Analog Devices ADR390 1 2 5 e Datasheet

Micropower, Low Noise Precision
Voltage References with
Shutdown

FEATURES

Compact TSOT-23-5 packages Low temperature coefficient
B grade: 9 ppm/°C A grade: 25 ppm/°C
Initial accuracy
B grade: +
A grade: + Ultralow output noise: 5 µV p-p (0.1 Hz to 10 Hz) Low dropout: 300 mV Low supply current
3 µA maximum in shutdown
120 µA maximum in operation No external capacitor required Output current: 5 mA Wide temperature range
−40°C to + 125°C

APPLICATIONS

Battery-powered instrumentations Portable medical instrumentations Data acquisition systems Industrial process controls Automotive

GENERAL DESCRIPTION

4 mV maximum 6 mV maximum
ADR390/ADR391/ADR392/ADR395

FUNCTIONAL BLOCK DIAGRAM

1
SHDN
V
OUT (SENSE)
Figure 1. 5-Lead TSOT (UJ Suffix)
V
IN
ADR390/ ADR391/
2
ADR392/
ADR395
3
(Not to Scale)
Table 1.
Temperature
Model V
OUT
(V)
Coefficient (ppm/°C) Accuracy (mV)
ADR390B 2.048 9 +4 ADR390A 2.048 25 +6 ADR391B 2.5 9 +4 ADR391A 2.5 25 +6 ADR392B 4.096 9 +5 ADR392A 4.096 25 +6 ADR395B 5.0 9 +5 ADR395A 5.0 25 +6
Contact Analog Devices, Inc. for other voltage options.
5
GND
4
V
OUT (FORCE)
00419-D-001
The ADR390, ADR391, ADR392, and ADR395 are precision
2.048 V, 2.5 V, 4.096 V, and 5 V band gap voltage references that feature low power and high precision in a tiny footprint. Using ADI’s patented temperature drift curvature correction techniques, the ADR39x references achieve a low 9 ppm/°C of temperature drift in the TSOT package.
The ADR39x family of micropower, low dropout voltage references provides a stable output voltage from a minimum supply of 300 mV above the output. Their advanced design eliminates the need for external capacitors, which further reduces board space and system cost. The combination of low power operation, small size, and ease of use makes the ADR39x precision voltage references ideally suited for battery­operated applications.
Rev. E
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2004 Analog Devices, Inc. All rights reserved.
ADR390/ADR391/ADR392/ADR395

TABLE OF CONTENTS

ADR390—Specifications ................................................................. 3

REVISION HISTORY

ADR391—Specifications ................................................................. 4
ADR392—Specifications ................................................................. 5
ADR395—Specifications ................................................................. 6
Absolute Maximum Ratings............................................................ 7
Thermal Resistance ...................................................................... 7
ESD Caution.................................................................................. 7
Terminology ...................................................................................... 8
Typical Performance Characteristics ............................................. 9
Theory of Operation ...................................................................... 16
Applications..................................................................................... 17
Basic Voltage Reference Connection ....................................... 17
Outline Dimensions....................................................................... 19
Ordering Guide........................................................................... 19
4/04—Data Sheet Changed from Rev. D to Rev. E
Changes to ADR390—Specifications............................................ 3
Changes to ADR391—Specifications............................................ 4
Changes to ADR392—Specifications............................................ 5
Changes to ADR395—Specifications............................................ 6
4/04—Data Sheet Changed from Rev. C to Rev. D
Updated Format.................................................................Universal
Changes to Title............................................................................... 1
Changes to Features ........................................................................ 1
Changes to Applications................................................................. 1
Changes to General Description ...................................................1
Changes to Table 1........................................................................... 1
Changes to ADR390—Specifications............................................ 3
Changes to ADR391—Specifications............................................ 4
Changes to ADR392—Specifications............................................ 5
Changes to ADR395—Specifications............................................ 6
Changes to Absolute Maximum Ratings ...................................... 7
Changes to Thermal Resistance..................................................... 7
Moved ESD Caution .......................................................................7
Changes to Figure 3, Figure 4, Figure 7, and Figure 8................. 9
Changes to Figure 11, Figure 12, Figure 13, and Figure 14 ......10
Changes to Figure 15, Figure 16, Figure 19, and Figure 20 ......11
Changes to Figure 23 and Figure 24............................................ 12
Changes to Figure 27.....................................................................13
Changes to Ordering Guide......................................................... 19
Updated Outline Dimensions...................................................... 19
10/02—Data Sheet Changed from Rev. B to Rev. C
Add parts ADR392 and ADR395 ....................................Universal
Changes to Features ........................................................................ 1
Changes to General Description ...................................................1
Additions to Table I......................................................................... 1
Changes to Specifications............................................................... 2
Changes to Ordering Guide........................................................... 4
Changes to Absolute Maximum Ratings ...................................... 4
New TPCs 3, 4, 7, 8, 11, 12, 15, 16, 19, and 20............................... 6
New Figures 4 and 5...................................................................... 13
Deleted A Negative Precision Reference
without Precision Resistors Section............................................ 13
Edits to General-Purpose Current Source Section ................... 13
Updated Outline Dimensions...................................................... 15
5/02—Data Sheet Changed from Rev. A to Rev. B
Edits to Layout...................................................................Universal
Changes to Figure 6....................................................................... 13
Rev. E | Page 2 of 20
ADR390/ADR391/ADR392/ADR395

