ANALOG DEVICES ADV202 Service Manual

www.BDTIC.com/ADI
JPEG2000 Video Codec

FEATURES

Complete single-chip JPEG2000 compression and
decompression solution for video and still images
Patented SURF® (spatial ultra-efficient recursive filtering)
echnology enables low power and low cost wavelet-
t based compression
Supports both 9/7 and 5/3 wavelet transforms with up to
vels of transform
6 le
Programmable tile/image size with widths up to 2048 pixels in
component 4:2:2 interleaved mode, and up to 4096 pixels
3-
in single-component mode Maximum tile/image width: 4096 pixels Video interface directly supporting ITU.R-BT656,
SMPTE125M P
ITU.R-BT1358 (625p) or any video format with a maximum
input rate of 65 MSPS for irreversible mode or 40 MSPS for
reversible mode Two or more ADV202s can be combined to support full-
fr
ame SMPTE274M HDTV (1080i) or SMPTE296M (720p)
Flexible asynchronous SRAM-style host interface allows
glueless
and ASICs
2.5 V to 3.3 V I/O and 1.5 V core supply 12 mm × 12 mm 121-lead CSPBGA, speed grade 115 MHz, or 13 mm × 13 mm 144-lead CSPBGA, speed grade 135 MHz, or 13 mm × 13 mm 144-lead CSPBGA, speed grade 150 MHz
AL/ NTSC, SMPTE274M, SMPTE293M (525p),
connection to most 16-/32-bit microcontrollers
ADV202

APPLICATIONS

Networked video and image distribution systems Wireless video and image distribution Image archival/retrieval Digital CCTV and surveillance systems Digital cinema systems Professional video editing and recording Digital still cameras Digital camcorders

GENERAL DESCRIPTION

The ADV202 is a single-chip JPEG2000 codec targeted for video and high bandwidth image compression applications that can benefit from the enhanced quality and feature set provided by the JPEG2000 (J2K)—ISO/IEC15444-1 image compression standard. The part implements the computationally intensive operations of the JPEG2000 image compression standard as well as providing fully compliant code-stream generation for most applications.
The ADV202’s dedicated video port provides glueless connection
o common digital video standards such as ITU.R-BT656,
t SMPTE125M, SMPTE293M (525p), ITU.R-BT1358 (625p), SMPTE274M (1080i), or SMPTE296M (720p). A variety of other high speed, synchronous pixel and video formats can also be sup­ported using the programmable framing and validation signals.
(continued on Page 4)

FUNCTIONAL BLOCK DIAGRAM

PIXEL I/F
HOST I/F
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
PIXEL I/F
EXTERNAL DMA CTRL
PIXEL FIFO CODE FIF O
ATTR FIFO
ADV202
WAVELET
ENGINE
INTERNAL BUS AND DM A ENGINE
EMBEDDED
RISC
PROCESSOR
SYSTEM
Figure 1.
EC1 EC2
RAM ROM
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved.
EC3
04723-001
ADV202
www.BDTIC.com/ADI

TABLE OF CONTENTS

Features.............................................................................................. 1
Applications....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 3
General Description ......................................................................... 4
JPEG2000 Feature Support.......................................................... 4
Specifications..................................................................................... 5
Supply Voltages and Current ...................................................... 5
Input/Output Specifications........................................................ 5
Clock and
Normal Host Mode—Read Operation ...................................... 7
Normal Host Mode—Write Operation ..................................... 8
DREQ
DREQ
External DMA Mode—FIFO Write, Burst Mode .................. 13
External DMA Mode—FIFO Read, Burst Mode ................... 14
Streaming Mode (JDATA)—FIFO Read/Write...................... 16
VDATA Mode Timing............................................................... 17
Raw Pixel Mode Timing............................................................ 18
Absolute Maximum Ratings.......................................................... 19
Thermal Resistance .................................................................... 19
ESD Caution................................................................................ 19
Pin BGA Assignments and Function Descriptions ................... 20
Pin BGA Assignments ...............................................................20
Pin Function Descriptions ........................................................ 23
Theory of Operation ...................................................................... 26
Wavelet Engine ...........................................................................26
Entropy Codecs........................................................................... 26
RESET
Specifications................................................ 6
DACK
/
DMA Mode—Single FIFO Write Operation.. 9
/
DMA Mode—Single FIFO Read Operation. 11
DACK
Embedded Processor System.................................................... 26
Memory System.......................................................................... 26
Internal DMA Engine................................................................ 26
ADV202 Interface .......................................................................... 27
Video Interface (VDATA Bus).................................................. 27
Host Interface (HDATA Bus) ................................................... 27
Direct and Indirect Registers.................................................... 27
Control Access Registers........................................................... 27
Pin Configuration and Bus Sizes/Modes ................................ 28
Stage Register.............................................................................. 28
JDATA Mode............................................................................... 28
External DMA Engine ............................................................... 28
Internal Registers............................................................................ 29
Direct Registers........................................................................... 29
Indirect Registers........................................................................ 30
PLL ............................................................................................... 31
Hardware Boot............................................................................ 31
Video Input Formats...................................................................... 32
Applications..................................................................................... 34
Encode—Multichip Mode......................................................... 34
Decode—Multichip Master/Slave ............................................ 35
Digital Still Camera/Camcorder .............................................. 35
Encode/Decode SDTV Video Application............................. 36
ASIC Application (32-Bit Host/32-Bit ASIC)......................... 37
HIPI (Host Interface—Pixel Interface) ................................... 38
JDATA Interface ......................................................................... 38
Outline Dimensions....................................................................... 39
Ordering Guide .......................................................................... 40
Rev. C | Page 2 of 40
ADV202
www.BDTIC.com/ADI

REVISION HISTORY

11/06—Rev. B to Rev. C
Deleted ANC FIFO References ........................................Universal
Changes to Features..........................................................................1
Changes to Figure 1...........................................................................1
Changes to JPEG2000 Feature Support Section............................4
Changes to Figure 8.........................................................................10
Changes to Figure 10 ......................................................................11
Changes to Figure 12 ......................................................................12
Changes to External DMA Mode—FIFO Write,
Burst Mode Section.........................................................................13
Changes to External DMA Mode—FIFO Read,
Burst Mode Section.........................................................................13
Changes to Table 11 ........................................................................17
Changes to Figure 22 ......................................................................18
Deleted SPI Port Timing Section ..................................................18
Added Absolute Maximum Ratings Section ...............................19
Changes to Pin BGA Assignments and Function
Descriptions Section .......................................................................20
Changes to ADV202 Interface Section.........................................27
Changes to Table 19........................................................................29
Changes to Indirect Registers Section..........................................30
Changes to PLL Section..................................................................31
Changes to Table 23........................................................................31
Changes to Video Input Formats Section .................................... 32
Changes to Figure 24 ......................................................................34
Changes to Figure 26 ......................................................................35
Changes to Ordering Guide...........................................................40
1/05—Rev. A to Rev. B
U
pdated Outline Dimensions........................................................39
12/04—Rev. 0 to Rev. A
hanges to Features .......................................................................... 1
C
Changes to Table 2............................................................................ 4
Changes to Table 16........................................................................24
Changes to Table 23........................................................................32
7/04—Revision 0: Initial Version
Rev. C | Page 3 of 40
ADV202
www.BDTIC.com/ADI

GENERAL DESCRIPTION

(continued from Page 1)
The ADV202 can process images at a rate of 40 MSPS in r
eversible mode and at higher rates when used in irreversible mode. The ADV202 contains a dedicated wavelet transform engine, three entropy codecs, an on-board memory system, and an embedded RISC processor that can provide a complete JPEG2000 compression/decompression solution.
The wavelet processor supports the 9/7 irreversible wavelet t
ransform and the 5/3 wavelet transform in reversible and irreversible modes. The entropy codecs support all features in the JPEG2000 Part 1 specification, except Maxshift ROI.
The ADV202 operates on a rectangular array of pixel samples cal
led a tile. A tile can contain a complete image, up to the maximum supported size, or some portion of an image. The maximum horizontal tile size supported depends on the wavelet transform selected and the number of samples in the tile. Images larger than the ADV202’s maximum tile size can be broken into individual tiles and then sent sequentially to the chip while still maintaining a single, fully compliant JPEG2000 code stream for the entire image.

JPEG2000 FEATURE SUPPORT

The ADV202 supports a broad set of features that are included in Part 1 of the JPEG2000 standard (ISO/IEC 15444). See
Getting Started with ADV202 for information on the JPEG2000
eatures that the ADV202 currently supports.
f
Depending on the particular application requirements, the AD
V202 can provide varying levels of JPEG2000 compression support. It can provide raw code-block and attribute data output, which allow the host software to have complete control over the generation of the JPEG2000 code stream and other aspects of the compression process such as bit-rate control. Otherwise, the ADV202 can create a complete, fully compliant JPEG2000 code stream (.j2c) and enhanced file formats such as .jp2 and .j2c. See on the formats that the ADV202 currently supports.
Application notes and other ADV202 support documents can be ac
cessed over the ADV202 product page at:
http://www.analog.com/ADV202Notes or from
ftp://ftp.analog.com/pub/Digital_Imaging/ADV202_FTP_s
te_contents_3.html
i
Getting Started with ADV202 fo
r information
Rev. C | Page 4 of 40
ADV202
www.BDTIC.com/ADI

SPECIFICATIONS

SUPPLY VOLTAGES AND CURRENT

Table 1.
Parameter Description Min Typ Max Unit
VDD DC Supply Voltage, Core 1.425 1.5 1.575 V IOVDD DC Supply Voltage, I/O 2.375 3.3 3.63 V PLLVDD DC Supply Voltage, PLL 1.425 1.5 1.575 V V
Input Range −0.3 V
INPUT
Temp Operating Ambient Temperature Range in Free Air −40 +25 +85 °C IDD Static Current Dynamic Current, Core (JCLK Frequency = 150 MHz)
1
2
300 mA
570 mA Dynamic Current, Core (JCLK Frequency = 108 MHz) 420 mA Dynamic Current, Core (JCLK Frequency = 81 MHz) 325 mA Dynamic Current, I/O 20 mA Dynamic Current, PLL 2.6 mA
1
No clock or I/O activity.
2
ADV202-150 only.

