HD video standards. It is available for all output configurations, that is, CVBS, Y-C, YPrPb, and RGB output configurations.
For CVBS/Y-C output configurations, both DAC 1 and DAC 2 are monitored; that is, the CVBS and Y-C luma outputs are monitored. For YPrPb and RGB output configurations, only DAC 1 is monitored; that is, the luma or green output is monitored.
Once per frame, the ADV7390/ADV7391/ADV7392/ADV7393 monitor DAC 1 and/or DAC 2, updating Subaddress 0x10, Bit 0 and/or Bit 1, respectively. If a cable is detected on one of the DACs, the relevant bit is set to 0. If not, the bit is set to 1.
= 510 Ω, RL = 37.5 Ω,
SET

DAC AUTOPOWER-DOWN

Subaddress 0x10, Bit 4

For power-sensitive applications, a DAC autopower-down feature can be enabled using Subaddress 0x10, Bit 4. This feature is available only when the cable detection feature is enabled.
With this feature enabled, the cable detection circuitry monitors DAC 1 and/or DAC 2 once per frame and, if they are unconnected, automatically powers down some or all of the DACs. Which DAC or DACs are powered down depends on the selected output configuration. For CVBS/Y-C output configur­ations, if DAC 1 is unconnected, only DAC 1 powers down. If DAC 2 is unconnected, DAC 2 and DAC 3 power down.
For YPrPb and RGB output configurations, if DAC 1 is uncon­nected, all three DACs are powered down. DAC 2 is not monitored for YPrPb and RGB output configurations.
Once per frame, DAC 1 and/or DAC 2 is monitored. If a cable is detected, the appropriate DAC or DACs remain powered up for the duration of the frame. If no cable is detected, the appropriate DAC or DACs power down until the next frame, when the process is repeated.

SLEEP MODE

Subaddress 0x00, Bit 0

In sleep mode, most of the digital I/O pins of the ADV7390/
ADV7391/ADV7392/ADV7393 are disabled. For inputs, this
means that the external data is ignored, and internally the logic normally driven by a given input is just tied low or high. This includes CLKIN.
For digital output pins, this means that the pin goes into tristate (high impedance) mode.
There are some exceptions to allow the user to continue to communicate with the part via I SCL pins are kept alive.
Most of the analogue circuitry is powered down when in sleep mode. In addition, the cable detect feature no longer works as the DACs are powered down.
Sleep mode is enabled using Subaddress 0x00, Bit 0.
2
C: the
RESET
, ALSB, SDA and
Rev. I | Page 66 of 107
Page 67
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
06234-143
ADDRESS AND DATA
RUN-IN CLOCK
TELETEXT VBI LINE
45 BYTES (360 BITS) – PAL

PIXEL AND CONTROL PORT READBACK

Subaddress 0x13, Subaddress 0x14, Subaddress 0x16

The ADV7390/ADV7391/ADV7392/ADV7393 support the readback of most digital inputs via the I
2
C MPU port. This feature is useful for board-level connectivity testing with upstream devices.
The pixel port (P[15:0] or P[7:0]),
HSYNC, VSYNC
, and SFL are available for readback via the MPU port. The readback registers are located at Subaddress 0x13, Subaddress 0x14, and Subaddress 0x16.
When using this feature, apply a clock signal to the CLKIN pin to register the levels applied to the input pins. The SD input mode (Subaddress 0x01, Bits[6:4] = 000) must be selected when using this feature.

RESET MECHANISMS

Subaddress 0x17, Bit 1

A hardware reset is activated with a high-to-low transition on
RESET
the This resets all registers to their default values. After a hardware reset, the MPU port is configured for I device operation, a hardware reset is necessary after power-up.
The ADV7390/ADV7391/ADV7392/ADV7393 also have a software reset accessible via the I is activated by writing a 1 to Subaddress 0x17, Bit 1. This resets all registers to their default values. This bit is self-clearing; that is, after a 1 has been written to the bit, the bit automatically returns to 0.
A hardware reset is necessary after power-up for correct device operation. If no hardware reset functionality is required by the application, the to provide the hardware reset necessary after power-up. After power-up, the time constant of the RC network holds the RESET subsequent resets can be done via software.
pin in accordance with the timing specifications.
2
C operation. For correct
2
C MPU port. A software reset
RESET
pin can be connected to an RC network
pin low long enough to cause a reset to take place. All

SD TELETEXT INSERTION

Subaddress 0xC9 to Subaddress 0xCE

The ADV7390/ADV7391/ADV7392/ADV7393 support the insertion of teletext data, using a two pin interface, when operating in PAL mode. Teletext insertion is enabled using Subaddress 0xC9, Bit 0.
In accordance with the PA L WST teletext standard, teletext data should be inserted into the ADV7390/ADV7391/ADV7392/
ADV7393 at a rate of 6.9375 Mbps. On the ADV7390/ADV7391,
the teletext data is inserted on the
ADV7392/ADV7393, the teletext data can be inserted on the
VSYNC
or P0 pin (selectable through Subaddress 0xC9, Bit 2).
When teletext insertion is enabled, a teletext request signal is output from the ADV7390/ADV7391/ADV7392/ADV7393 to indicate when teletext data should be inserted. The teletext request signal is output on the SFL pin. The position (relative to the teletext data) and width of the request signal are configurable using Subaddress 0xCA. The request signal can operate in either a line or bit mode. The request signal mode is controlled using Subaddress 0xC9, Bit 1.
To account for the noninteger relationship between the teletext insertion rate (6.9375 Mbps) and the pixel clock (27 MHz), a teletext insertion protocol is implemented in the ADV7390/
ADV7391/ADV7392/ADV7393. At a rate of 6.9375 Mbps, the
time taken for the insertion of 37 teletext bits equates to 144 pixel clock cycles (at 27 MHz). For every 37 teletext bits inserted into the ADV7390/ADV7391/ADV7392/ADV7393,
th
the 10
, 19th, 28th, and 37th bits are carried for three pixel clock cycles, and the remainder are carried for four pixel clock cycles (totaling 144 pixel clock cycles). The teletext insertion protocol repeats every 37 teletext bits or 144 pixel clock cycles until all 360 teletext bits are inserted.
VSYNC
pin. On the
Figure 85. Teletext VBI Line
Rev. I | Page 67 of 107
Page 68
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
T
t
SYNTTXOUT
CVBS/Y
t
PD
t
HSYNC
10.2µs
TX
DATA
TTX
DEL
TTX
REQ
TTX
ST
t
SYNTTXOUT
t
PD
TTX
= 10.2µs.
= PIPELINE DELAY THROUGH ADV7390/ ADV7391/ADV7392/ ADV7393.
DEL
= TTX
REQ
TO TTX
(PROGRAMMABLE RANGE = 4 BITS [ 0 TO 15 PIXEL CLO CK CYCLES]).
DATA
PD
PROGRAMMABLE PULSE EDGES
Figure 86. Teletext Functionality Diagram
06234-144
Rev. I | Page 68 of 107
Page 69
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
On
297
(4×)
> 6.5
101.5
> 30
118.5
560
600
22pF600
DAC
OUTPUT
75
BNC OUTPUT
10
µH
560
3
4
1
06234-086
560Ω
6.8pF600Ω
6.8pF
600Ω
DAC
OUTPUT
75Ω
BNC OUTPUT
4.7µH
560Ω
3
4
1
06234-087
DAC
OUTPUT
390nH
33pF 33pF
75
500
300
75Ω
BNC
OUTPUT
500Ω
3
4
1
3
4
1
06234-088

PRINTED CIRCUIT BOARD LAYOUT AND DESIGN

UNUSED PINS

HSYNC
If the to V
through a pull-up resistor (10 kΩ or 4.7 kΩ). Any
DD_IO
other unused digital inputs should be tied to ground. Unused digital output pins should be left floating. DAC outputs can either be left floating or connected to GND. Disabling these outputs is recommended.
and
VSYNC
pins are not used, they should be tied

DAC CONFIGURATIONS

The ADV7390/ADV7391/ADV7392/ADV7393 contain three DACs. All three DACs can be configured to operate in full­drive mode. Full-drive mode is defined as 34.7 mA full-scale current into a 37.5 Ω load, R
. Full drive is the recommended
L
mode of operation for the DACs.
Alternatively, all three DACs can be configured to operate in low­drive mode. Low-drive mode is defined as 4.33 mA full-scale current into a 300 Ω load, R
The ADV7390/ADV7391/ADV7392/ADV7393 contain an R pin. A resistor connected between the R
.
L
SET
pin and AGND is
SET
used to control the full-scale output current and, therefore, the output voltage levels of DAC 1, DAC 2, and DAC 3. For full­drive operation, R have a value of 37.5 Ω. For low-drive opera-tion, R a value of 4.12 kΩ, and R resistor connected to the R
must have a value of 510 Ω and RL must
SET
must have
SET
must have a value of 300 Ω. The
L
pin should have a 1% tolerance.
SET
The ADV7390/ADV7391/ADV7392/ADV7393 contain a compensation pin, COMP. A 2.2 nF compensation capacitor should be connected from the COMP pin to V
.
AA