ADR390—SPECIFICATIONS

Electrical Characteristics, VIN = 2.5 V to 15 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE V V INITIAL ACCURACY V V V V
O
B Grade 2.044 2.048 2.052 V
O
OERR
A Grade 0.29 %
OERR
B Grade 4 mV
OERR
B Grade 0.19 %
OERR
A Grade 2.042 2.048 2.054 V
A Grade 6 mV
A Grade, −40°C < TA < +125°C 25 ppm/°C TEMPERATURE COEFFICIENT TCVO
B Grade, −40°C < T
< +125°C 9 ppm/°C
A
SUPPLY VOLTAGE HEADROOM VIN − VO 300 mV LINE REGULATION ∆VO/∆VIN VIN = 2.5 V to 15 V, −40°C < TA < +125°C 10 25 ppm/V
I
= 0 mA to 5 mA, −40°C < TA < +85°C, VIN = 3 V 60 ppm/mA LOAD REGULATION ∆VO/∆I
LOAD
LOAD
I
= 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V 140 ppm/mA
LOAD
No Load 120 µA QUIESCENT CURRENT IIN
< +125°C 140 µA
A
VOLTAGE NOISE e
−40°C < T
0.1 Hz to 10 Hz 5 µV p-p
N p-p
TURN-ON SETTLING TIME tR 20 µs LONG-TERM STABILITY1 ∆VO 1, 000 Hours 50 ppm OUTPUT VOLTAGE HYSTERESIS ∆V
100 ppm
O_HYS
RIPPLE REJECTION RATIO RRR fIN = 60 kHz 80 dB
VIN = 5 V 25 mA SHORT CIRCUIT TO GND ISC V
= 15 V 30 mA
IN
SHUTDOWN PIN
Shutdown Supply Current I
Shutdown Logic Input Current I
Shutdown Logic Low V
Shutdown Logic High V
3 µA
SHDN
500 nA
LOGIC
0.8 V
INL
2.4 V
INH
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. E | Page 3 of 20
ADR390/ADR391/ADR392/ADR395

ADR391—SPECIFICATIONS

Electrical characteristics, VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO A Grade 2.494 2.5 2.506 V V
V V
B Grade 2.496 2.5 2.504 V
O
V
A Grade 6 mV INITIAL ACCURACY
OERR
A Grade 0.24 %
V
OERR
B Grade 4 mV
OERR
B Grade 0.16 %
OERR
A Grade, −40°C < TA < +125°C 25 ppm/°C TEMPERATURE COEFFICIENT TCVO
B Grade, −40°C < T
< +125°C 9 ppm/°C
A
SUPPLY VOLTAGE HEADROOM VIN − VO 300 mV LINE REGULATION ∆VO/∆VIN VIN = 2.8 V to 15 V, −40°C < TA < +125°C 10 25 ppm/V
I
= 0 mA to 5 mA, −40°C < TA < +85°C, VIN = 3 V 60 ppm/mA LOAD REGULATION ∆VO/∆I
LOAD
LOAD
= 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V 140 ppm/mA
I
LOAD
No Load 120 µA QUIESCENT CURRENT IIN
VOLTAGE NOISE e
−40°C < T
0.1 Hz to 10 Hz 5 µV p-p
N p-p
< +125°C 140 µA
A
TURN-ON SETTLING TIME tR 20 µs LONG-TERM STABILITY1 ∆VO 1, 000 Hours 50 ppm OUTPUT VOLTAGE HYSTERESIS ∆V
100 ppm
O_HYS
RIPPLE REJECTION RATIO RRR fIN = 60 kHz 80 dB
VIN = 5 V 25 mA SHORT CIRCUIT TO GND ISC
= 15 V 30 mA
V
IN
SHUTDOWN PIN
Shutdown Supply Current I Shutdown Logic Input Current I Shutdown Logic Low V Shutdown Logic High V
3 µA
SHDN
500 nA
LOGIC
0.8 V
INL
2.4 V
INH
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. E | Page 4 of 20
ADR390/ADR391/ADR392/ADR395