INPUT/OUTPUT SPECIFICATIONS

+ 0.3 V
DDI/O
Table 2.
Parameter Description Test Conditions Min Typ Max Unit
V
High Level Input Voltage VDD = max 2.2 V
IH (3.3 V)
V
High Level Input Voltage VDD = max 1.9 V
IH (2.5 V)
V
IL (3.3 V, 2.5 V)
V
OH (3.3 V)
V
OH (2.5 V)
V
OL (3.3 V, 2.5 V)
Low Level Input Voltage VDD = min 0.6 V
High Level Output Voltage VDD = min, IOH = −0.5 mA 2.4 V
High Level Output Voltage VDD = min, IOH = −0.5 mA 2.0 V
Low Level Output Voltage VDD = min, IOL = 2 mA 0.4 V IIH High Level Input Current VDD = max, VIN = VDD 1.0 μA IIL Low Level Input Current VDD = max, VIN = 0 V 1 μA I
High Level Three-State Leakage Current VDD = max, VIN = VDD 1.0 μA
OZH
I
Low Level Three-State Leakage Current VDD = max, VIN = 0 V 1.0 μA
OZL
CI Input Pin Capacitance 8 pF CO Output Pin Capacitance 8 pF
Rev. C | Page 5 of 40
ADV202
www.BDTIC.com/ADI
CLOCK AND RESET SPECIFICATIONS
Table 3.
Parameter Description Min Typ Max Unit
t
MCLK1 Period 13.3 100 ns
MCLK
t
MCLK Width Low 6 ns
MCLKL
t
MCLK Width High 6 ns
MCLKH
t
VCLK Period 13.4 50 ns
VCLK
t
VCLK Width Low 5 ns
VCLKL
t
VCLK Width High 5 ns
VCLKH
t
RST
1
For a definition of MCLK, see the PLL section.
MCLK
RESET
Width Low
t
MCLKL
t
VCLKL
t
MCLK
t
VCLK
5 MCLK cycles
t
MCLKH
t
VCLKH
VCLK
Figure 2. Input Clock
04723-010
Rev. C | Page 6 of 40
ADV202
www.BDTIC.com/ADI

NORMAL HOST MODE—READ OPERATION

Table 4.
Parameter Description Min Typ Max Unit
t
[dir]
ACK
t
[indir]
ACK
t
[dir] Read Access Time, Direct Registers 5 1.5 × JCLK + 7.0 ns
DRD
t
[indir] Read Access Time, Indirect Registers 10.5 × JCLK 15.5 × JCLK + 7.0 ns
DRD
t
Data Hold 2 8.5 ns
HZRD
tSC
to ACK, Direct Registers and FIFO Accesses
RD
to ACK, Indirect Registers
RD
to RD Setup
CS
5 1.5 × JCLK
10.5 × JCLK 15.5 × JCLK + 7.0 ns
0 ns
tSA Address Setup 2 ns tHC
CS
Hold
0 ns tHA Address Hold 2 ns tRH Read Inactive Pulse Width 2.5 JCLK tRL Read Active Pulse Width 2.5 JCLK t
Read Cycle Time, Direct Registers 5.0 JCLK
RCYC
1
For a definition of JCLK, see the PLL section.
1
+ 7.0 ns
ADDR
CS
RD
ACK
HDATA
t
SA
t
SC
t
RL
t
ACK
t
DRD
VALID
t
HA
t
HC
t
RCYC
t
RH
t
HZRD
04723-011
Figure 3. Normal Host Mode—Read Operation
Rev. C | Page 7 of 40
ADV202
www.BDTIC.com/ADI

NORMAL HOST MODE—WRITE OPERATION

Table 5.
Parameter Description Min Typ Max Unit
t
(Direct)
ACK
t
(Indirect)
ACK
to ACK, Direct Registers and FIFO Accesses
WE
to ACK, Indirect Registers
WE
5 1.5 × JCLK
5 2.5 × JCLK + 7.0 ns
tSD Data Setup 3.0 ns tHD Data Hold 1.5 ns tSA Address Setup 2 ns tHA Address Hold 2 ns tSC
tHC t
WH
to WE Setup
CS
Hold
CS Write Inactive Pulse Width (Minimum Time Until Next WE
Pulse)
0 ns 0 ns
2.5 JCLK
tWL Write Active Pulse Width 2.5 JCLK t
Write Cycle Time 5 JCLK
WCYC
1
For a definition of JCLK, see the PLL section.
ADDR
t
SA
t
HA
1
+ 7.0 ns
CS
WE
ACK
HDATA
t
SC
t
WL
t
ACK
t
SD
Figure 4. Normal Host Mode—Write Operation
VALID
t
HC
t
WCYC
t
WH
t
HD
04723-012
Rev. C | Page 8 of 40
ADV202
www.BDTIC.com/ADI
DREQ/DACK DMA MODE—SINGLE FIFO WRITE OPERATION
Table 6.
Parameter Description Min Typ Max Unit
DREQ t
DREQ
t
WE
tSU tHD
1
DREQ Pulse Width
PULSE
DACK Assert to Subsequent DREQ Delay
SU
WE
Data to DACK Data to DACK
to DACK Setup
Deassert Setup
Deassert Hold DACKLO DACK Assert Pulse Width DACKHI DACK Deassert Pulse Width t
HD
WE
Hold After DACK Deassert
WE
WFSRQ WE Assert to FSRQ Deassert (FIFO Full) t
RTN
DREQ
1
Applies to assigned DMA channel, if EDMOD0 or EDMOD1[14:11] is programmed to a value that is not 0. Pulse width depends on the value programmed
2
For a definition of JCLK, see the PLL section.
to DREQ Deassert (DR × PULS = 0)
DACK
1 15 JCLK cycles
2.5 3.5 × JCLK + 7.5 ns JCLK cycles
0 ns
2 ns 2 ns 2 JCLK cycles 2 JCLK cycles 0 ns
1.5 2.5 × JCLK + 7.5 ns JCLK cycles
2.5 3.5 × JCLK + 7.5 ns JCLK cycles
DREQ
DREQ
DACK
WE
HDATA
PULSE
t
WESU
Figure 5. Single Write for
DACK
t
t
DREQ
LO
SU
DACK
t
HD
HI
DREQ
DACK
/
DMA Mode for Assigned DMA Channel
t
WEHD
3210
04723-013
(EDMOD0/EDMOD1[14:11] NOT Programmed to a Value of 0000)
t
DREQRTN
DREQ
DACK
HI
t
HD
0 1 2
DACK
DREQ
/
DMA Mode for Assigned DMA Channel
t
WEHD
04723-014
DACK
WE
HDATA
DACK
LO
t
WESU
t
SU
Figure 6. Single Write for
(EDMOD0/EDMOD1[14:11] Programmed to a Value of 0000)
2
Rev. C | Page 9 of 40
ADV202
www.BDTIC.com/ADI
DREQ
DREQ
DACK
WEFB
HDATA
PULSE
t
WESU
Figure 7. Fly-By DMA Mode—Single Write Cycle (
t
DREQ
DACK
DACK
LO
t
SU
HI
t
HD
0 1 2
DREQ
t
WEHD
Pulse Width Is Programmable)
04723-015
FSC0
WE
WFSRQ
FSRQ0
HDATA
FIFO NOT FULL
0 1 2
t
HD
t
SU
Figure 8. DCS DMA Mode—Single Write Access (Rev. 0.1 and Higher)
FIFO FULL
NOT WRITTENTO FIFO
04723-016
Rev. C | Page 10 of 40
ADV202
www.BDTIC.com/ADI
/
DREQ
Table 7.
Parameter Description Min Typ Max Unit
DREQ
PULSE
t
DREQ
t
SU
RD
tRD
t
Data Hold 1.5 ns
HD
DACKLO DACK Assert Pulse Width DACKHI DACK Deassert Pulse Width t
HD
RD
FSRQ RD Assert to FSRQ Deassert (FIFO Empty)
RD
RTN
DREQ
1
Applies to assigned DMA channel, if EDMOD0 or EDMOD1[14:11] is programmed to a nonzero value.
2
For a definition of JCLK, see the PLL section.
DMA MODE—SINGLE FIFO READ OPERATION
DACK
DREQ Pulse Width
1
DACK Assert to Subsequent DREQ Delay
RD to DACK Setup
DACK to Data Valid
RD Hold After DACK Deassert
DACK to DREQ Deassert (DR × PULS = 0)
DREQ
PULSE
DREQ
DACK
t
DREQ
LO
DACK
1 15 JCLK cycles
2.5 3.5 × JCLK + 7.5 ns JCLK cycles
0 ns
2.5 11 ns
2 JCLK cycles 2 JCLK cycles 0 ns
1.5 2.5 × JCLK + 7.5 ns JCLK cycles
2.5 3.5 × JCLK + 7.5 ns JCLK cycles t
HI
2
DACK
t
RDSU
RD
t
RD
HDATA 0 1 2
Figure 9. Single Read for
t
HD
DREQ
DACK
/
DMA Mode for Assigned DMA Channel
t
RDHD
04723-018
(EDMOD0/EDMOD1[14:11] Not Programmed to a Value of 0000)
t
DREQRTN
DREQ
DACK
DACK
LO
DACK
t
RDSU
RD
t
RD
HDATA 0 1 2
Figure 10. Single Read for
(EDMOD0/EDMOD1[14:11] Programmed to a Value of 0000)
HI
t
HD
DREQ
DACK
/
DMA Mode for Assigned DMA Channel
t
RDHD
4723-019
Rev. C | Page 11 of 40
ADV202
www.BDTIC.com/ADI
DREQ
DACK
RDFB
HDATA
DREQ
t
RDSU
PULSE
t
DREQ
DACK
DACK
LO
t
RD
HI
t
HD
0 1 2
t
RDHD
04723-020
Figure 11. Fly-By DMA Mode—Single Read Cycle
DREQ
(
Pulse Width Is Programmable)
FCS0
RD
RDFSRQ
FSRQ0
HDATA
FIFO NOT EMPTY
t
t
RD
HD
0 1
Figure 12. DCS DMA Mode—Single Read Access (Rev. 0.1 and Higher)
FIFO EMPTY
04723-021
Rev. C | Page 12 of 40
ADV202
www.BDTIC.com/ADI