VIDEO OUTPUT BUFFER AND OPTIONAL OUTPUT FILTER

An output buffer is necessary on any DAC that operates in low­drive mode (R produces a range of op amps suitable for this application, for example, the AD8061. For more information about line driver buffering circuits, see the relevant op amp data sheet.
An optional reconstruction (anti-imaging) low-pass filter (LPF) may be required on the ADV7390/ADV7391/ADV7392/ADV7393 DAC outputs. The filter specifications vary with the application. The use of 16× (SD), 8× (ED), or 4× (HD) oversampling can remove the requirement for a reconstruction filter altogether.
For applications requiring an output buffer and reconstruction filter, the ADA4430-1 and ADA4411-3 integrated video filter buffers should be considered.
= 4.12 kΩ, RL = 300 Ω). Analog Devices
SET
Table 57. ADV7390/ADV7391/ADV7392/ADV7393 Output Rates
Input Mode (Subaddress 0x01, Bits[6:4]) Oversampling Output Rate (MHz)
SD Off 27 (2×)
On 108 (8×) On 216 (16×)
ED Off 27 (1×)
On 108 (4×) On 216 (8×)
HD Off 74.25 (1×)
On 148.5 (2×)
Table 58. Output Filter Requirements
Application Oversampling
Cutoff Frequency (MHz)
Attenuation
at
–50 dB (MHz)
SD > 6.5 20.5
16× > 6.5 209.5
ED > 12.5 14.5
> 12.5 95.5 8× > 12.5 203.5
HD > 30 44.25
> 30 267
Figure 87. Example of Output Filter for SD, 16× Oversampling
Figure 88. Example of Output Filter for ED, 8× Oversampling
Figure 89. Example of Output Filter for HD, 4× Oversampling
Rev. I | Page 69 of 107
Page 70
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
0
–10
–20
–30
–40
GAIN (dB)
–50
GROUP DELAY (Seconds)
–60
–70
–80
1M 10M 100M
CIRCUIT FRE QUENCY RESPO NSE
MAGNITUDE (dB)
PHASE (Degrees)
FREQUENCY ( Hz)
Figure 90. Output Filter Plot for SD, 16× Oversampling
0
–10
–20
–30
GROUP DE LAY (Seconds)
–40
–50
GAIN (dB)
–60
–70
–80
–90
1M 10M 100M 1G
CIRCUIT FRE QUENCY RESPONSE
MAGNITUDE (dB)
FREQUENCY (Hz)
Figure 91. Output Filter Plot for ED, 8× Oversampling
0
–10
–20
GAIN (dB)
–30
–40
–50
1
Figure 92. Output Filter Plot for HD, 4× Oversampling
CIRCUIT FREQ UENCY RESPONSE
MAGNITUDE (d B)
GROUP DEL AY (Secon ds)
10 100
FREQUENCY (MHz)
PHASE
(Degrees)
PHASE
(Degrees)
1G
0
–30
–60
–90
–120
–150
–180
–210
–240
480
400
320
240
160
80
0
–80
–160
–240
200
120
40
–40
–120
–200
24n
21n
18n
15n
12n
9n
6n
3n
0
18n
16n
14n
12n
10n
8n
6n
4n
2n
0

PRINTED CIRCUIT BOARD (PCB) LAYOUT

The ADV7390/ADV7391/ADV7392/ADV7393 are highly integrated circuits containing both precision analog and high speed digital circuitry. It is designed to minimize interference effects on the integrity of the analog circuitry by the high speed digital circuitry. It is imperative that these same design and layout techniques be applied to the system-level design so that optimal performance is achieved.
The layout should be optimized for lowest noise on the
ADV7390/ADV7391/ADV7392/ADV7393 power and ground
planes by shielding the digital inputs and providing good power supply decoupling.
06234-089
06234-090
PHASE (Degrees)
06234-091
It is recommended to use a 4-layer printed circuit board with ground and power planes separating the signal trace layer and the solder side layer.

Component Placement

Component placement should be carefully considered to separate noisy circuits, such as clock signals and high speed digital circuitry, from analog circuitry.
The external loop filter components and components connected to the COMP and R
pins should be placed as close as possible
SET
to, and on the same side of the PCB as, the ADV7390/ADV7391/
ADV7392/ADV7393. Adding vias to the PCB to get the
components closer to the ADV7390/ADV7391/ADV7392/
ADV7393 is not recommended.
It is recommended that the ADV7390/ADV7391/ADV7392/
ADV7393 be placed as close as possible to the output connector,
with the DAC output traces as short as possible.
The termination resistors on the DAC output traces should be placed as close as possible to and on the same side of the PCB as the ADV7390/ADV7391/ADV7392/ADV7393. The termination resistors should overlay the PCB ground plane.
External filter and buffer components connected to the DAC outputs should be placed as close as possible to the ADV7390/
ADV7391/ADV7392/ADV7393 to minimize the possibility of
noise pickup from neighboring circuitry and to minimize the effect of trace capacitance on output bandwidth. This is particularly important when operating in low-drive mode (R R
= 300 Ω).
L
= 4.12 kΩ,
SET

Power Supplies

It is recommended that a separate regulated supply be provided for each power domain (V
, VDD, V
AA
, and PVDD). For
DD_IO
optimal performance, linear regulators rather than switch mode regulators should be used. If switch mode regulators must be used, care must be taken with regard to the quality of the output voltage in terms of ripple and noise. This is particularly true for the V
and PVDD power domains. Each power supply should be
AA
individually connected to the system power supply at a single point through a suitable filtering device, such as a ferrite bead.
Rev. I | Page 70 of 107
Page 71
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393

Power Supply Decoupling

It is recommended that each power supply pin be decoupled with 10 nF and 0.1 µF ceramic capacitors. The V V
, and both VDD pins should be individually decoupled to
DD_IO
, PVDD,
AA
ground. The decoupling capacitors should be placed as close as possible to the ADV7390/ADV7391/ADV7392/ADV7393 with the capacitor leads kept as short as possible to minimize lead inductance.
A 1 µF tantalum capacitor is recommended across the V
AA
supply in addition to the 10 nF and 0.1 µF ceramic capacitors.

Power Supply Sequencing

The ADV7390/ADV7391/ADV7392/ADV7393 are robust to all power supply sequencing combin-ations. Any sequence can be used. However, all power supplies should settle to their nominal voltages within one second.

Digital Signal Interconnect

The digital signal traces should be isolated as much as possible from the analog outputs and other analog circuitry. Digital signal traces should not overlay the V
or PVDD power plane.
AA
Due to the high clock rates used, avoid long clock traces to the
ADV7390/ADV7391/ADV7392/ADV7393 to minimize noise
pickup.
Any pull-up termination resistors for the digital inputs should be connected to the V
power supply.
DD_IO

Analog Signal Interconnect

DAC output traces should be treated as transmission lines with appropriate measures taken to ensure optimal performance (for example, impedance matched traces). The DAC output traces should be kept as short as possible. The termination resistors on the DAC output traces should be placed as close as possible to, and on the same side of the PCB as, the ADV7390/ADV7391/
ADV7392/ADV7393.
To avoid crosstalk between the DAC outputs, it is recommended that as much space as possible be left between the traces connected to the DAC output pins. Adding ground traces between the DAC output traces is also recommended.

ADDITIONAL LAYOUT CONSIDERATIONS FOR THE WLCSP PACKAGE

Due to the high pad density and 0.5 mm pitch of the WLCSP, it is not recommended that connections to inner bumps be routed on the top PCB layer only.
The traces (track and space) must fit within the limits of the solder mask openings. Routing all traces on the top surface layer of the board, while possible, is usually not a feasible solution due to the limitations of the geometries imposed by the board fabrication technology. Given a pitch of 0.5 mm with a typical solder mask opening diameter of 0.35 mm, there is only a 0.15 mm distance between the solder mask openings.
An alternative to routing on the top surface is to route out on buried layers. To achieve this, the pads are connected to the lower layers using microvias. See the AN-617 Application Note, MicroCSP Wafer Level Chip Scale Package for additional details about the board layout for the WLCSP package.
Rev. I | Page 71 of 107
Page 72
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet

TYPICAL APPLICATIONS CIRCUITS

V
DD_IO
PV
DD
V
AA
V
DD
PIXEL PORT INPUTS
INPUTS/OUTPUTS
EXTERNAL LOOP FILTER
PV
DD
150nF
LOOP FILTER COMPONENTS SHOULD BE LOCATED CLOSE TO THE EXT_LF PIN AND ON THE SAME SIDE OF THE PCB AS THE ADV7390/ADV7391/ ADV7392/ADV7393.
FERRITE BEAD
33µF
GND_IO
FERRITE BEAD
33µF
PGND
FERRITE BEAD
33µF
AGND
FERRITE BEAD
33µF 10µF
DGND
CONTRO L
CLOCK I NPUT
I2C PORT
12nF
170
10µF
GND_IO
10µF
PGND
10µF
AGND
DGND
DD
DD
V
V
V
P0 P1 P2 P3 P4
ADV7390/ADV7391/
P5 P6
ADV7392/ADV7393
P7
P8 P9 P10 P11
ADV7392/
P12
ADV7393 ONLY
P13 P14 P15
HSYNC VSYNC
CLKIN
SDA SCL
RESET
EXT_LF
AGND
AGND
DGND
DGND
Figure 93. ADV7390/ADV7391/ADV7392/ADV7393 (LFCSP) Typical Applications Circuit
V
POWER
0.1µF
0.01µF
GND_IO
0.1µF
0.1µF
AGND
0.1µF
DGND
DD
AA
DD_IO
PV
V
DGNDPGND
DGNDPGND
PGND
COMP
ALSB
GND_IO
GND_IO
R
SET
DAC 1
DAC 2
DAC 3
GND_IO
0.01µF
PGND
0.01µF
AGND
0.01µF
DGND
V
DAC1 TO DAC3 FULL DRIVE OPTION
75
AGND
TIE EITHER LOW
DD_IO
SUPPLY DECOUPL ING
PVDD POWER SUPPLY DECOUPLING
VAA POWER
1µF
SUPPLY DECOUPLING
AGND
VDDPOWER SUPPLY DECOUPLING F OR EACH POWER PIN
AA
2.2nF
510
AGND
(RECOMMENDED)
OPTIONAL LPF
OPTIONAL LPF
75
AGND
OR HIGH
75
AGND
NOTES
1. FOR OPT IMUM PERFO RMANCE, EXTERNAL CO MPONENTS CONNECT ED TO THE COMP, R CLOSE TO, AND ON THE SAME SIDE OF THE PCB AS, THE ADV7390/ADV7391/ ADV7392/ADV 7393.
2
2. THE I
C DEVICE ADDRESS IS CONF IGURABLE USING THE ALSB PIN:
ALSB = 0, I 0x54 (ADV7391/ADV 7393)
ALSB = 1, I 0x56 (ADV7391/ADV 7393)
3. THE RESISTO R CONNECTED TO T HE R TOLERANCE.
4. THE RECOMMENDED MO DE OF OPERATION FOR T HE DACs IS FULL­ DRIVE (R
OPTIONAL LPF
SET
DAC 1
DAC 2
DAC 3
AND DAC OUTPUT PI NS SHOULD BE LOCATED
SET
2
C DEVICE ADDRESS = 0xD4 (ADV7390/ADV7392) OR
2
C DEVICE ADDRESS = 0xD6 (ADV7390/ADV7392) OR
PIN SHOULD HAVE A 1%
SET
= 510, RL = 37.5Ω).
DAC1 TO DAC3 LOW DRIVE OPTI ON
R
SET
4.12k
AGND
ADA4411-3
DAC 1
DAC 2
DAC 3
LPF
300
AGND
ADA4411-3
LPF
300
AGND
ADA4411-3
LPF
300
AGND
75
75
75
DAC 1
DAC 2
DAC 3
06234-092
Rev. I | Page 72 of 107
Page 73
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
P0 P1 P2 P3 P4 P5 P6 P7
DGNDPG
ND
D
GNDPG
ND
0.1µF GND_IO
0.01µF GND_IO
33µF
GND_IO
10µF
GND_IO
FERRITE BE AD
V
DD_IO
V
DD_IO
POWER
SUPPLY DECOUPLING
0.1µF PGND
0.01µF PGND
33µF
PGND
10µF
PGND
FERRITE BE AD
PV
DD
PV
DD
POWER SUPPLY DECOUPLING
0.1µF AGND
0.01µF AGND
33µF
AGND
10µF
AGND
FERRITE BE AD
V
AA
V
AA
POWER SUPPLY DECOUPLING
0.1µF DGND
0.01µF DGND
33µF 10µF
DGND
FERRITE BE AD
V
DD
V
DD
POWER SUPPLY DECOUPLING FOR EACH POWER PIN
V
DD_IO
PV
DD
V
AA
V
DD
AD
V7390BCBZ
AGN
D
AGND
DGND
DGND
GND_IO
GND_I
O
R
SET
AGND
510Ω
COMP
V
AA
2.2nF
EXT_LF
12nF
150nF
170Ω
PV
DD
SDA SCL
RESET
PI
XEL
PORT INPUTS
I2C PORT
D
G
N
D
V
DD
EXTERNAL LOOP FILTER
LOOP FILTER COMPONENTS SHOULD BE LOCATED CLOSE TO THE EXT_LF PIN AND ON THE SAME SIDE OF THE PCB AS THE ADV7390.
NOTES
1. FOR OP TIMUM PERFORMANCE, EX TERNAL COMP ONENTS CONNECTED TO THE COMP, R
SET
AND DAC OUTPUT PINS SHOULD BE LOCATED
CLOSE TO, AND ON THE S AM E S IDE OF THE P CB AS , THE ADV7390.
2. THE I
2
C DEVICE ADDRESS IS CONFI GURABLE USING THE ALSB PI N:
ALSB = 0, I
2
C DEVICE ADDRESS = 0xD4
ALSB = 1, I
2
C DEVICE ADDRESS = 0xD6
3. THE RESI S TOR CONNECT E D TO THE R
SET
PIN SHOULD HAV E A 1%
TOLERANCE.
4. THE RECOM M E NDE D M ODE OF O P E RATION FO R THE DACs IS FULL­ DRIVE (R
SET
= 510Ω, R
L
= 37.5Ω).
1µF
AGND
DAC FULL DRIVE OPTION
(RECOMMENDED)
DAC 1
75Ω
VIDEO
OPTIONAL LPF
DAC LOW DRIVE OPTION
VIDEO
DAC
R
SET
AGND
4.12kΩ
75Ω
AGND
300Ω
ADA4411-3
LPF
06234-148
ALSB
TIE EITHER LOW OR HIGH
CLKIN
CLOCK INPUT
HSYNC VSYNC
CONTROL
INPUTS/OUTPUTS
Figure 94. ADV7390BCBZ-A (WLCSP) Typical Applications Circuit
Rev. I | Page 73 of 107
Page 74
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet

COPY GENERATION MANAGEMENT SYSTEM

SD CGMS

Subaddress 0x99 to Subaddress 0x9B

The ADV7390/ADV7391/ADV7392/ADV7393 support a copy generation management system (CGMS) that conforms to the EIAJ CPR-1204 and ARIB TR-B15 standards. CGMS data is transmitted on Line 20 of odd fields and Line 283 of even fields. Subaddress 0x99, Bits[6:5] control whether CGMS data is output on odd or even fields or both.
SD CGMS data can be transmitted only when the
ADV7390/ADV7391/ADV7392/ADV7393 are configured in
NTSC mode. The CGMS data is 20 bits long. The CGMS data is preceded by a reference pulse of the same amplitude and duration as a CGMS bit (see Figure 95).

ED CGMS

Subaddress 0x41 to Subaddress 0x43; Subaddress 0x5E to Subaddress 0x6E

525p Mode
The ADV7390/ADV7391/ADV7392/ADV7393 support a copy generation management system (CGMS) in 525p mode in accordance with EIAJ CPR-1204-1.
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 525p CGMS data is inserted on Line 41. The 525p CGMS data registers are at Subaddress 0x41, Subaddress 0x42, and Subaddress 0x43.
The ADV7390/ADV7391/ADV7392/ADV7393 also support CGMS Type B packets in 525p mode in accordance with CEA­805-A.
When ED CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1), 525p CGMS Type B data is inserted on Line 40. The 525p CGMS Type B data registers are at Subaddress 0x5E to Subaddress 0x6E.
625p Mode
The ADV7390/ADV7391/ADV7392/ADV7393 support a copy generation management system (CGMS) in 625p mode in accordance with IEC 62375 (2004).
When ED CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 625p CGMS data is inserted on Line 43. The 625p CGMS data registers are at Subaddress 0x42 and Subaddress 0x43.

HD CGMS

Subaddress 0x41 to Subaddress 0x43; Subaddress 0x5E to Subaddress 0x6E

The ADV7390/ADV7391/ADV7392/ADV7393 support a copy generation management system (CGMS) in HD mode (720p and 1080i) in accordance with EIAJ CPR-1204-2.
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 720p CGMS data is applied to Line 24 of the luminance vertical blanking interval.
When HD CGMS is enabled (Subaddress 0x32, Bit 6 = 1), 1080i CGMS data is applied to Line 19 and Line 582 of the luminance vertical blanking interval.
The HD CGMS data registers are at Subaddress 0x41, Subad­ress 0x42, and Subaddress 0x43.
The ADV7390/ADV7391/ADV7392/ADV7393 also support CGMS Type B packets in HD mode (720p and 1080i) in accordance with CEA-805-A.
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1), 720p CGMS data is applied to Line 23 of the luminance vertical blanking interval.
When HD CGMS Type B is enabled (Subaddress 0x5E, Bit 0 = 1), 1080i CGMS data is applied to Line 18 and Line 581 of the luminance vertical blanking interval.
The HD CGMS Type B data registers are at Subaddress 0x5E to Subaddress 0x6E.