EXTERNAL DMA MODE—FIFO WRITE, BURST MODE

Table 8.
Parameter Description Min Typ Max Unit
DREQ t
DREQ
t
DACK
t
SU
DREQ Pulse Width
PULSE
RTN
SU
WE to DREQ Deassert (DR × Pulse = 0)
DACK
to WE Setup
Data Setup 2.5 ns tHD Data Hold 2 ns WELO WE Assert Pulse Width WEHI WE Deassert Pulse Width
WAIT
DREQ
1
Applies to assigned DMA channel, if EDMOD0 or EDMOD1[14:11] is programmed to a value that is not 0. Pulse width depends on the value programmed.
2
For a definition of JCLK, see the PLL section.
3
If sufficient space is available in FIFO.
Last Burst Access to Next DREQ
DREQ
DACK
1
DREQ
PULSE
1 15 JCLK2 cycles
2.5 3.5 × JCLK + 7.5 ns JCLK cycles
0 ns
1.5 JCLK cycles
1.5 JCLK cycles
t
DREQWAIT
3
JCLK cycles t
2.5 4.5 × JCLK + 7.5 ns
t
WE
HDATA
DACKSU
t
HD
t
SU
0 1 13 14 15
Figure 13. Burst Write Cycle for
WE
LO
DREQ
/DMA Mode for Assigned DMA Channel
WE
HI
04723-022
(EDMOD0/EDMOD1[14:11] NOT Programmed to a Value of 0000)
DREQ
DACK
WE
HDATA
t
DREQRTN
t
DACKSU
t
HD
t
SU
0 1 13 14 15
Figure 14. Burst Write Cycle for
WE
LO
DREQ
/DMA Mode for Assigned DMA Channel
(EDMOD0/EDMOD1[14:11] Programmed to a Value of 0000)
WE
HI
t
DREQWAIT
04723-023
Rev. C | Page 13 of 40
ADV202
www.BDTIC.com/ADI
t
DREQ
DACK
WEFB
HDATA
DREQRTN
t
DACKSU
t
HD
t
SU
0 1 13 14 15
WE
LO
WE
HI
t
DREQWAIT
04723-024
Figure 15. Burst Write Cycle for Fly-By DMA Mode
DREQ
(
Pulse Width Is Programmable)

EXTERNAL DMA MODE—FIFO READ, BURST MODE

Table 9.
Parameter Description Min Typ Max Unit
DREQ t
DREQ
t
DACK
tRD
t
HD
RD RD
DREQ
1
Applies to assigned DMA channel, if EDMOD0 or EDMOD1[14:11] is programmed to a value that is not 0. Pulse width depends on the value programmed.
2
For a definition of JCLK, see the PLL section.
3
If sufficient space is available in FIFO.
DREQ Pulse Width
PULSE
RTN
SU
RD to DREQ Deassert (DR × PULS = 0)
DACK to RD Setup
RD to Data Valid
Data Hold 2.5 ns
LO
HI
WAIT
RD Assert Pulse Width RD Deassert Pulse Width Last Burst Access to Next DREQ
DREQ
1
DREQ
PULSE
1 15 JCLK cycles2
2.5 3.5 × JCLK + 7.5 ns JCLK cycles
0 ns
2.5 9.7 ns
1.5 JCLK cycles
1.5 JCLK cycles
t
DREQWAIT
3
JCLK cycles t
2.5 3.5 × JCLK + 7.5 ns
DACK
t
RD
HDATA
DACKSU
t
HD
0 1 13 14 15
t
RD
Figure 16. Burst Read Cycle for
DREQ
RD
LO
DACK
/
DMA Mode for Assigned DMA Channel
RD
HI
04723-025
(EMOD0/EDMOD1[14:11] NOT Programmed to a Value of 0)
Rev. C | Page 14 of 40
ADV202
www.BDTIC.com/ADI
t
DREQWAIT
DREQ
DACK
RD
t
DREQRTN
t
DACKSU
t
RD
LO
HD
RD
HI
HDATA
Figure 17. Burst Read Cycle for
0 1 13 14 15
t
RD
DACK
DREQ
/
DMA Mode for Assigned DMA Channel
04723-026
(EMOD0/EDMOD1[14:11] Programmed to a Value of 0000)
t
DREQRTN
DREQ
DACK
RDFB
HDATA
t
DACKSU
t
HD
0 1 13 14 15
t
RD
Figure 18. Burst Read Cycle, Fly-By DMA Mode
DREQ
(
Pulse Width Is Programmable)
t
DREQWAIT
04723-027
Rev. C | Page 15 of 40
ADV202
www.BDTIC.com/ADI

STREAMING MODE (JDATA)—FIFO READ/WRITE

Table 10.
Parameter Description Min Typ Max Unit
JDATATD MCLK to JDATA Valid 1.5 2.5 × JCLK + 7.0 ns JCLK cycles1 VALIDTD MCLK to VALID Assert/Deassert 1.5 2.5 × JCLK + .7.0 ns JCLK cycles HOLDSU HOLD Setup to Rising MCLK 3 ns HOLDHD HOLD Hold from Rising MCLK 3 ns JDATASU JDATA Setup to Rising MCLK 3 ns JDATAHD JDATA Hold from Rising MCLK 3 ns
1
For a definition of JCLK, see the PLL section.
MCLK
JDATA
JDATA
HD
SU
JDATA
VALID
JDATA
VALID
TD
TD
HOLD
HOLD
SU
HOLD
HD
04723-028
Figure 19. Streaming Mode Timing—Encode Mode JDATA Output
MCLK
JDATA
HD
HOLD
HOLD
SU
HD
Figure 20. Streaming Mode Timing—Decode Mode JDATA Input
04723-029
JDATA
VALID
HOLD
JDATA
VALID
SU
TD
Rev. C | Page 16 of 40
ADV202
V
V
V
www.BDTIC.com/ADI

VDATA MODE TIMING

Table 11.
Parameter Description Min Typ Max Unit
VDATATD VCLK to VDATA Valid Delay (VDATA Output) 12 ns VDATASU VDATA Setup to Rising VCLK (VDATA Input) 4 ns VDATAHD VDATA Hold from Rising VCLK (VDATA Input) 4 ns HSYNCSU HSYNC Setup to Rising VCLK 3 ns HSYNC HSYNCTD VCLK to HSYNC Valid Delay 12 ns VSYNC VSYNCHD VSYNC Hold from Rising VCLK 4 ns VSYNCTD VCLK to VSYNC Valid Delay 12 ns FIELDSU FIELD Setup to Rising VCLK 4 ns FIELDHD FIELD Hold from Rising VCLK 3 ns FIELDTD VCLK to FIELD Valid 12 ns SYNC DELAY Decode Data Sync Delay for HD Input with EAV/SAV Codes 7 VCLK cycles Decode Data Sync Delay for SD Input with EAV/SAV Codes 9 VCLK cycles
HSYNC Hold from Rising VCLK 4 ns
HD
VSYNC Setup to Rising VCLK 3 ns
SU
Decode Data Sync Delay for HVF Input (from First Rising VCLK after HSYNC Low to
irst Data Sample)
F
VCLK
VDATA(IN)
VCLK
Cr Y Cb Y FF EAV FF SAV Cb Y Cr
ENCODE CCIR-656 L INE
VDATA
VDATA
VDATA
HD
SU
TD
10 VCLK cycles
DATA(OUT)
VCLK
DATA(OUT)
VCLK
DATA(OUT)
HSYNC
VSYNC
VCLK
VDATA(IN)
HSYNC
VSYNC
Cr Y Cb Y FF EAV FF SAV Cb Y Cr
DECODE MASTE R CCIR-656 LINE
VDATA
TD
CrY Y Cb Y FF EAV FF SAV Cb Y
DECODE SLAVE CCIR-656 L INE
VDATA
TD
Cb Y Cr Y Cb CbY
DECODE SLAVE HVF MO DE
CrY Y Cb YCrYCbY YCrYCb Cb
ENCODE HVF MO DE *HSYNC AND VSYNC DO NOT HAVE TO BE APPLIED S IMULTANEOUSLY
SYNC DELAY
SYNC DELAY
HSYNCHD*
VSYNCHD*
HSYNC
VSYNC
Cb Y Cr Y
SU
SU
HSYNC
VSYNC
HD
HD
Figure 21. Video Mode Timing
Rev. C | Page 17 of 40
4723-030
ADV202
V
www.BDTIC.com/ADI

RAW PIXEL MODE TIMING

Table 12.
Parameter Description Min Typ Max Unit
VDATATD VCLK to PIXELDATA Valid Delay (PIXELDATA Output) 12 ns VDATASU PIXELDATA Setup to Rising VCLK (PIXELDATA Input) 4 ns VDATA VRDY VFRM VFRM VFRM VSTRB VSTRB
PIXELDATA Hold from Rising VCLK (PIXELDATA Input) 4 ns
HD
VCLK to VRDY Valid Delay 12 ns
TD
VFRM Setup to Rising VCLK (VFRAME Input) 3 ns
SU
VFRM Hold from Rising VCLK (VFRAME Input) 4 ns
HD
VCLK to VFRM Valid Delay (VFRAME Output) 12 ns
TD
VSTRB Setup to Rising VCLK 4 ns
SU
VSTRB Hold from Rising VCLK 3 ns
HD
VCLK
VDATA
HD
VDATA
PIXEL
DATA(IN)
VFRM(IN)
N–1 N 0 1 2
VFRM
SU
VFRM
HD
SU
VRDY
TD
VRDY
VSTRB
HD
VSTRB
SU
VSTRB
RAW PIXEL MODE – ENCODE
VCLK
VDATA
VRFM
TD
TD
04723-031
RAW PIXEL MODE – DECODE
PIXEL
DATA
FRM(OUT)
NN 0 1 2
Figure 22. Raw Pixel Mode Timing
Rev. C | Page 18 of 40
ADV202
www.BDTIC.com/ADI

ABSOLUTE MAXIMUM RATINGS

Table 13.
Parameter Rating
VDD (Supply Voltage, Core) IOVDD (Supply Voltage, I/O) PLLVDD (Supply Voltage, PLL) Storage Temperature (TS) Range −65°C to 150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
−0.3 V to +1.65 V
−0.3 V to +IOVDD + 0.3 V
−0.3 V to +1.65 V

THERMAL RESISTANCE

θ
is specified for the worst-case conditions, that is, a device
JA
soldered in a circuit board for surface-mount packages.
Table 14. Thermal Resistance
Package Type θ
ADV202 (144-Lead) 22.5° 3.8° C/W ADV202 (121-Lead) 32.8° 7.92° C/W
θ
JA
Unit
JC

ESD CAUTION

Rev. C | Page 19 of 40
ADV202
www.BDTIC.com/ADI

PIN BGA ASSIGNMENTS AND FUNCTION DESCRIPTIONS

PIN BGA ASSIGNMENTS

Table 15. Pin BGA Assignments for 121-Lead Package
Pin. No. Pin Location Pin Description
1 A1 DGND 2 A2 HDATA[2] 3 A3 VDD 4 A4 DGND 5 A5 HDATA[0] 6 A6 HDATA[1] 7 A7 VDATA[1] 8 A8 VDD 9 A9 DGND 10 A10 VDATA[0] 11 A11 DGND 12 B1 HDATA[3] 13 B2 HDATA[4] 14 B3 HDATA[5] 15 B4 HDATA[7] 16 B5 HDATA[8] 17 B6 IOVDD 18 B7 VDATA[6] 19 B8 VDATA[5] 20 B9 VDATA[4] 21 B10 VDATA[2] 22 B11 VDATA[3] 23 C1 DGND 24 C2 HDATA[6] 25 C3 HDATA[9] 26 C4 HDATA[10] 27 C5 HDATA[11] 28 C6 IOVDD 29 C7 VDATA[9] 30 C8 IOVDD 31 C9 VDATA[8] 32 C10 VDATA[7] 33 C11 DGND 34 D1 HDATA[12] 35 D2 HDATA[13] 36 D3 HDATA[14] 37 D4 HDATA[15] 38 D5 IOVDD 39 D6 DGND 40 D7 VDD 41 D8 VSYNC 42 D9 HSYNC 43 D10 VDATA[10] 44 D11 VDATA[11] 45 E1 DGND 46 E2 HDATA[18]_VDATA[14] 47 E3 HDATA[17]_VDATA[13] 48 E4 HDATA[16]_VDATA[12] 49 E5 DGND
Rev. C | Page 20 of 40
Pin. No. Pin Location Pin Description
50 E6 DGND 51 E7 DGND 52 E8 IOVDD 53 E9 VCLK 54 E10 FIELD 55 E11 DGND 56 F1 DGND 57 F2 HDATA[19]_VDATA[15] 58 F3 HDATA[20] 59 F4 HDATA[21] 60 F5 DGND 61 F6 DGND 62 F7 DGND 63 F8 64 F9 65 F10 66 F11 DGND 67 G1 DGND 68 G2 HDATA[22] 69 G3 HDATA[23] 70 G4 HDATA[24]_JDATA[0] 71 G5 DGND 72 G6 DGND 73 G7 DGND 74 G8 IOVDD 75 G9 76 G10 77 G11 DGND 78 H1 HDATA[28]_JDATA[4] 79 H2 HDATA[27]_JDATA[3] 80 H3 HDATA[26]_JDATA[2] 81 H4 HDATA[25]_JDATA[1] 82 H5 IOVDD 83 H6 DGND 84 H7 VDD 85 H8 86 H9 87 H10 ADDR[1] 88 H11 ADDR[3] 89 J1 DGND 90 J2 HDATA[31]_JDATA[7] 91 J3 HDATA[30]_JDATA[6] 92 J4 HDATA[29]_JDATA[5] 93 J5 IOVDD 94 J6 TEST1 95 J7 96 J8 97 J9 ADDR[0]
DREQ0 DACK0 DREQ1
DACK1 IRQ
ACK RD
WE CS
ADV202
www.BDTIC.com/ADI
Pin. No. Pin Location Pin Description
98 J10 TEST3 99 J11 DGND 100 K1 SCOMM[4] 101 K2 SCOMM[3] 102 103 K4 SCOMM[1] 104 K5 IOVDD 105 K6 IOVDD 106 K7 IOVDD 107 K8 ADDR[2] 108 K9 TEST2 109 K10 TEST5
K3 SCOMM[0]
Table 16. Pin BGA Assignments for 144-Lead Package
Pin No. Pin Location Pin Description
1 A1 DGND 2 A2 HDATA[2] 3 A3 HDATA[1] 4 A4 HDATA[0] 5 A5 DGND 6 A6 DGND 7 A7 DGND 8 A8 DGND 9 A9 VDATA[2] 10 A10 VDATA[1] 11 A11 VDATA[0] 12 A12 DGND 13 B1 HDATA[5] 14 B2 HDATA[4] 15 B3 HDATA[3] 16 B4 IOVDD 17 B5 DGND 18 B6 VDD 19 B7 VDD 20 B8 DGND 21 B9 IOVDD 22 B10 VDATA[5] 23 B11 VDATA[4] 24 B12 VDATA[3] 25 C1 HDATA[8] 26 C2 HDATA[7] 27 C3 HDATA[6] 28 C4 IOVDD 29 C5 DGND 30 C6 VDD 31 C7 VDD 32 C8 DGND 33 C9 IOVDD 34 C10 VDATA[8] 35 C11 VDATA[7] 36 C12 VDATA[6] 37 D1 HDATA[11]
Pin. No. Pin Location Pin Description
110 K11 DGND 111 L1 DGND 112 L2 SCOMM[7] 113 L3 SCOMM[6] 114 L4 SCOMM[5] 115 L5 SCOMM[2] 116 L6 TEST4 117 L7 118 L8 DGND 119 L9 MCLK 120 L10 PLLVDD 121 L11 DGND
Pin No. Pin Location Pin Description
38 D2 HDATA[10] 39 D3 HDATA[9] 40 D4 IOVDD 41 D5 DGND 42 D6 VDD 43 D7 VDD 44 D8 DGND 45 D9 IOVDD 46 D10 VDATA[11] 47 D11 VDATA[10] 48 D12 VDATA[9] 49 E1 HDATA[14] 50 E2 HDATA[13] 51 E3 HDATA[12] 52 E4 DGND 53 E5 DGND 54 E6 DGND 55 E7 DGND 56 E8 DGND 57 E9 FIELD 58 E10 VSYNC 59 E11 HSYNC 60 E12 VCLK 61 F1 HDATA[18]_VDATA[14] 62 F2 HDATA[17]_VDATA[13] 63 F3 HDATA[16]_VDATA[12] 64 F4 HDATA[15] 65 F5 DGND 66 F6 DGND 67 F7 DGND 68 F8 DGND 69 F9
70 F10 71 F11 72 F12 73 G1 HDATA[22] 74 G2 HDATA[21]
RESET
DACK1 DREQ1 DACK0 DREQ0
Rev. C | Page 21 of 40
ADV202
www.BDTIC.com/ADI
Pin No. Pin Location Pin Description
75 G3 HDATA[20] 76 G4 HDATA[19]_VDATA[15] 77 G5 DGND 78 G6 DGND 79 G7 DGND 80 G8 DGND 81 G9 DGND 82 G10 83 G11
84 G12 85 H1 HDATA[26]_JDATA[2]
86 H2 HDATA[25]_JDATA[1] 87 H3 HDATA[24]_JDATA[0] 88 H4 HDATA[23] 89 H5 DGND 90 H6 DGND 91 H7 DGND 92 H8 DGND 93 H9 DGND 94 H10 95 H11
96 H12 ADDR[0] 97 J1 HDATA[30]_JDATA[6] 98 J2 HDATA[29]_JDATA[5] 99 J3 HDATA[28]_JDATA[4] 100 J4 HDATA[27]_JDATA[3] 101 J5 DGND 102 J6 VDD 103 J7 VDD 104 J8 DGND 105 J9 DGND 106 J10 ADDR[1] 107 J11 ADDR[2] 108 J12 ADDR[3] 109 K1 SCOMM[1]
IRQ ACK RD
WR CS
Pin No. Pin Location Pin Description
110 K2 SCOMM[0] 111 K3 HDATA[31]_JDATA[7] 112 K4 IOVDD 113 K5 DGND 114 K6 VDD 115 K7 VDD 116 K8 DGND 117 K9 IOVDD 118 K10 TEST3 119 K11 TEST2 120 K12 TEST1 121 L1 SCOMM[4] 122 L2 SCOMM[3] 123 L3 SCOMM[2] 124 L4 IOVDD 125 L5 DGND 126 L6 VDD 127 L7 VDD 128 L8 DGND 129 L9 IOVDD 130 L10 TEST5 131 L11
132 L12 MCLK 133 M1 DGND 134 M2 SCOMM[7] 135 M3 SCOMM[6] 136 M4 SCOMM[5] 137 M5 DGND 138 M6 DGND 139 M7 DGND 140 M8 DGND 141 M9 TEST4 142 M10 PLLVDD 143 M11 DGND 144 M12 DGND
RESET
Rev. C | Page 22 of 40
ADV202
www.BDTIC.com/ADI