CGMS CRC FUNCTIONALITY

If SD CGMS CRC (Subaddress 0x99, Bit 4) or ED/HD CGMS CRC (Subaddress 0x32, Bit 7) is enabled, the upper six CGMS data bits (C19 to C14) that comprise the 6-bit CRC check sequence are automatically calculated on the ADV7390/
ADV7391/ADV7392/ADV7393. This calculation is based on
the lower 14 bits (C13 to C0) of the data in the CGMS data registers, and the result is output with the remaining 14 bits to form the complete 20 bits of the CGMS data. The calculation of the CRC sequence is based on the polynomial x preset value of 111111.
If SD CGMS CRC or ED/HD CGMS CRC is disabled, all 20 bits (C19 to C0) are output directly from the CGMS registers (CRC must be calculated by the user manually).
If ED/HD CGMS Type B CRC (Subaddress 0x5E, Bit 1) is enabled, the upper six CGMS Type B data bits (P122 to P127) that comprise the 6-bit CRC check sequence are automatically calculated on the ADV7390/ADV7391/ADV7392/ADV7393. This calculation is based on the lower 128 bits (H0 to H5 and P0 to P121) of the data in the CGMS Type B data registers. The result is output with the remaining 128 bits to form the complete 134 bits of the CGMS Type B data. The calculation of the CRC sequence is based on the polynomial x preset value of 111111.
If ED/HD CGMS Type B CRC is disabled, all 134 bits (H0 to H5 and P0 to P127) are output directly from the CGMS Type B registers (CRC must be calculated by the user manually).
6
+ x + 1 with a
6
+ x + 1 with a
Rev. I | Page 74 of 107
Page 75
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
+100 IRE
+70 IRE
0 IRE
–40 IRE
11.2µs
REF
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
49.1µs ± 0.5µs
2.235µs ± 20ns
CRC SEQUENCE
C13 C14 C15 C16 C17 C18 C19
06234-093
Figure 95. Standard Definition CGMS Waveform
CRC SEQUENCE
+700mV
70% ± 10%
0mV
–300mV
5.8µs ± 0.15µs 6T
REF
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
21.2µs ± 0. 22µs 22T
C13 C14 C15 C16 C17
T = 1/(
f
× 33) = 963ns
H
f
= HORIZONTAL SCAN FREQUENC Y
H
T ± 30ns
C18 C19
06234-094
Figure 96. Enhanced Definition (525p) CGMS Waveform
PEAK WHITE
R = RUN-IN S = START CODE
+700mV
70% ± 10%
0mV
–300mV
500mV ± 25 mV
SYNC LEVEL
5.5µs ± 0.125µs
4T
3.128µs ± 90ns
C0
R S
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
LSB
13.7µs
Figure 97. Enhanced Definition (625p) CGMS Waveform
CRC SEQUENCE
REF
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17
T ± 30ns
17.2µs ± 160ns 22T
1H
T = 1/(
f
× 1650/58) = 781. 93ns
H
f
= HORIZONTAL SCAN FREQUENCY
H
Figure 98. High Definition (720p) CGMS Waveform
C13
MSB
C18 C19
06234-095
6234-096
Rev. I | Page 75 of 107
Page 76
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
+700mV
70% ± 10%
REF
BIT 1 BIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . BIT 20
C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C1 5 C16 C17
CRC SEQUENCE
C18 C19
0mV
–300mV
4T
4.15µs ± 60ns
T ± 30ns
Figure 99. High Definition (1080i) CGMS Waveform
+700mV
70% ± 10%
0mV
–300mV
NOTES
1. PLEASE REF ER TO THE CEA-805-A SPECIFI CATION FO R TIMING INFORMAT ION.
START
BIT 1 BIT 2
H0H1H2H3H4
Figure 100. Enhanced Definition (525p) CGMS Type B Waveform
+700mV
70% ±10%
0mV
–300mV
START
BIT 1 BIT 2
H0H1H2H3H4
22.84µs ± 210ns 22T
1H
P0P1P2P3P4
H5
× 2200/77) = 1. 038µs
T = 1/(f
H
f
= HORIZO NTAL SCAN FREQUENCY
H
P2P3P4
P0
P1
H5
...
P122
.
..
CRC SEQUENCE
BIT 134
P123
P124
P125
CRC SEQUENCE
P122
P123
P124
P126
P127
P125
BIT 134
P126
P127
06234-097
06234-098
NOTES
1. PLEASE REFER TO T HE CEA-805-A SPECI FICATI ON FOR T IMING I NFORMATI ON.
Figure 101. High Definition (720p and 1080i) CGMS Type B Waveform
Rev. I | Page 76 of 107
06234-099
Page 77
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
1 Film mode
Open Subtitles
0 0 No
Copyright
0 No copyright asserted or unknown
ACTIVE
VIDEO
RUN-IN
SEQUENCE
START
CODE
500mV
11.0µs
38.4µs
42.5µs
W0 W1 W2 W3 W4
W5 W6 W7 W8 W9 W10 W1
1 W12 W13
06234-100

SD WIDE SCREEN SIGNALING

Subaddress 0x99, Subaddress 0x9A, Subaddress 0x9B

The ADV7390/ADV7391/ADV7392/ADV7393 support wide screen signaling (WSS) con-forming to the ETSI 300 294 standard. WSS data is transmitted on Line 23. WSS data can be transmitted only when the device is configured in PAL mode. The WSS data is 14 bits long. The function of each of these bits is shown in Tab l e 59. The WSS data is preceded by a run-in
Table 59. Function of WSS Bits
Bit Number Bit Description 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Setting
Aspect Ratio, Format, Position 1 0 0 0 4:3, full format, N/A
0 0 0 1 14:9, letterbox, center 0 0 1 0 14:9, letterbox, top 1 0 1 1 16:9, letterbox, center 0 1 0 0 16:9, letterbox, top 1 1 0 1 >16:9, letterbox, center 1 1 1 0 14:9, full format, center 0 1 1 1 16:0, N/A, N/A
Mode 0 Camera mode
sequence and a start code (see Figure 102). The latter portion of Line 23 (after 42.5 µs from the falling edge of
HSYNC
) is available for the insertion of video. WSS data transmission on Line 23 can be enabled using Subaddress 0x99, Bit 7. It is possible to blank the WSS portion of Line 23 with Subaddress 0xA1, Bit 7.
Color Encoding 0 Normal PAL
1 Motion Adaptive ColorPlus
Helper Signals 0 Not present
1 Present Reserved 0 N/A Teletext Subtitles 0 No
1 Ye s
0 1 Subtitles in active image area
1 0 Subtitles out of active image area
1 1 Reserved Surround Sound 0 No
1 Yes
1 Copyright asserted Copy Protection 0 Copying not restricted
1 Copying restricted
Figure 102. WSS Waveform Diagram
Rev. I | Page 77 of 107
Page 78
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
D0
TO D6
D0 TO D6
10.5 ± 0.25
µs 12.91
µs
7 CYCLES OF
0.5035MHz
CLOCK RUN-IN
REFERENCE COLOR BURST
(9 CYCLES)
FREQUENCY = FSC = 3.579545MHz
AMPLIT UDE = 40 IRE
50 IRE
40 IRE
10.003µs
27.382µs 33.764µ
s
BYTE 1BYTE 0
TWO 7-BIT + PARITY
ASCII CHARACTERS
(DATA)
S T A R T
P A R
I T Y
P A R
I T Y
06234-101

SD CLOSED CAPTIONING

Subaddress 0x91 to Subaddress 0x94

The ADV7390/ADV7391/ADV7392/ADV7393 support closed captioning conforming to the standard television synchronizing waveform for color trans-mission. When enabled, closed captioning is transmitted during the blanked active line time of Line 21 of the odd fields and Line 284 of the even fields. Closed captioning can be enabled using Subaddress 0x83, Bits[6:5].
Closed captioning consists of a seven-cycle sinusoidal burst that is frequency- and phase-locked to the caption data. After the clock run-in signal, the blanking level is held for two data bits and is followed by a Logic 1 start bit. Sixteen bits of data follow the start bit. The data consists of two 8-bit bytes (seven data bits and one odd parity bit per byte). The data for these bytes is stored in SD closed captioning registers (Subaddress 0x93 to Subaddress 0x94).
The ADV7390/ADV7391/ADV7392/ADV7393 also support the extended closed captioning operation, which is active during even fields and encoded on Line 284. The data for this operation is stored in SD closed captioning registers (Subaddress 0x91 to Subaddress 0x92).
The ADV7390/ADV7391/ADV7392/ADV7393 automatically generate all clock run-in signals and timing that support closed captioning on Line 21 and Line 284. All pixels inputs are ignored on Line 21 and Line 284 if closed captioning is enabled.
The FCC Code of Federal Regulations (CFR) Title 47 Section
15.119 and EIA-608 describe the closed captioning information for Line 21 and Line 284.
The ADV7390/ADV7391/ADV7392/ADV7393 use a single buffering method. This means that the closed captioning buffer is only 1-byte deep. Therefore, there is no frame delay in outputting the closed captioning data, unlike other 2-byte deep buffering systems. The data must be loaded one line before it is output on Line 21 and Line 284. A typical implementation of this method is to use
VSYNC
to interrupt a microprocessor, which in turn loads the new data (two bytes) in every field. If no new data is required for transmission, 0s must be inserted in both data registers; this is called nulling. It is also important to load control codes, all of which are double bytes, on Line 21. Otherwise, a TV does not recognize them. If there is a message such as “Hello World” that has an odd number of characters, it is important to add a blank character at the end to make sure that the end-of-caption, 2-byte control code lands in the same field.
Figure 103. SD Closed Captioning Waveform, NTSC
Rev. I | Page 78 of 107
Page 79
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
0x31
0x05

INTERNAL TEST PATTERN GENERATION

SD TEST PATTERNS

The ADV7390/ADV7391/ADV7392/ADV7393 are able to internally generate SD color bar and black bar test patterns. For this function, a 27 MHz clock signal must be applied to the CLKIN pin.
The register settings in Table 60 are used to generate an SD NTSC 75% color bar test pattern. All other registers are set as normal/ default. Component YPrPb output is available on DAC 1 to DAC 3. On power-up, the subcarrier frequency registers default to the appropriate values for NTSC.
Table 60. SD NTSC Color Bar Test Pattern Register Writes
Subaddress Setting
0x00 0x1C 0x82 0xC9 0x84 0x40
For CVBS and S-Video (Y/C) output, 0xCB instead of 0xC9 should be written to Subaddress 0x82.
For component RGB output rather than YPrPb output, 0 should be written to Subaddress 0x02, Bit 5.
To generate an SD NTSC black bar test pattern, the settings shown in Tab l e 60 should be used with an additional write of 0x24 to Subaddress 0x02.
For PAL output of either test pattern, the same settings are used except that Subaddress 0x80 is programmed to 0x11, and the subcarrier frequency (F in Table 61.
Table 61. PAL F
Subaddress Description Setting
0x8C FSC0 0xCB 0x8D FSC1 0x8A 0x8E FSC2 0x09 0x8F FSC3 0x2A
SC
Note that, when programming the FSC registers, the user must write the values in the sequence F F
value to be written is only accepted after the FSC3 write is
SC
complete.
) registers are programmed as shown
SC
Register Writes
0, FSC1, FSC2, FSC3. The full
SC