PIN FUNCTION DESCRIPTIONS

Table 17.
Pins Us
Mnemonic
MCLK 1 L9 L12 I
RESET
HDATA[15:0] 16
ADDR[3:0] 4 H11, K8, H10, J9 J12, J11, J10, H12 I Address Bus for the Host Interface.
CS
WE RDFB
RD WEFB
ACK
IRQ
DREQ0
FSRQ0
VALID
CFG[1] I
DACK0
ed
121-Lead Package 144-Lead Package I/O Description
System Input Clock. For details, see the PLL section.
aximum input frequency on MCLK is 74.25 MHz.
M
1 L7 L11 I
D4 to D1, C5 to C3, B5, B4, C2, B3 to B1, A2, A6 to A5
1 J8 H11 I
1 J7 H10 I Write Enable Used with the Host Interface.
1 H9 G12 I Read Enable. Used with the host interface.
1 H8 G11 O
1 G10 G10 O
1 F8 F12 O
O
O
1 F9 F11 I
F4, E1 to E3, D1 to D3, C1 to C3, B1 to B3, A2, A3, A4
Reset. Causes the ADV202 to immediately reset. CS
, DACK0, DACK1, DREQ0, and DREQ1 must be held
WE high when a RESET
I/O
Host Data Bus. With HDATA[23:16], [27:24], [31:28], these pins make up the 32-bit wide host data bus. The async host interface is interfaced together with ADDR[3:0], CS
should be pulled down via a 10 kΩ resistor.
Chip Select. This signal is used t and write access to the ADV202 using the host interface.
Read Enable When Fly-By DMA Is Enabled.
te: Simultaneous assertion of WE
No the HDATA bus, even if the DMA channels are disabled.
Write Enable When Fly-By DMA Is Enabled.
te: Simultaneous assertion of RD
No the HDATA bus, even if the DMA channels are disabled.
Acknowledge. Used for direct register accesses. This signal indicates that the last register access was successful. Note: Due to synchronization issues, control and status register accesses can incur an additional delay, so the host software should wait for acknowledgment from the ADV202. Accesses to the FIFOs (external DMA modes), on the other hand, are guaranteed to occur immediately, if space is available, and should not wait for ACK, if the timing
constraints are observed. If ACK is shared with more than one device, ACK (10 kΩ) and the PLL_HI register, Bit 4, must be set to 1. Interrupt. This pin indicates that the ADV202 requires the
attention of the host processor. This pin can be programmed to indicate the status of the internal interrupt conditions within the ADV202. The interrupt sources are enabled via bits in Register EIRQIE.
Data Request for External DMA Interface. Indicates that the ADV202 is ready to send/receive data to/from the FIFO assigned to DMA Channel 0.
Used in DCS-DMA Mode. Service request from the FIFO assigned to Channel 0 (asynchronous mode).
Valid Indication for JDATA Input/Output Stream. Polarity of this pin is programmable in the EDMOD0 register. VALID is always an output.
Boot Mode Configuration. This pin is read on reset to
mine the boot configuration of the on-board
deter processor. The pin should be tied to IOVDD or DGND through a 10 kΩ resistor.
Data Acknowledge for External DMA Interface. Signal from the host CPU, which indicates that the data transfer request (DREQ0) has been acknowledged and data
transfer can proceed. This pin must be held high at all times if the DMA interface is not used, even if the DMA channels are disabled.
is applied.
, WE, RD, and ACK. Unused HDATA pins
o qualify addressed read
and DACK low activates
and DACK low activates
should be connected to a pull-up resistor
, RD,
Rev. C | Page 23 of 40
ADV202
www.BDTIC.com/ADI
Pins
Mnemonic
HOLD
FCS0
DREQ1
FSRQ1
CFG[2] I
DACK1
FCS1
HDATA[31:28] 4 J2 to J4, H1 K3, J1 to J3 I/O Host Expansion Bus. JDATA[7:4] I/O JDATA Bus (JDATA Mode). HDATA[27:24] 4 H2 to H4, G4 J4, H1 to H3 I/O Host Expansion Bus. JDATA[3:0] I/O JDATA Bus (JDATA Mode). HDATA[23:16] 8
SCOMM[7] 8 L2 M2 I/O
SCOMM[6] L3 M3 I/O
SCOMM[5] L4 M4 I/O
SCOMM[4] K1 L1 O
SCOMM[3] K2 L2 O This pin should be tied low via a 10 kΩ resistor. SCOMM[2] L5 L3 O This pin should be tied low via a 10 kΩ resistor. SCOMM[1] K4 K1 I This pin should be tied low via a 10 kΩ resistor. SCOMM[0] K3 K2 O This pin should be tied low via a 10 kΩ resistor. VCLK 1 E9 E12 I
VDATA[11:0] 12
VSYNC 1 D8 E10 I/O Vertical Sync for Video Mode. VFRM
HSYNC 1 D9 E11 I/O Horizontal Sync for Video Mode. VRDY O Raw Pixel Mode Ready Signal.
U
sed 121-Lead Package 144-Lead Package I/O Description
I
I
1 F10 F10 O
O
1 G9 F9 I
I
G3, G2, F4, F3, F2 E2, E3, E4
D11, D10, C7, C9, C10, B7, B8, B9, B11, B10, A7, A10
H4, G1 to G4, F1 to F3 I/O Host Expansion Bus.
D10 to D12, C10 to C12,
to B12, A9 to A11
B10
External Hold Indication for JDATA Input/Output Stream.
olarity is programmable in the EDMOD0 register. This pin
P is always an input.
Used in DCS-DMA Mode. Chip select for the FIFO assigned to Channel 0 (asynchronous mode).
Data Request for External DMA Interface. Indicates that the ADV202 is r assigned to DMA Channel 1.
Used in DCS-DMA Mode. Service request from the FIFO assigned to Channel 1 (asynchronous mode).
Boot Mode Configuration. This pin is read on reset to
mine the boot configuration of the on-board
deter processor. The pin should be tied to IOVDD or DGND through a 10 kΩ resistor.
Data Acknowledge for External DMA Interface. Signal from the host CPU, which indicates that the data transfer request (DREQ1 transfer can proceed. This pin must be held high at all times unless a DMA or JDATA access is occurring. This pin must be held high at all times if the DMA interface is not used, even if the DMA channels are disabled.
Used in DCS-DMA Mode. Chip select for the FIFO assigned to Channel 1 (asynchronous mode).
When not used, this pin should be tied low via a 10 kΩ
esistor.
r When not used, this pin should be tied low via a 10 kΩ
esistor.
r This pin must be used in multiple chip mode to
outputs of two or more ADV202s. For details, see the Applications section and AN-796 ADV202 Multichip
pplication application note. When not used, this pin
A
be tied low via a 10 kΩ resistor.
should LCODE Output in Encode Mode. When LCODE is enabled,
the output on t the last data-word for a field has been read from the FIFO. For an 8-bit interface, such as JDATA, LCODE is asserted for four consecutive bytes and is enabled by default.
Video Data Clock. Must be supplied if video data is
output on the VDATA bus.
input/
I/O
Video Data. Unused pins should be pulled down via a 10 kΩ resistor.
Raw Pixel Mode Framing Signal. Indicates first sample of a tile when a
eady to send/receive data to/from the FIFO
) has been acknowledged and data
his pin indicates on a high transition that
sserted high.
align the
Rev. C | Page 24 of 40
ADV202
www.BDTIC.com/ADI
Pins
Mnemonic
FIELD 1 E10 E9 I/O Field Sync for Video Mode. VSTRB I Raw Pixel Mode Transfer Strobe. TEST1 1 J6 K12 I
TEST2 1 K9 K11 I
TEST3 1 J10 K10 I
TEST4 1 L6 M9 I
TEST5 1 K10 L10 O No Connect. VDD A3, A8, D7, H7
DGND
PLLVDD 1 L10 M10 V Positive Supply for PLL. IOVDD
U
sed 121-Lead Package 144-Lead Package I/O Description
This pin should be connected to ground via a pull-down
esistor.
r This pin should be connected to ground via a pull-down
esistor.
r This pin should be connected to ground via a pull-down
esistor.
r This pin should be connected to ground via a pull-down
esistor.
r
V Positive Supply for Core.
GND Ground.
V Positive Supply for I/O.
A1, A11, A4, A9, C1,
D6, E1, E5 to E7,
C11, E11, F1, F5 to F7, F11, G1, G5 to G7, G11, H6, J1, J11, K11, L1, L8, L11
B6, C6, C8, D5, E8,
8, H5, J5, K5, K6, K7
G
B6, B7, C6, C7, D6, D7, J6, J7, K6, K7, L6,
A1, A5 to A8, A12, B5, B8, C5, C8, D5, D8, E4 to E8, F5 to F8, G5 to G9, H5 to H9, J5, J8 to J9, K5, K8, L5, L8, M1, M5 to M8, M11, M12
B4, B9, C4, C9, D4, D9, K4, K9, L4, L9
L7
Rev. C | Page 25 of 40
ADV202
www.BDTIC.com/ADI

THEORY OF OPERATION

The input video or pixel data is passed on to the ADV202’s pixel interface, where samples are de-interleaved and passed on to the wavelet engine, which decomposes each tile or frame into subbands using the 5/3 or 9/7 filters. The resulting wavelet coefficients are then written to internal memory. Next, the entropy codecs code the image data so it conforms to the JPEG2000 standard. An internal DMA provides high bandwidth memory-to-memory transfers, as well as high performance transfers between functional blocks and memory.

WAVELET ENGINE

The ADV202 provides a dedicated wavelet transform processor based on Analog Devices’ proven and patented SURF technology. This processor can perform up to six wavelet decomposition levels on a tile. In encode mode, the wavelet transform processor takes in uncompressed samples, performs the wavelet transform and quantization, and writes the wavelet coefficients in all frequency subbands to internal memory. Each of these subbands is then further broken down into code blocks. The code-block dimensions can be user-defined and are used by the wavelet transform processor to organize the wavelet coefficients into code blocks when writing to internal memory. Each completed code block is then entropy coded by one of the entropy codecs.
In decode mode, wavelet coefficients are read from internal m
emory and recomposed into uncompressed samples.

ENTROPY CODECS

The entropy codec block performs context modeling and arithmetic coding on a code block of the wavelet coefficients. Additionally, this block performs the distortion metric calculations during compression that are required for optimal rate and distortion performance. Because the entropy coding process is the most computationally intensive operation in the JPEG2000 compression process, three dedicated hardware entropy codecs are provided on the ADV202.

EMBEDDED PROCESSOR SYSTEM

The ADV202 incorporates an embedded 32-bit RISC processor. This processor is used for configuration, control, and manage­ment of the dedicated hardware functions, as well as for parsing and generating the JPEG2000 code stream. The processor system includes memory for both program and data memory, an interrupt controller, standard bus interfaces, and other hardware functions such as timers and counters.

MEMORY SYSTEM

The memory system’s main function is to manage wavelet coefficient data, interim code-block attribute data, and temporary work space for creating, parsing, and storing the JPEG2000 code stream. The memory system can also be used for program and data memory for the embedded processor.

INTERNAL DMA ENGINE

The internal DMA engine provides high bandwidth memory­to-memory transfers, as well as high performance transfers between memory and functional blocks. This function is critical for high speed generation and parsing the code stream.
Rev. C | Page 26 of 40
ADV202
www.BDTIC.com/ADI

ADV202 INTERFACE

There are several possible modes to interface to the ADV202 using the VDATA bus and t he HDATA bus or the HDATA bus alone.

VIDEO INTERFACE (VDATA BUS)

The video interface can be used in applications in which uncompressed pixel data is on a separate bus from compressed data. For example, it is possible to use the VDATA bus to input uncompressed video while using the HDATA bus to output the compressed data. This interface is ideal for applications requiring very high throughput such as live video capture.
Optionally, the ADV202 can compress ITU.R-BT656 resolution
deo on a field-by-field basis or on a two-fields-combined
vi basis, which yields significantly more efficient compression performance. Additionally, high definition digital video such as SMPTE274M (1080i) is supported using two or more ADV202 devices.
The video interface can support video data or still image data input/output, 8-, 10-, and 12-bit single or multiplexed components. The VDATA interface supports digital video in YCbCr format or single component format. YCbCr data must be in 4:2:2 format.
Video data can be input/output in several different modes on
e VDATA bus, as described in Tab l e 1 8 . In all these modes,
th t
he pixel clock must be input on the VCLK pin.
Table 18. Video Input/Output Modes
Mode Description
EAV/SAV
HVF
Raw Video
Accepts video with embedded EAV/SAV codes, where
YCbCr data is interleaved onto a single bus.
the Accepts video data accompanied with separate H, V,
and F signals wher single bus.
Used for still picture data and nonstandard video. VFRM, VSTRB, and VRDY are used to program the dimensions of the image.
e YCbCr data is interleaved onto a

HOST INTERFACE (HDATA BUS)

The ADV202 can connect directly to a wide variety of host processors and ASICs using an asynchronous SRAM-style interface, DMA accesses, or streaming mode (JDATA) interface. The ADV202 supports 16- and 32-bit buses for control and 8-, 16-, and 32-bit buses for data transfer.
The control and data channel bus widths can be specified
endently, which allows the ADV202 to support applica-
indep tions that require control and data buses of different widths.
The host interface is used for configuration, control, and status f
unctions, as well as for transferring compressed data streams. It can be used for uncompressed data transfers in certain modes. The host interface can be shared by as many as four concurrent data streams in addition to control and status communications. The data streams are
ncompressed tile data (for example, still image data)
U
F
ully encoded JPEG2000 code stream (or unpackaged code
blocks)
Cod
The ADV202 uses big endian byte alignment for 16- and 32-bit tra
e-block attributes
nsfers. All data is left-justified (MSB).
Pixel Input on the Host Interface
Pixel input on the host interface supports 8-, 10-, 12-, 14-, and 16-bit raw pixel data formats. It can be used for pixel (still image) input/output or compressed video output. Because there are no timing codes or sync signals associated with the input data on the host interface, dimension registers and internal counters are used and must be programmed to indicate the start and end of the frame. See the
de for details on how to use the ADV202 in this mode.
mo
technical note on using HIPI
Host Bus Configuration
For maximum flexibility, the host interface provides several configurations to meet particular system requirements. The default bus mode uses the same pins to transfer control, status, and data to and from the ADV202. In this mode, the ADV202 can support 16- and 32-bit control transfers and 8-, 16-, and 32-bit data transfers. The size of these buses can be selected independently, allowing, for example, a 16-bit microcontroller to configure and control the ADV202 while still providing 32-bit data transfers to an ASIC or external memory system.

DIRECT AND INDIRECT REGISTERS

To minimize pin count and cost, the number of address pins has been limited to four, which yields a total direct address space of 16 locations. These locations are most commonly used by the external controller and are, therefore, accessible directly. All other registers in the ADV202 can be accessed indirectly through the IADDR and IDATA registers.

CONTROL ACCESS REGISTERS

With the exception of the indirect address and data registers (IADDR and IDATA), all control/status registers in the ADV202 are 16 bits wide and are half-word (16-bit) addressable only. When 32-bit host mode is enabled, the upper 16 bits of the HDATA bus are ignored on writes and return all 0s on reads of 16-bit registers.
Rev. C | Page 27 of 40
ADV202
www.BDTIC.com/ADI

PIN CONFIGURATION AND BUS SIZES/MODES

The ADV202 provides a wide variety of control and data configurations, which allows it to be used in many applications with little or no glue logic. The following modes are configured using the BUSMODE register. In the following descriptions, host refers to normal addressed accesses ( and data refers to external DMA accesses (
32-Bit Host/32-Bit Data
In this mode, the HDATA[31:0] pins provide full 32-bit wide data accesses to PIXEL, CODE, and ATTR FIFOs. The expanded video interface (VDATA) is not available in this mode.
16-Bit Host/32-Bit Data
This mode allows a 16-bit host to configure and communicate with the ADV202 while still allowing 32-bit accesses to the PIXEL, CODE, and ATTR FIFOs using the external DMA capability.
All addressed host accesses are 16 bits and, therefore, use only
e HDATA[15:0] pins. The HDATA[31:16] pins provide the
th additional 16 bits necessary to support the 32-bit external DMA transfers to and from the FIFOs only. The expanded video interface (VDATA) is not available in this mode.
16-Bit Host/16-Bit Data
This mode uses 16-bit transfers, if used for host or external DMA data transfers. This mode allows for the use of the extended pixel interface modes.
16-Bit Host/8-Bit Data (JDATA Bus Mode)
This mode provides separate data input/output and host control interface pins. Host control accesses are 16 bits and use HDATA[15:0], while the dedicated data bus uses JDATA[7:0].
JDATA uses a valid/hold synchronous transfer protocol. The
ection of the JDATA bus is determined by the mode of the
dir ADV202. If the ADV202 is encoding (compression), JDATA[7:0] is an output. If the ADV202 is decoding (decompression), JDATA[7:0] is an input. Host control accesses remain asynchronous (also refer to the
JDATA Mode section).

STAGE REGISTER

Because the ADV202 contains both 16-bit and 32-bit registers and its internal memory is mapped as 32-bit data, a mechanism has been provided to allow 16-bit hosts to access these registers and memory locations using the stage register (STAGE).
CS
/RD/WR/ADDR)
DACK
DREQ
/
).
STAGE is accessed as a 16-bit register using HDATA[15:0]. Prior to writing to the desired register, the stage register must be written with the upper (most significant) half-word.
When the host subsequently writes the lower half-word to the
esired control register, HDATA is combined with the previously
d staged value to create the required 32-bit value that is written. When a register is read, the upper (most significant) half-word is returned immediately on HDATA and the lower half-word can be retrieved by reading the stage register on a subsequent access. For details on using the stage register, see the
Us
er’s Guide.
Note that the stage register does not apply to the three data cha
nnels (PIXEL, CODE, and ATTR). These channels are always accessed at the specified data width and do not require the use of the stage register.
ADV202

JDATA MODE

JDATA mode is typically used only when the dedicated video interface (VDATA) is also enabled. This mode allows code stream data (compressed data compliant with JPEG2000) to be input or output on a single dedicated 8-bit bus (JDATA[7:0]). The bus is always an output during compression operations and is an input during decompression.
A 2-pin handshake is used to transfer data over this synchro­no
us interface. VALID is used to indicate that the ADV202 is ready to provide or accept data and is always an output. HOLD is always an input and is asserted by the host if it cannot accept/ provide data. For example, JDATA mode allows real-time applications, in which pixel data is input over the VDATA bus while the compressed data stream is output over the JDATA bus.

EXTERNAL DMA ENGINE

The external DMA interface is provided to enable high bandwidth data I/O between an external DMA controller and the ADV202 data FIFOs. Two independent DMA channels can each be assigned to any one of the three data stream FIFOs (PIXEL, CODE, or ATTR).
The controller supports asynchronous DMA using a data-
DREQ
re
quest/data-acknowledge ( single or burst access modes. Additional functionality is provided for single address compatibility (fly-by) and dedicated chip select (DCS) modes.
DACK
/
) protocol in either
Rev. C | Page 28 of 40
ADV202
www.BDTIC.com/ADI

INTERNAL REGISTERS

This section describes the internal registers of the ADV202.

DIRECT REGISTERS

The ADV202 has 16 direct registers, as listed in Tab l e 1 9 . The direct registers are accessed over the ADDR[3:0], HDATA[31:0],
Table 19. Direct Registers
Address Name Description
0x00 PIXEL Pixel FIFO Access Register 0x01 CODE Compressed Code Stream Access Register 0x02 ATTR Attribute FIFO Access Register 0x03 Reserved Reserved 0x04 CMDSTA Command Stack 0x05 EIRQIE External Interrupt Enabled 0x06 EIRQFLG External Interrupt Flags 0x07 SWFLAG Software Flag Register 0x08 BUSMODE Bus Mode Configuration Register 0x09 MMODE Miscellaneous Mode Register 0x0A STAGE Staging Register 0x0B IADDR Indirect Address Register 0x0C IDATA Indirect Data Register 0x0D BOOT Boot Mode Register 0x0E PLL_HI PLL Control Register—High Byte 0x0F PLL_LO PLL Control Register—Low Byte
CS
, RD, WR, and
ACK
pins.
The host must first initialize the direct registers before any
pplication-specific operation can be implemented.
a
For additional information on accessing and configuring these r
egisters, see the ADV202 User’s Guide.
Rev. C | Page 29 of 40
ADV202
www.BDTIC.com/ADI