ED/HD TEST PATTERNS

The ADV7390/ADV7391/ADV7392/ADV7393 are able to internally generate ED/HD color bar, black bar, and hatch test patterns. For ED test patterns, a 27 MHz clock signal must be applied to the CLKIN pin. For HD test patterns, a 74.25 MHz clock signal must be applied to the CLKIN pin.
The register settings in Tabl e 62 are used to generate an ED 525p hatch test pattern. All other registers are set as normal/ default. Component YPrPb output is available on DAC 1 to DAC 3. For component RGB output rather than YPrPb output, 0 should be written to Subaddress 0x02, Bit 5.
Table 62. ED 525p Hatch Test Pattern Register Writes
Subaddress Setting
0x00 0x1C 0x01 0x10
To generate an ED 525p black bar test pattern, the settings shown in Tab l e 62 should be used with an additional write of 0x24 to Subaddress 0x02.
To generate an ED 525p flat field test pattern, the settings shown in Tab l e 62 should be used, except that 0x0D should be written to Subaddress 0x31.
The Y, Cr, and Cb levels for the hatch and flat field test patterns can be controlled using Subaddress 0x36, Subaddress 0x37, and Subaddress 0x38, respectively.
For ED/HD standards other than 525p, the settings shown in Table 62 (and subsequent comments) are used, except that Subaddress 0x30, Bits[7:3] are updated as appropriate.
Rev. I | Page 79 of 107
Page 80
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Y
C
r
Y
FF0000X
Y
8 0
10801
0
FF00FFABABA
B
801
0
8 0
10FF0
0
0 0
XYC
b
Y
C
r
C b
Y
C b
Y
C
r
EAV CODE
SAV CODE
ANCILLARY DATA
(HANC)
4 CLOCK
4 CLOCK
268 CLOCK
1440 CLOCK
4 CLOCK
4 CLOCK
280 CLOCK
1440 CLOCK
END OF ACTIVE
VIDEO LINE
START OF ACTIVE
VIDEO LINE
ANALOG
VIDEO
INPUT PIXELS
NTSC/PAL M SYSTEM
(525 LINES/ 60Hz )
PAL SYSTEM
(625 LINES/ 50Hz )
Y
06234-102
522
523 524 525
8
9
10
11 20 21
22
DISPLAY
DISPLAY
VERTICAL BLANK
ODD FIELD
EVEN FIELD
H
F
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
283
284
285
ODD FIELD
EVEN FIELD
DISPLAY
DISPL
AY
VERTICAL BLANK
H
F
765
4
32
1
06234-103

SD TIMING

Mode 0 (CCIR-656)—Slave Option (Subaddress 0x8A = X X X X X 0 0 0)

The ADV7390/ADV7391/ADV7392/ADV7393 are controlled by the SAV (start of active video) and EAV (end of active video) time codes embedded in the pixel data. All timing information is transmitted using a 4-byte synchronization pattern. A synchronization pattern is sent immediately before and after each line during active picture and retrace. If the tied to V
when using this mode.
DD_IO
VSYNC
and
HSYNC
pins are not used, they should be
Figure 104. SD Timing Mode 0, Slave Option

Mode 0 (CCIR-656)—Master Option (Subaddress 0x8A = X X X X X 0 0 1)

The ADV7390/ADV7391/ADV7392/ADV7393 generate H and F signals required for the SAV and EAV time codes in the CCIR-656 standard. The H bit is output on
HSYNC
and the F bit is output on
Figure 105. SD Timing Mode 0, Master Option, NTSC
VSYNC
.
Rev. I | Page 80 of 107
Page 81
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
A
DISPLAY
622 623 624 625
H
F
DISPLAY
309 310 311 312 314 315 316 317
H
F
EVEN FIELD
ODD FIELD
1
ODD FIELD
313
EVEN FIELD
VERTICAL BLANK
32
VERTICAL BLANK
4
318
765
319 320
21
22 23
334
DISPLAY
335 336
DISPLAY
6234-104
Figure 106. SD Timing Mode 0, Master Option, PAL
NALOG
VIDEO
H
F
06234-105
Figure 107. SD Timing Mode 0, Master Option, Data Transitions

Mode 1—Slave Option (Subaddress 0x8A = X X X X X 0 1 0)

In this mode, the ADV7390/ADV7391/ADV7392/ADV7393 accept horizontal synchronization and odd/even field signals. When HSYNC
VSYNC
is low, a transition of the field input indicates a new frame, that is, vertical retrace.
pins, respectively.
HSYNC
FIELD
DISPLAY
522 523 524 525
DISPLAY
1
3
2
EVEN FIELD
4
ODD FIELD
VERTICAL BLANK
59
VERTICAL BLANK
7
6
HSYNC
8
and FIELD are input on the
10 11
20 21 22
HSYNC
DISPLAY
DISPLAY
and
HSYNC
FIELD
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
ODD FIELD EVEN FIELD
283
284
285
06234-106
Figure 108. SD Timing Mode 1, Slave Option, NTSC
Rev. I | Page 81 of 107
Page 82
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
DISPLAY
DISPLAY
334 335 336
6234-107
HSYNC
FIELD
HSYNC
FIELD
DISPLAY
622 623 624 625
EVEN FIELD
DISPLAY
309 310 311 312 313 314 315 316
ODD FIELD
ODD FIELD
EVEN FIELD
21
VERTICAL BLANK
3
VERTICAL BLANK
4
5
317
6
318 319
7
21 22 23
320
Figure 109. SD Timing Mode 1, Slave Option, PAL

Mode 1—Master Option (Subaddress 0x8A = X X X X X 0 1 1)

In this mode, the ADV7390/ADV7391/ADV7392/ADV7393 can generate horizontal synchronization and odd/even field signals. When HSYNC
is low, a transition of the field input indicates a new frame, that is, vertical retrace. The ADV7390/ADV7391/ADV7392/ADV7393 automatically blank all normally blank lines as required by the CCIR-624 standard. Pixel data is latched on the rising clock edge following the timing signal transitions.
HSYNC
and FIELD are output on the
HSYNC
and
VSYNC
pins, respectively.
HSYNC
FIELD
PIXEL
DATA
Cb Y
PAL = 132 × CLOCK/2
NTSC = 122 × CL OCK/2
Cr Y
06234-108
Figure 110. SD Timing Mode 1, Odd/Even Field Transitions (Master/Slave)

Mode 2— Slave Option (Subaddress 0x8A = X X X X X 1 0 0)

In this mode, the ADV7390/ADV7391/ADV7392/ADV7393 accept horizontal and vertical synchronization signals. A coincident low transition of both
HSYNC
and
VSYNC
inputs indicates the start of an odd field. A
VSYNC
low transition when
HSYNC
is high indicates the start of an even field. The ADV7390/ADV7391/ADV7392/ADV7393 automatically blank all normally blank lines as required by the CCIR-624 standard.
HSYNC
and
VSYNC
are input on the
HSYNC
and
VSYNC
pins, respectively.
Rev. I | Page 82 of 107
Page 83
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
HSYNC
VSYNC
HSYNC
VSYNC
DISPLAY
4
522 523 524 525
DISPLAY
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
1
3
2
EVEN FIELD
ODD FIELD
VERTICAL BLANK
5
6
ODD FIELD
VERTICAL BLANK
EVEN FIELD
7
8
10 11
9
20 21 22
DISPLAY
283
284
DISPLAY
285
6234-109
Figure 111. SD Timing Mode 2, Slave Option, NTSC
DISPLAY
HSYNC
DISPLAY
622 623 624 625
VERTICAL BLANK
4
321
765
21 22 23
VSYNC
HSYNC
VSYNC
DISPLAY
309 310 3 11 312 313 314 315 316
ODD FIELD
ODD FIELDEVEN FIELD
VERTICAL BLANK
EVEN FIELD
317
318 319
320
DISPLAY
334 335 336
06234-110
Figure 112. SD Timing Mode 2, Slave Option, PAL

Mode 2—Master Option (Subaddress 0x8A = X X X X X 1 0 1)

In this mode, the ADV7390/ADV7391/ADV7392/ADV7393 can generate horizontal and vertical synchronization signals. A coincident low transition of both
HSYNC
and
VSYNC
inputs indicates the start of an odd field. A
VSYNC
low transition when
HSYNC
is high indicates the start of an even field. The ADV7390/ADV7391/ADV7392/ADV7393 automatically blank all normally blank lines as required by the CCIR-624 standard.
HSYNC
and
VSYNC
are output on the
HSYNC
and
VSYNC
pins, respectively.
HSYNC
VSYNC
PIXEL
DATA
PAL = 132 × CLOCK/2
NTSC = 122 × CL OCK/2
Figure 113. SD Timing Mode 2, Even-to-Odd Field Transition (Master/Slave)
Rev. I | Page 83 of 107
Cb
Cr
Y
Y
06234-111
Page 84
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Cb
PIXEL
DATA
HSYNC
VSYNC
PAL = 132 × CLOCK/2
NTSC = 122 × CL OCK/2
PAL = 864 × CLOCK/2
NTSC = 858 × CL OCK/2
Cb
Y
Y
Cr
06234-112
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
283
284
285
ODD FIELD EVEN FIELD
DISPLAY
DISPLAY
VERTICAL BLANK
522 523 524 525
9
10 11
20 21 22
DISPLAY
DISPLAY
VERTICAL BLANK
ODD FIELDEVEN FIELD
HSYNC
FIELD
HSYNC
FIELD
8
765
4
32
1
06234-113
622 623 624 625
5
6
21 22 23
DISPLAY
VERTICAL BLANK
ODD FIELDEVEN FIELD
FIELD
DISPLAY
309 310 311 312 313 314 315 316
317
318 319
334 335 336
DISPLAY
VERTICAL BLANK
ODD FIELDEVEN FIELD
FIELD
DISPLAY
320
4
32
1
7
HSYNC
HSYNC
06234-114
Figure 114. SD Timing Mode 2, Odd-to-Even Field Transition (Master/Slave)

Mode 3—Master/Slave Option (Subaddress 0x8A = X X X X X 1 1 0 or X X X X X 1 1 1)