INDIRECT REGISTERS

In certain modes, such as custom-specific input format or HIPI mode, indirect registers must be accessed by the user through the use of the IADDR and IDATA registers. The indirect register address space starts at Internal Address 0xFFFF0000.
Table 20. Indirect Registers
Address Name Description
0xFFFF0400 PMODE1 Pixel/Video Format 0xFFFF0404 COMP_CNT_STATUS Horizontal Count 0xFFFF0408 LINE_CNT_STATUS Vertical Count 0xFFFF040C XTOT Total Samples per Line 0xFFFF0410 YTOT Total Lines per Frame 0xFFFF0414 F0_START Start Line of Field 0 [F0] 0xFFFF0418 F1_START Start Line of Field 1 [F1] 0xFFFF041C V0_START Start of Active Video Field 0 [F0] 0xFFFF0420 V1_START Start of Active Video Field 1 [F1] 0xFFFF0424 V0_END End of Active Video Field 0 [F0] 0xFFFF0428 V1_END End of Active Video Field 1 [F1] 0xFFFF042C PIXEL_START Horizontal Start of Active Video 0xFFFF0430 PIXEL_END Horizontal End of Active Video 0xFFFF0440 MS_CNT_DEL Master/Slave Delay 0xFFFF0444 Reserved Reserved 0xFFFF0448 PMODE2 Pixel Mode 2 0xFFFF044C VMODE Video Mode 0xFFFF1408 EDMOD0 External DMA Mode Register 0 0xFFFF140C EDMOD1 External DMA Mode Register 1 0xFFFF1410 FFTHRP FIFO Threshold for Pixel FIFO 0xFFFF1414 Reserved Reserved 0xFFFF1418 Reserved Reserved 0xFFFF141C FFTHRC FIFO Threshold for CODE FIFO 0xFFFF1420 FFTHRA FIFO Threshold for ATTR FIFO 0xFFFF1428 to 0xFFFF14FC Reserved Reserved
Both 32-bit and 16-bit hosts can ac 32-bit hosts use the IADDR and IDATA registers, while the 16-bit hosts use IADDR, IDATA, and the stage register.
For additional information on accessing and configuring these r
egisters, see the ADV202 User’s Guide.
cess the indirect registers.
Rev. C | Page 30 of 40
ADV202
www.BDTIC.com/ADI
PLL
The ADV202 uses the PLL_HI and PLL_LO direct registers to co
nfigure the PLL. Any time the PLL_LO register is modified, the host must wait at least 20 μs before reading or writing to any other register. If this delay is not implemented, erratic behavior could result.
The PLL can be programmed to have any possible final
ultiplier value as long as
m
CLK > 50 MHz and < 150 MHz (144-lead version).
J
J
CLK > 50 MHz and < 135 MHz (144-lead version).
J
CLK > 50 MHz and < 115 MHz (121-lead version).
HCLK < 108 MHz (144-lead, 150 MHz version).
H
CLK < 100 MHz (144-lead, 135 MHz version).
H
CLK < 81 MHz (121-lead version).
J
CLK ≥ 2 × VCLK for single-component input.
J
CLK ≥ 2 × VCLK for YCrCb [4:2:2] input.
I
n JDATA mode (JDATA), JCLK must be 4 × MCLK or
higher.
For de-interlaced modes, JCLK must be ≥ 4 × MCLK.
The maximum burst frequency for external DMA modes is
≤0.36 JCLK.
F
or MCLK frequencies greater than 50 MHz, the input
clock divider must be enabled, that is, IPD set to 1.
IPD ca
nnot be enabled for MCLK frequencies below 20 MHz.
To achieve the lowest power consumption, an MCLK frequency
f 27 MHz is recommended for a standard definition CCIR656
o input. The PLL circuit is recommended to have a multiplier of 3. This sets JCLK and HCLK to 81 MHz.
MCLK
IPD
2
Figure 23. PLL Architecture and Control Functions
PHASE
DETECT
LFB
BYPASS
2
LPF
PLLMULT
VCO
2
HCLKD
JCLK
HCLK
04723-009
Table 21. Recommended PLL Register Settings
IPD LFB PLLMULT HCLKD HCLK JCLK
0 0 N 0 N × MCLK N × MCLK 0 0 N 1 N × MCLK/2 N × MCLK 0 1 N 0 2 × N × MCLK 0 1 N 1 N × MCLK 1 0 N 0 N × MCLK/2 1 0 N 1 N × MCLK/4 1 1 N 0 N × MCLK
2 × N × MCLK 2 × N × MCLK N × MCLK/2 N × MCLK/2 N × MCLK
1 1 N 1 N × MCLK/2 N × MCLK
Table 22. Recommended Values for PLL_HI and PLL_LO Registers
Video Standard CLKIN Frequency on MCLK PLL_HI PLL_LO
SMPTE125M or ITU-R.BT656 (NTSC or PAL) 27 MHz 0x0008 0x0004 SMPTE293M (525p) 27 MHz 0x0008 0x0004 ITU-R.BT1358 (625p) 27 MHz 0x0008
0x0004
SMPTE274M (1080i) 74.25 MHz 0x0008 0x0084

HARDWARE BOOT

ADV202 User’s GuideThe boot mode can be configured via hardware using the CFG pins or via software (see the ). The first boot mode
after power-up is set by the CFG pins. Only Boot Mode 2, Boot Mode 4, and Boot Mode 6, described in Tab l e 2 3, are available via hardware.
Table 23. Hardware Boot Modes
Boot Mode Settings Description
Hardware Boot Mode 2
Hardware Boot Mode 4
Hardware Boot
de 6
Mo
CFG[1] tied high, CFG[2] tied low
CFG[1] tied low, CFG[2] tied high
CFG[1] and CFG[2] tied high
No-Boot Host Mode. ADV202 does not boot, but all internal registers and memory are accessible through normal host I/O operations. For details, see the and the application note. ADV202 User’s Guide Getting Started with the ADV202
SoC Boot Mode.
Reserved.
Rev. C | Page 31 of 40
ADV202
www.BDTIC.com/ADI

VIDEO INPUT FORMATS

The ADV202 supports a wide variety of formats for uncompressed video and still image data. The actual interface and bus modes selected for transferring uncompressed data dictates the allowed size of the input data and the number of samples transferred with each access.
The host interface can support 8-, 10-, 12-, 14-, and 16-bit data f
ormats. The video interface can support video data or still image
data input/output. Supported formats are 8-, 10-, 12-, or 16-bit
Table 24. Maximum Pixel Data Input Rates
Compression
Interface 144-LEAD PACKAGE
HDATA Irreversible 8-bit data 45 [40] 130 200 Irreversible 10-bit data 45 [40] 130 200 Irreversible 12-bit data 45 [40] 130 200 Irreversible 16-bit data 45 [40] 130 200 Reversible 8-bit data 40 [36] 130 200 Reversible 10-bit data 32 [28] 130 200 Reversible 12-bit data 27 [24] 130 200 Reversible 14-bit data 23 [20] 130 200 VDATA Irreversible 8-bit data 65 [55] 130 200 Irreversible 10-bit data 65 [55] 130 200 Irreversible 12-bit data 65 [55] 130 200 Reversible 8-bit data 40 [34] 130 200 Reversible 10-bit data 32 [28] 130 200 Reversible 12-bit data 27 [23] 130 200
121-LEAD PACKAGE
HDATA Irreversible 8-bit data 34 98 150 Irreversible 10-bit data 34 98 150 Irreversible 12-bit data 34 98 150 Irreversible 16-bit data 34 98 150 Reversible 8-bit data 30 98 150 Reversible 10-bit data 24 98 150 Reversible 12-bit data 20 98 150 Reversible 14-bit data 17 98 150 VDATA Irreversible 8-bit data 48 98 150 Irreversible 10-bit data 48 98 150 Irreversible 12-bit data 48 98 150 Reversible 8-bit data 30 98 150 Reversible 10-bit data 24 98 150 Reversible 12-bit data 20 98 150
1
Input rate limits for HDATA can be less for certain applications depending on input picture size and content, host interface settings, and DMA transfer settings. Values
in brackets refer to the 135 MHz speed grade version of the ADV202.
2
Minimum guaranteed sustained output rate or minimum sustainable compression rate (input rate/minimum peak output rate).
3
Maximum peak output rate, or output rate above this value is not possible .
Mode Input Format
Input Rate Limit Active Resolution (MSPS)
single component or YCbCr 4:2:2 formats. See the
er’s Guide for details. All formats can support less precision
Us
t
han provided by specifying the actual data width/precision in
the PMODE register.
The maximum allowable data input rate is limited by using
reversible or reversible compression modes and the data width
ir (or precision) of the input samples. Use
ermine the maximum data input rate.
det
1
Approx Min Output Rate, Compressed Data
2
(Mbps)
Tabl e 24 and Tabl e 25 to
Approx Max Output Rate,
ompressed Data
C (Mbps)
ADV202
3
Rev. C | Page 32 of 40
ADV202
www.BDTIC.com/ADI
Table 25. Maximum Supported Tile Width for Data Input on HDATA and VDATA Buses
Compression Mode Input Format Tile/Precinct Maximum Width
9/7i Single-component 2048 9/7i Two-component 1024 each 9/7i Three-component 1024 (Y) 5/3i Single-component 4096 5/3i Two-component 2048 (each) 5/3i Three-component 2048 (Y) 5/3r Single-component 4096 5/3r Two-component 2048 5/3r Three-component 1024
Rev. C | Page 33 of 40
ADV202
www.BDTIC.com/ADI

APPLICATIONS

This section describes typical video applications for the ADV202 JPEG2000 video processor.

ENCODE—MULTICHIP MODE

Due to the data input rate limitation (see Tabl e 24 ), an 1080i a
pplication requires at least two ADV202s to encode or decode full-resolution 1080i video. In encode mode, the ADV202 accepts Y and CbCr data on separate buses. The input data must be in EAV/SAV format. An encode example is shown in
Figure 24.
In decode mode, a master/slave configuration (as shown in Figure 25) or a slave/slave configuration can be used to syn
chronize the outputs of the two ADV202s. See AN-796
ADV202 Multichip Application application note for details on
how to configure the ADV202s in a multichip application.
Applications that have two separate VDATA outputs sent to an FPGA or buffer before they are sent to an encoder do not require synchronization at the ADV202 outputs
32-BIT HOST CP U
DATA[31:0] HDATA[31:0]
ADDR[3:0] ADDR[3:0]
CS CS
RD RD
WR WE
ACK ACK
IRQ
DREQ DREQ DACK DACK
G I/O SCOMM[5]
CS
RD
WR
ACK
IRQ
DREQ DACK
ADV202
_1_SLAVE
VCLK
MCLK
IRQ
HDATA[31:0] ADDR[3:0]
CS RD WE ACK IRQ
DREQ DACK SCOMM[5]
VDATA[11:2]
ADV202
_2_SLAVE
VDATA[11:2]
FIELD
VSYNC
HSYNC
VCLK
MCLK
HSYNC
VSYNC
FIELD
Figure 24. Encode—Mult
Y
CbCr
CbCr
ichip Application
10-BIT SD/HD
VIDEO
DECODER
LLC
Y[9:0]
C[9:0]
1080i VIDEO IN
04723-002
Rev. C | Page 34 of 40
ADV202
V
www.BDTIC.com/ADI