In this mode, the ADV7390/ADV7391/ADV7392/ADV7393 accept or generates horizontal synchronization and odd/even field signals.
HSYNC
When
ADV7390/ADV7391/ADV7392/ADV7393 automatically blank all normally blank lines as required by the CCIR-624 standard.
VSYNC
and
is high, a transition of the field input indicates a new frame, that is, vertical retrace. The
are output in master mode and input in slave mode on the
HSYNC
and
VSYNC
pins, respectively.
HSYNC
Figure 115. SD Timing Mode 3, NTSC
Figure 116. SD Timing Mode 3, PAL
Rev. I | Page 84 of 107
Page 85
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393

HD TIMING

DISPLAY
FIELD 1
VSYNC
HSYNC
FIELD 2
VSYNC
HSYNC
VERTICAL BL ANKING INTERVAL
1124 1125
561 562 563 564 567 568 569 570
12 56 7 8
VERTICAL BL ANKING INTERVAL
Figure 117. 1080i
43
566565
and
VSYNC
Input Timing
HSYNC
21
20 22 560
DISPLAY
584
583 5851123
06234-115
Rev. I | Page 85 of 107
Page 86
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
3
V

VIDEO OUTPUT LEVELS

SD YPrPb OUTPUT LEVELS—SMPTE/EBU N10

Pattern: 100% Color Bars

WHITE
YELLOW
CYAN
GREEN
MAGENTARED
BLUE
700mV
BLACK
WHITE
YELLOW
CYAN
GREEN
MAGENTA
RED
BLUE
700mV
BLACK
300mV
06234-116
Figure 118. Y Levels—NTSC
WHITE
YELLOW
CYAN
GREEN
MAGENTA
RED
BLUE
BLACK
700mV
06234-117
Figure 119. Pr Levels—NTSC
00m
700mV
Figure 121. Y Levels—PAL
WHITE
YELLOW
CYAN
GREEN
Figure 122. Pr Levels—PAL
06234-119
MAGENTA
RED
BLUE
BLACK
06234-120
WHITE
YELLOW
CYAN
GREEN
MAGENTA
RED
BLUE
BLACK
06234-121
700mV
WHITE
YELLOW
CYAN
GREEN
MAGENTA
Figure 120. Pb Levels—NTSC
RED
BLUE
BLACK
700mV
06234-118
Figure 123. Pb Levels—PAL
Rev. I | Page 86 of 107
Page 87
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393

ED/HD YPrPb OUTPUT LEVELS

INPUT CODE
EIA-770.2, S TANDARD FOR Y
OUTPUT VOLTAGE
INPUT CODE
EIA-770.3, S TANDARD FOR Y
OUTPUT VOLTAGE
940
64
EIA-770.2, STANDARD FOR Pr/Pb
960
512
64
Figure 124. EIA-770.2 Standard Output Signals (525p/625p)
INPUT CODE
EIA-770.1, STANDARD FOR Y
940
700mV
300mV
OUTPUT VOLTAGE
700mV
OUTPUT VOLTAGE
782mV
940
700mV
64
300mV
EIA-770.3, STANDARD FOR Pr/Pb
960
512
64
06234-122
600mV
OUTPUT VOLTAGE
700mV
06234-124
Figure 126. EIA-770.3 Standard Output Signals (1080i/720p)
INPUT CODE
1023
Y–OUTPUT LEVELS FOR FULL INPUT SELECTION
OUTPUT VOLTAGE
64
EIA-770.1, STANDARD FOR Pr/Pb
960
512
64
Figure 125. EIA-770.1 Standard Output Signals (525p/625p)
714mV
286mV
OUTPUT VOLTAGE
700mV
700mV
64
300mV
INPUT CODE
1023
6234-123
Pr/Pb–OUTPUT LEVELS FOR
FULL INPUT SELECTION
64
OUTPUT VOLTAGE
700mV
300mV
06234-125
Figure 127. Output Levels for Full Input Selection
Rev. I | Page 87 of 107
Page 88
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
700mV/525mV
700mV/525mV
700mV/525mV
300mV
300mV
300mV
R
G
B
06234-126
700mV/525mV
700mV/525mV
700mV/525mV
300mV
R
G
B
0mV
300mV
0mV
300mV
0mV
06234-127
700mV/525mV
700mV/525mV
700mV/525mV
300mV
300mV
300mV
R
G
B
06234-128
300mV
0mV
0mV
700mV/525mV
700mV/525mV
700mV/525mV
300mV
R
G
B
600mV
300mV
0mV
600mV
600mV
06234-129

SD/ED/HD RGB OUTPUT LEVELS

Pattern: 100%/75% Color Bars

Figure 128. SD/ED RGB Output Levels—RGB Sync Disabled
Figure 130. HD RGB Output Levels—RGB Sync Disabled
Figure 129. SD/ED RGB Output Levels—RGB Sync Enabled
Figure 131. HD RGB Output Levels—RGB Sync Enabled
Rev. I | Page 88 of 107
Page 89
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393

SD OUTPUT PLOTS

VOLTS IRE:FLT
100
0.5
50
VOLTS
0.6
0.4
0.2
0
0
F1
–50
L76
0
10 20
APL = 44.5% 525 LINE NTSC SLOW CLAMP TO 0.00V AT 6.72s
MICROSECONDS PRECISION MODE OFF
SYNCHRO NOUS SYNC = A
Figure 132. NTSC Color Bars (75%)
IRE:FLT
VOLTS
0.6
0.4 50
0.2
0
0
0
–0.2
0
NOISE REDUCTI ON: 15.05dB APL = 44.3% 525 LINE NTSC NO FILTERING SLOW CLAMP TO 0.00V AT 6.72s
F2 L238
10 20 30 40 50 60
MICROSECONDS
PRECISION MODE OFF SYNCHRONOUS SYNC = SO URCE
Figure 133. NTSC Luma
VOLTS IRE:FLT
0.4 50
30 40 50 60
µ FRAMES SELECTED 1, 2
µ FRAMES SELECTED 1, 2
0
–0.2
L608
10020
NOISE REDUCTION: 0. 00dB APL = 39.1% 625 LINE NTSC NO FILTERING
06234-130
06234-131
SLOW CL AMP TO 0.00 AT 6.72µs
Figure 135. PAL Color Bars (75%)
VOLTS
0.5
0
L575
10020
APL NEEDS SYNC SOURCE. 625 LINE PAL NO F ILTERING SLOW CLAMP TO 0.00 AT 6.72µs
VOLTS
0.5
MICROSECONDS
30 40 50 60
MICROSECONDS
PRECISION MODE OFF
SYNCHRONOUS SO UND-IN-SYNC OFF
FRAMES SELECTED 1, 2, 3, 4
30 40 50 60
NO BUNCH SIGNAL PRECISION MODE OFF
SYNCHRONOUS SOUND-IN-SYNC OFF
FRAMES SELECTED 1
Figure 136. PAL Luma
06234-133
70
6234-134
0.2
0
0
–0.2
–50
–0.4
F1 L76
0
10 20
NOISE REDUCTI ON: 15.05dB APL NEEDS SYNC SOURCE. 525 LINE NTSC NO FILTERING SLOW CLAMP TO 0.00 AT 6.72µs
30 40 50 60
MICROSECONDS
PRECISION MODE OFF SYNCHRONOUS SYNC = B FRAMES SELECTED 1, 2
Figure 134. NTSC Chroma
06234-132
Rev. I | Page 89 of 107
0
–0.5
L575
10020
APL NEEDS SYNC S OURCE. 625 LINE PAL NO FILTERING SLOW CLAMP TO 0.00 AT 6.72µs
MICROSECONDS
Figure 137. PAL Chroma
30 40 50 60
NO BUNCH SIG NAL PRECISION MODE OFF
SYNCHRONOUS SOUND-IN-SYNC OFF
FRAMES SELECTED 1
06234-135
Page 90
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
F V
H*
F F
272T
4T
*1
4T 1920T
EAV CODE
SAV CODE
DIGITAL
ACTIVE LINE
4 CLOCK 4 CLOCK
2112 2116 2156 2199
0
44 188 192 2111
000
0
000
0
F F
F V H*
C bCr
C
r
Y
Y
FVH* = FVH AND PARITY BITS SAV/EAV: LINE 1–562: F = 0 SAV/EAV: LINE 563–1125: F = 1 SAV/EAV: LINE 1–20; 561–583; 1124–1125: V = 1 SAV/EAV: LINE 21–560; 584–1123: V = 0
FOR A FRAME RATE OF 30Hz: 40 SAMPLES FOR A FRAME RATE OF 25Hz: 480 SAMPLES
INPUT PIXELS
ANALOG WAVEFORM
SAMPLE NUMBER
SMPTE 274M
DIGITAL HORIZONTAL BLANKING
ANCILLARY DATA
(OPTIONAL) OR BL ANKING CODE
0
H
DATUM
06234-136
Y
EAV CODE
ANCILLARY DATA
(OPTIONAL)
SAV CODE
DIGITAL
ACTIVE LINE
719 723 736 799 853 0
FVH* = FVH AND PARITY BITS SAV: LINE 43–525 = 200H SAV: LINE 1–42 = 2AC EAV: LINE 43–525 = 274H EAV: LINE 1–42 = 2D8
4 CLOCK
4 CLOCK
857 719
0
H
DATUM
DIGITAL HORIZONTAL BLANKING
000
0
000
0
CbC
r
C
r
Y
Y
F V
H*
SMPTE 293M
INPUT PIXELS
ANALOG WAVEFORM
SAMPLE NUMBER
F F
F F
F V H*
06234-137
VERTICAL BLANK
522 523 524 525 1 2 5 6 7 8 9 12 13 14 15 16 42 43 44
ACTIVE
VIDEO
ACTIVE
VIDEO
06234-138

VIDEO STANDARDS

Figure 138. EAV/SAV Input Data Timing Diagram (SMPTE 274M)
Figure 139. EAV/SAV Input Data Timing Diagram (SMPTE 293M)
Figure 140. SMPTE 293M (525p)
Rev. I | Page 90 of 107
Page 91
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
ACTIVE
VIDEO
622 623 624 625 10 11
12 5 6789
4
VERTICAL BLANK
12
13
ACTIVE
VIDEO
43 44 45
06234-139
Figure 141. ITU-R BT.1358 (625p)
DISPLAY
VERTICAL BLANKI NG INTERVAL
747 748 749 750 26 2725744 745
123
456
7
8
06234-140
Figure 142. SMPTE 296M (720p)
DISPLAY
VERTICAL BLANKI NG INTERVAL
FIELD 1
FIELD 2
1124 1125
561 562 563 564 567 568 569 570
12 5678
VERTICAL BLANKI NG INTERVAL
43 20
566565
Figure 143. SMPTE 274M (1080i)
560
22
21
DISPLAY
584
583 585 1123
6234-141
Rev. I | Page 91 of 107
Page 92
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
/
625i (PAL)
8-bit SDR
EAV/SAV
YCrCb
RGB
Table 84

CONFIGURATION SCRIPTS

The scripts listed in the following pages can be used to configure the ADV7390/ADV7391/ADV7392/ADV7393 for basic operation. Certain features are enabled by default. If required for a specific application, additional features can be enabled. Table 63 lists the scripts available for SD modes of operation. Similarly, Tabl e 98 and Table 115 list the scripts available for ED and HD modes of operation, respectively. For all scripts, only the necessary register writes are included. All other registers are assumed to have their default values. The WLCSP package supports only scripts in Table 65, Ta b l e 79, Table 82, and Table 96. In those scripts, Subaddress 0x00 must be set to 0x10.

STANDARD DEFINITION

Table 63. SD Configuration Scripts
Input Format Input Data Width1 Synchronization Format Input Color Space Output Color Space Table Number
525i (NTSC) 8-bit SDR EAV/SAV YCrCb YPrPb Table 64 525i (NTSC) 8-bit SDR EAV/SAV YCrCb CVBS/Y-C (S-Video) Table 65 525i (NTSC) 8-bit SDR
525i (NTSC) 8-bit SDR EAV/SAV YCrCb RGB Table 67 525i (NTSC) 8-bit SDR
525i (NTSC) 10-bit SDR EAV/SAV YCrCb YPrPb Table 69 525i (NTSC) 10-bit SDR 525i (NTSC) 10-bit SDR 525i (NTSC) 10-bit SDR EAV/SAV YCrCb RGB Table 72 525i (NTSC) 10-bit SDR 525i (NTSC) 16-bit SDR 525i (NTSC) 16-bit SDR 525i (NTSC) 16-bit SDR 525i (NTSC) 16-bit SDR 525i (NTSC) 16-bit SDR
NTSC Sq. Pixel 8-bit SDR EAV/SAV YCrCb CVBS/Y-C (S-Video) Table 79 NTSC Sq. Pixel 16-bit SDR
625i (PAL) 8-bit SDR EAV/SAV YCrCb YPrPb Table 81 625i (PAL) 8-bit SDR EAV/SAV YCrCb CVBS/Y-C (S-Video) Table 82 625i (PAL) 8-bit SDR
HSYNC
HSYNC
HSYNC HSYNC
HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC
HSYNC
HSYNC
VSYNC
/
VSYNC
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
YCrCb YPrPb Table 66
YCrCb RGB Table 68
YCrCb YPrPb Table 70 YCrCb CVBS/Y-C (S-Video) Table 71
YCrCb RGB Table 73 YCrCb YPrPb Table 74 YCrCb RGB Table 75 RGB YPrPb Table 76 RGB CVBS/Y-C (S-Video) Table 77 RGB RGB Table 78
RGB CVBS/Y-C (S-Video) Table 80
YCrCb YPrPb Table 83
625i (PAL) 8-bit SDR 625i (PAL) 10-bBit SDR EAV/SAV YCrCb YPrPb Table 86
625i (PAL) 10-bit SDR 625i (PAL) 10-bit SDR 625i (PAL) 10-bit SDR EAV/SAV YCrCb RGB Table 89
625i (PAL) 10-bit SDR 625i (PAL) 16-bit SDR 625i (PAL) 16-bit SDR 625i (PAL) 16-bit SDR 625i (PAL) 16-bit SDR 625i (PAL) 16-bit SDR PAL Sq. Pixel 8-bit SDR EAV/SAV YCrCb CVBS/Y-C (S-Video) Table 96
PAL Sq. Pixel 16-bit SDR
1
SDR = single data rate.
HSYNC
HSYNC HSYNC
HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC
HSYNC
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
YCrCb RGB Table 85
YCrCb YPrPb Table 87 YCrCb CVBS/Y-C (S-Video) Table 88
YCrCb RGB Table 90 YCrCb YPrPb Table 91 YCrCb RGB Table 92 RGB YPrPb Table 93 RGB CVBS/Y-C (S-Video) Table 94 RGB RGB Table 95
RGB CVBS/Y-C (S-Video) Table 97
Rev. I | Page 92 of 107
Page 93
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
0x00
0x1C
All DACs enabled. PLL enabled (16×).
0x80
0x10
NTSC standard. SSAF luma filter
0x01
0x00
SD input mode.
Table 64. 8-Bit 525i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x10 NTSC standard. SSAF luma filter
enabled.
1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge control enabled. Pedestal enabled.
Table 65. 8-Bit 525i YCrCb In (EAV/SAV), CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset
0x10 WLCSP required. 0x01 0x00 SD input mode.
enabled. 1.3 MHz chroma filter enabled.
0x82 0xCB Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active video edge control enabled. Pedestal enabled.
Table 66. 8-Bit 525i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge control enabled. Pedestal enabled.
0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 67. 8-Bit 525i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge control enabled. Pedestal enabled.
Table 68. 8-Bit 525i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge control enabled. Pedestal enabled.
0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 69. 10-Bit 525i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×).
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge control enabled. Pedestal enabled.
0x88 0x10 10-bit input enabled.
Table 70. 10-Bit 525i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled. 0x88 0x10 10-bit input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Rev. I | Page 93 of 107
Page 94
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
0x8A
0x0C
Timing Mode 2 (slave).
0x00
0x1C
All DACs enabled. PLL enabled (16×).
0x88
0x10
16-bit RGB input enabled.
synchronization.
Table 71. 10-Bit 525i YCrCb In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xCB Pixel data valid. CVBS/Y-C (S-Video) out.
SSAF PrPb filter enabled. Active video
edge control enabled. Pedestal enabled. 0x88 0x10 10-bit input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 74. 16-Bit 525i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled. 0x88 0x10 16-bit RGB input enabled. 0x8A 0x0C
Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 72. 10-Bit 525i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge control enabled. Pedestal enabled.
0x88 0x10 10-bit input enabled.
Table 73. 10-Bit 525i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled. 0x88 0x10 10-bit input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 75. 16-Bit 525i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge control enabled. Pedestal enabled.
0x88 0x10 16-bit RGB input enabled.
HSYNC/VSYNC
synchronization.
Table 76. 16-Bit 525i RGB In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x01 0x00 SD input mode. 0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xC9 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge control enabled. Pedestal enabled.
0x87 0x80 RGB input enabled.
0x8A 0x0C Timing Mode 2 (slave).
HSYNC/VSYNC
Rev. I | Page 94 of 107
Page 95
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
Subaddress
Setting
Description
0x8E
0x55
0x17
0x02
Software reset.
Table 77. 16-Bit 525i RGB In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xCB Pixel data valid. CVBS/Y-C (S-Video) out.
SSAF PrPb filter enabled. Active video
edge control enabled. Pedestal enabled. 0x87 0x80 RGB input enabled. 0x88 0x10 16-bit RGB input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 78. 16-Bit 525i RGB In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled. 0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled. 0x82 0xC9 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled. Pedestal enabled. 0x87 0x80 RGB input enabled. 0x88 0x10 16-bit RGB input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 79. 8-Bit NTSC Square Pixel YCrCb In (EAV/SAV), CVBS/Y-C Out
0x17 0x02 Software reset 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x10 WLCSP required. 0x01 0x00 SD input mode. 0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled. 0x82 0xDB Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled. Pedestal
enabled. Square pixel mode enabled. 0x8C 0x55 Subcarrier frequency register values 0x8D 0x55 0x8E 0x55 0x8F 0x25
for CVBS and/or S-Video (Y-C) output in
NTSC square pixel mode (24.5454 MHz
input clock).
Table 80. 16-Bit NTSC Square Pixel RGB In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x10 NTSC standard. SSAF luma filter
enabled. 1.3 MHz chroma filter enabled.
0x82 0xDB Pixel data valid. CVBS/Y-C (S-Video) out.
SSAF PrPb filter enabled. Active video edge control enabled. Pedestal
enabled. Square pixel mode enabled. 0x87 0x80 RGB input enabled. 0x88 0x10 16-bit RGB input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization. 0x8C 0x55 Subcarrier frequency register values 0x8D 0x55
0x8F 0x25
for CVBS and/or S-Video (Y-C) output in
NTSC square pixel mode (24.5454 MHz
input clock).
HSYNC/VSYNC
Table 81. 8-Bit 625i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled.
Table 82. 8-Bit 625i YCrCb In (EAV/SAV), CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x10 WLCSP required. 0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC3 Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled. 0x8C 0xCB Subcarrier frequency register values 0x8D 0x8A 0x8E 0x09 0x8F 0x2A
for CVBS and/or S-Video (Y-C) output
in PAL mode (27 MHz input clock).
Rev. I | Page 95 of 107
Page 96
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
0x8A
0x0C
Timing Mode 2 (slave).
0x00
0x1C
All DACs enabled. PLL enabled (16×).
0x88
0x10
10-bit input enabled.
Table 83. 8-Bit 625i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge control enabled.
0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 84. 8-Bit 625i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge control enabled.
Table 85. 8-Bit 625i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge control enabled.
HSYNC/VSYNC
synchronization.
Table 86. 10-Bit 625i YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
Table 87. 10-Bit 625i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. 0x88 0x10 10-bit input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 88. 10-Bit 625i YCrCb In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC3 Pixel Data Valid. CVBS/Y-C (S-Video)
Out. SSAF PrPb filter enabled. Active
video edge control enabled. 0x88 0x10 10-bit input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization. 0x8C 0xCB Subcarrier frequency register values 0x8D 0x8A 0x8E 0x09 0x8F 0x2A
for CVBS and/or S-Video (Y-C) output
in PAL mode (27 MHz input clock).
HSYNC/VSYNC
Table 89. 10-Bit 625i YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled.
0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge control enabled.
0x88 0x10 10-bit input enabled.
Rev. I | Page 96 of 107
Page 97
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
0x00
0x1C
All DACs enabled. PLL enabled (16×).
0x00
0x1C
All DACs enabled. PLL enabled (16×).
Table 90. 10-Bit 625i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
filter enabled. Active video edge
control enabled. 0x88 0x10 10-bit input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 91. 16-Bit 625i YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. 0x88 0x10 16-bit RGB input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 92. 16-Bit 625i YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
Table 93. 16-Bit 625i RGB In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC1 Pixel data valid. YPrPb out. SSAF PrPb
filter enabled. Active video edge
control enabled. 0x87 0x80 RGB input enabled. 0x88 0x10 16-bit RGB input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization.
HSYNC/VSYNC
Table 94. 16-Bit 625i RGB In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xC3 Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active
video edge control enabled. 0x87 0x80 RGB input enabled. 0x88 0x10 16-bit RGB input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization. 0x8C 0xCB Subcarrier frequency register values 0x8D 0x8A 0x8E 0x09 0x8F 0x2A
for CVBS and/or S-Video (Y-C) output
in PAL mode (27 MHz input clock).
HSYNC/VSYNC
0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
0x80 0x11 PAL standard. SSAF luma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
0x88 0x10 16-bit RGB input enabled. 0x8A 0x0C Timing Mode 2 (slave).
enabled.
1.3 MHz chroma filter enabled.
filter enabled. Active video edge control enabled.
HSYNC/VSYNC
synchronization.
Table 95. 16-Bit 625i RGB In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x02 0x10 RGB output enabled. RGB output sync
0x80 0x11 PAL standard. SSAF luma filter enabled.
0x82 0xC1 Pixel data valid. RGB out. SSAF PrPb
0x87 0x80 RGB input enabled. 0x88 0x10 16-bit RGB input enabled. 0x8A 0x0C Timing Mode 2 (slave).
Rev. I | Page 97 of 107
enabled.
1.3 MHz chroma filter enabled.
filter enabled. Active video edge
control enabled.
HSYNC/VSYNC
synchronization.
Page 98
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
Subaddress
Setting
Description
0x8E
0x79
Table 96. 8-Bit PAL Square Pixel YCrCb In (EAV/SAV), CVBS/Y-C Out
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x10 WLCSP required. 0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xD3 Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active video edge control enabled. Square
pixel mode enabled. 0x8C 0x0C Subcarrier frequency register values 0x8D 0x8C 0x8E 0x79 0x8F 0x26
for CVBS and/or S-Video (Y-C) output
in PAL square pixel mode (29.5 MHz
input clock).
Table 97. 16-Bit PAL Square Pixel RGB In, CVBS/Y-C Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (16×). 0x01 0x00 SD input mode. 0x80 0x11 PAL standard. SSAF luma filter enabled.
1.3 MHz chroma filter enabled.
0x82 0xD3 Pixel data valid. CVBS/Y-C (S-Video)
out. SSAF PrPb filter enabled. Active video edge control enabled. Square
pixel mode enabled. 0x87 0x80 RGB input enabled. 0x88 0x10 16-bit RGB input enabled. 0x8A 0x0C Timing Mode 2 (slave).
synchronization. 0x8C 0x0C Subcarrier frequency register values 0x8D 0x8C
0x8F 0x26
for CVBS and/or S-Video (Y-C) output
in PAL square pixel mode (29.5 MHz
input clock).
HSYNC/VSYNC
Rev. I | Page 98 of 107
Page 99
Data Sheet ADV7390/ADV7391/ADV7392/ADV7393
525p
8-bit DDR
EAV/SAV
YCrCb
YPrPb
Table 107
625p
8-bit DDR
EAV/SAV
YCrCb
YPrPb
Table 111
0x02
0x10
RGB output enabled. RGB output sync
0x01
0x10
ED-SDR input mode.
Subaddress
Setting
Description