DECODE—MULTICHIP MASTER/SLAVE

In a master/slave configuration, it is expected that the master HVF o
utputs are connected to the slave HVF inputs and that each
SCOMM[5] pin is connected to the same GPIO on the host.
32-BIT HOST CPU
DATA[31:0] HDATA[31:0]
ADDR[3:0] ADDR[3:0]
CS CS
RD RD
WR WE
ACK ACK
IRQ
DREQ DREQ DACK DACK
G I/O SCOMM[5]
CS
RD
WR
ACK
IRQ
DREQ DACK
Figure 25. Decode—Multichip Master/Slave Application
ADV202
_1_MASTER
IRQ
ADV202
HDATA[31:0] ADDR[3:0]
CS RD WE ACK IRQ
DREQ DACK SCOMM[5]
VDATA[11:2]
HSYNC
HSYNC VSYNC
VDATA[11:2]
In a slave/slave configuration, the common HVF for both ADV202s is generated by an external house sync, and each SCOMM[5] is connected to the same GPIO output on the host. SWIRQ1, Software Interrupt 1 in the EIRQIE register, must be unmasked on both devices to enable multichip mode.
74.25MHz OSC
VCLK
MCLK
YY
FIELD
VSYNC
VCLK
MCLK
FIELD
CbCr
CbCr
10-BIT SD/ HD
VIDEO
ENCODER
CLKIN
Y[9:0]
C[9:0]
1080i
IDEO OUT
04723-003

DIGITAL STILL CAMERA/CAMCORDER

Figure 26 is a typical configuration for a digital camera or camcorder.
AD9843A FPGA
10
D[9:0]
SDATA SERIAL DATA
SCK SERIAL CLK
SL SERIAL EN
Figure 26. Digital Still Camera/Camcorder Encode Application for 10-Bit Pixel Data Using Raw Pixel Mode
DATA INPUTS[9:0]
Rev. C | Page 35 of 40
ADV202
MCLK VCLK
VFRM VRDY VSTRB VDATA[15:6]
DATA[15:0]HDATA[15:0] ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK IRQIRQ
16-BIT
HOST CPU
04723-004
ADV202
V
www.BDTIC.com/ADI

ENCODE/DECODE SDTV VIDEO APPLICATION

Figure 27 shows two ADV202 chips using 10-bit CCIR656 in normal host mode.
ENCODE MODE
32-BIT
HOST CPU
DECODE MODE
32-BIT
HOST CPU
HDATA[31:0]DAT A [31:0] IRQINTR ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK
HDATA[31:0]DAT A [31:0] IRQINTR ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK
ADV202
ADV202
VCLK
MCLK
MCLK
27MHz
OSC
P[19:10]VDATA[11:2]
LLC1
P[9:0]VDATA[11:2] CLKINVCLK
10-BIT
VIDEO
DECODER
10-BIT VIDEO
ENCODER
VIDEO IN
IDEO OUT
04723-005
Figure 27. Encode/Decode—SDTV Video Application
Rev. C | Page 36 of 40
ADV202
www.BDTIC.com/ADI

ASIC APPLICATION (32-BIT HOST/32-BIT ASIC)

Figure 28 shows two ADV202 chips using 10-bit CCIR656 in normal host mode.
ASIC
32-BIT
HOST CPU
DATA[31:0]
ASIC
31 -BIT
HOST CPU
DATA[31:0]
DREQ0DREQ0 DACK0DACK0
HDATA[31:0]DAT A[31:0]
IRQIRQ ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK
DREQ0DREQ0 DACK0DACK0
HDATA[31:0]DAT A[31:0]
IRQIRQ ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK
ADV202
VDATA[11:2]
ADV202
VCLK
MCLK
MCLK
27MHz
OSC
P[19:10]
LLC1
P[9:0]VDATA[11:2] CLKINVCLK
10-BIT VIDEO
DECODER
10-BIT VIDEO
ENCODER
VIDEO IN
ENCODE MODE
VIDEO OUT
DECODE MODE
04723-006
Figure 28. Encode/Decode ASIC Application
Rev. C | Page 37 of 40
ADV202
www.BDTIC.com/ADI

HIPI (HOST INTERFACE—PIXEL INTERFACE)

Figure 29 is a typical configuration using HIPI mode.
32-BIT HOS T
DATA [31:0]
CS RD RD
WR WE
ACK ACK
IRQ IRQ
DREQ DREQ0 DACK DACK0
DREQ DREQ1 DACK DACK1
Figure 29. Host Interface—Pixel Interface Mode
74.25MHz
HDATA<31>Y0/G0<MSB> HDATA<30>Y0/G0<6> HDATA<29>Y0/G0<5> HDATA<28>Y0/G0<4> HDATA<27>Y0/G0<3> HDATA<26>Y0/G0<2> HDATA<25>Y0/G0<1> HDATA<24>Y0/G0<0> HDATA<23>Cb0/G1<MSB> HDATA<22>Cb0/G1<6> HDATA<21>Cb0/G1<5> HDATA<20>Cb0/G1<4> HDATA<19>Cb0/G1<3> HDATA<18>Cb0/G1<2> HDATA<17>Cb0/G1<1> HDATA<16>Cb0/G1<0> HDATA<15>Y1/G2<MSB> HDATA<14>Y1/G2<6> HDATA<13>Y1/G2<5> HDATA<12>Y1/G2<4> HDATA<1 1>Y1/G2<3> HDATA<10>Y1/G2<2> HDATA<9>Y1/G2<1> HDATA<8>Y1/G2<0> HDATA<7>Cr0/G3<MSB> HDATA<6>Cr0/G3<6> HDATA<5>Cr0/G3<5> HDATA<4>Cr0/G3<4> HDATA<3>Cr0/G3<3> HDATA<2>Cr0/G3<2> HDATA<1>Cr0/G3<1> HDATA<0>Cr0/G3<0>
CS
MCLK
RAW PIXEL DATAPATH
COMPRESSED DATAPATH
04723-007

JDATA INTERFACE

Figure 30 shows a typical configuration using JDATA with a dedicated JDATA output, 16-bit host, and 10-bit CCIR656.
ASIC
16-BIT
HOST CPU
ADV202
JDATA[7:0] HOLD VALID
HSYNC
HDATA[15:0]DATA[15:0] IRQIRQ ADDR[3:0]ADDR[3:0] CSCS RDRD WEWE ACKACK
Figure 30. JDATA Application
Rev. C | Page 38 of 40
VCLK
MCLK
YCrCb
P[19:10]VDATA[11:2] FIELDFIELD
VSVSYNC HS
LLC1
VIDEO IN
04723-008
ADV202
A
R
*
A
R
*
www.BDTIC.com/ADI

OUTLINE DIMENSIONS

1 CORNE
INDEX AREA
63
5
4
DETAILA
SEATING PLANE
1 CORNE
INDEX AREA
9
5
BOTTOM VIEW
SEATING PLANE
4
21
321
A B C D E F G H J K L
*
1.31
1.21
1.11
0.20 NOM COPLANARITY
A B C D E F G
H J K L M
*
1.32
1.21
1.11
COPLANARITY
0.20 MAX
021506-A
1.85
1.71
1.40
1.85
MAX
12.20
12.00 SQ
11.80
BALL A1 INDICATOR
TOP VIEW
DETAIL A
*
COMPLIANT WITH JEDEC S T ANDARDS MO-192-ABD-1 WITH
EXCEPTIO N TO PACKAGE HEI GHT AND THICKNESS.
10.00
BSC SQ
0.50 NOM
0.30 MIN
9
1087
11
1.00 BSC BOTTOM VIEW
0.70
0.60
0.50
BALL DIAMETE R
Figure 31. 121-Lead Chip Scale Package Ball Grid Array [CSPBGA]
(BC-12
1)
Dimensions shown in millimeters
13 .00
BSC SQ
BALL A1 INDICATOR
TOP VIEW
DETAIL A
BCS SQ
1.00 BSC
0.53
0.43
121110 876
11.00
0.70
0.60
0.50
BALL DIAMET E R
DETAILA
*
COMPLIANT WITH JEDEC S T ANDARDS M O-192-AAD-1 WI T H
EXCEPTIO N TO PACKAGE HEI GHT AND THICKNESS.
Figure 32. 144-Lead Chip Scale Package Ball Grid Array [CSPBGA]
Dimensions shown in millimeters
Rev. C | Page 39 of 40
(BC-14
4-3)
021506-A
ADV202
www.BDTIC.com/ADI

ORDERING GUIDE

Temperature Range
ADV202BBC-115 −40°C to +85°C 115 MHz 1.5 V Internal, 2.5 V or 3.3 V I/O 121-Lead CSPBGA BC-121 ADV202BBCZ-115 −40°C to +85°C 115 MHz 1.5 V Internal, 2.5 V or 3.3 V I/O 121-Lead CSPBGA BC-121 ADV202BBCZRL-115 −40°C to +85°C 115 MHz 1.5 V Internal, 2.5 V or 3.3 V I/O 121-Lead CSPBGA BC-121 ADV202BBC-135 −40°C to +85°C 135 MHz 1.5 V Internal, 2.5 V or 3.3 V I/O 144-Lead CSPBGA BC-144-3 ADV202BBCZ-135 −40°C to +85°C 135 MHz 1.5 V Internal, 2.5 V or 3.3 V I/O 144-Lead CSPBGA ADV202BBC-150 −40°C to +85°C 150 MHz 1.5 V Internal, 2.5 V or 3.3 V I/O 144-Lead CSPBGA BC-144-3 ADV202BBCZ-150 −40°C to +85°C 150 MHz 1.5 V Internal, 2.5 V or 3.3 V I/O 144-Lead CSPBGA ADV202BBCZRL-150 −40°C to +85°C 150 MHz 1.5 V Internal, 2.5 V or 3.3 V I/O 144-Lead CSPBGA BC-144-3 ADV202-HD-EB High Definition Evaluation Board ADV202-ASD-P160-EB Standard Definition Evaluation Board
1
Z = Pb-free part.
1
1
1
1
1
Speed Grade
Package Option Model Operating Voltage Package Description
BC-144-3
BC-144-3
©2006 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D04723-0-11/06(C)
Rev. C | Page 40 of 40
Loading...