ENHANCED DEFINITION

Table 98. ED Configuration Scripts
Input Format Input Data Width Synchronization Format Input Color Space Output Color Space Table Number
525p 8-bit DDR EAV/SAV YCrCb RGB Table 109 525p 10-bit DDR EAV/SAV YCrCb YPrPb Table 108 525p 10-bit DDR EAV/SAV YCrCb RGB Table 110 525p 16-bit SDR EAV/SAV YCrCb YPrPb Table 99 525p 16-bit SDR 525p 16-bit SDR EAV/SAV YCrCb RGB Table 101 525p 16-bit SDR
625p 8-bit DDR EAV/SAV YCrCb RGB Table 113 625p 10-bit DDR EAV/SAV YCrCb YPrPb Table 112 625p 10-bit DDR EAV/SAV YCrCb RGB Table 114 625p 16-bit SDR EAV/SAV YCrCb YPrPb Table 103 625p 16-bit SDR
625p 16-bit SDR EAV/SAV YCrCb RGB Table 105 625p 16-bit SDR
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
/
VSYNC
/
VSYNC
/
VSYNC
/
YCrCb YPrPb Table 100
YCrCb RGB Table 102
YCrCb YPrPb Table 104
YCrCb RGB Table 106
Table 99. 16-Bit 525p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x10 ED-SDR input mode. 0x30 0x04 525p at 59.94 Hz. EAV/SAV synchroni-
zation. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 100. 16-Bit 525p YCrCb In, YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x10 ED-SDR input mode. 0x30 0x00 525p at 59.94 Hz.
ronization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
HSYNC/VSYNC
synch-
Table 101. 16-Bit 525p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x10 ED-SDR input mode.
enabled.
0x30 0x04 525p at 59.94 Hz. EAV/SAV synchroni-
zation. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 102. 16-Bit 525p YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x10 ED-SDR input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x00 525p at 59.94 Hz.
ronization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
HSYNC/VSYNC
synch-
Table 103. 16-Bit 625p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×).
0x30 0x1C 625p at 50 Hz. EAV/SAV synchroni-
zation. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 104. 16-Bit 625p YCrCb In, YPrPb Out
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x10 ED-SDR input mode. 0x30 0x18 625p at 50 Hz.
ronization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
HSYNC/VSYNC
synch-
Rev. I | Page 99 of 107
Page 100
ADV7390/ADV7391/ADV7392/ADV7393 Data Sheet
0x00
0x1C
All DACs enabled. PLL enabled (8×).
nization. EIA-770.2 output levels.
nization. EIA-770.2 output levels.
0x30
0x1C
625p at 50 Hz. EAV/SAV synchroniza-
Table 105. 16-Bit 625p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x10 ED-SDR input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x1C 625p at 50 H z. EAV/SAV synchroniza-
tion. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 106. 16-Bit 625p YCrCb In, RGB Out
Subaddress Setting Description
0x17 0x02 Software reset.
0x01 0x10 ED-SDR input mode. 0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x18 625p at 50 Hz.
ronization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
HSYNC/VSYNC
synch-
Table 107. 8-Bit 525p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x20 ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x04 525p at 59.94 Hz. EAV/SAV synchro-
0x31 0x01 Pixel data valid.
Table 108. 10-Bit 525p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x20 ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x04 525p at 59.94 Hz. EAV/SAV synchro-
nization. EIA-770.2 output levels. 0x31 0x01 Pixel data valid. 0x33 0x6C 10-bit input enabled.
Table 109. 8-Bit 525p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x20 ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x04 525p at 59.94 Hz. EAV/SAV synchro-
nization. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 110. 10-Bit 525p YCrCb In (EAV/SAV), RGB Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x20 ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x02 0x10 RGB output enabled. RGB output sync
enabled.
0x30 0x04 525p at 59.94 Hz. EAV/SAV syn chro-
0x31 0x01 Pixel data valid. 0x33 0x6C 10-bit input enabled.
Table 111. 8-Bit 625p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x20 ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
0x30 0x1C 625p at 50 Hz. EAV/SAV synchroniza-
tion. EIA-770.2 output levels.
0x31 0x01 Pixel data valid.
Table 112. 10-Bit 625p YCrCb In (EAV/SAV), YPrPb Out
Subaddress Setting Description
0x17 0x02 Software reset. 0x00 0x1C All DACs enabled. PLL enabled (8×). 0x01 0x20 ED-DDR input mode. Luma data
clocked on falling edge of CLKIN.
tion. EIA-770.2 output levels. 0x31 0x01 Pixel data valid. 0x33 0x6C 10-bit input enabled.
Rev. I | Page 100 of 107
Loading...