ADR392—SPECIFICATIONS

Electrical characteristics, VIN = 4.3 V to 15 V, TA = 25°C, unless otherwise noted.
Table 4.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO A Grade 4.090 4.096 4.102 V V
V V
B Grade 4.091 4.096 4.101 V
O
V
A Grade 6 mV INITIAL ACCURACY
OERR
A Grade 0.15 %
V
OERR
B Grade 5 mV
OERR
B Grade 0.12 %
OERR
A Grade, −40°C < TA < +125°C 25 ppm/°C TEMPERATURE COEFFICIENT TCVO
B Grade, −40°C < T
< +125°C 9 ppm/°C
A
SUPPLY VOLTAGE HEADROOM VIN − VO 300 mV LINE REGULATION ∆VO/∆VIN VIN = 4.3 V to 15 V, −40°C < TA < +125°C 10 25 ppm/V LOAD REGULATION ∆VO/∆I
LOAD
I
= 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V 140 ppm/mA
LOAD
No Load 120 µA QUIESCENT CURRENT IIN
< +125°C 140 µA
A
VOLTAGE NOISE e
−40°C < T
0.1 Hz to 10 Hz 7 µV p-p
N p-p
TURN-ON SETTLING TIME tR 20 µs LONG-TERM STABILITY1 ∆VO 1, 000 Hours 50 ppm OUTPUT VOLTAGE HYSTERESIS ∆V
100 ppm
O_HYS
RIPPLE REJECTION RATIO RRR fIN = 60 kHz 80 dB
VIN = 5 V 25 mA SHORT CIRCUIT TO GND ISC V
= 15 V 30 mA
IN
SHUTDOWN PIN
Shutdown Supply Current I
Shutdown Logic Input Current I
Shutdown Logic Low V
Shutdown Logic High V
3 µA
SHDN
500 nA
LOGIC
0.8 V
INL
2.4 V
INH
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. E | Page 5 of 20
ADR390/ADR391/ADR392/ADR395

ADR395—SPECIFICATIONS

Electrical characteristics, VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.
Table 5.
Parameter Symbol Conditions Min Typ Max Unit
OUTPUT VOLTAGE VO A Grade 4.994 5.000 5.006 V V
V V
B Grade 4.995 5.000 5.005 V
O
V
A Grade 6 mV INITIAL ACCURACY
OERR
B Grade 0.12 %
V
OERR
B Grade 5 mV
OERR
B Grade 0.10 %
OERR
A Grade, −40°C < TA < +125°C 25 ppm/°C TEMPERATURE COEFFICIENT TCVO
B Grade, −40°C < T
< +125°C 9 ppm/°C
A
SUPPLY VOLTAGE HEADROOM VIN − VO 300 mV LINE REGULATION ∆VO/∆VIN VIN = 4.3 V to 15 V, −40°C < TA < +85°C 10 25 ppm/V LOAD REGULATION ∆VO/∆I
LOAD
I
= 0 mA to 5 mA, −40°C < TA < +85°C, VIN = 6 V 140 ppm/mA
LOAD
No Load 120 µA QUIESCENT CURRENT IIN
< +125°C 140 µA
A
VOLTAGE NOISE e
−40°C < T
0.1 Hz to 10 Hz 8 µV p-p
N p-p
TURN-ON SETTLING TIME tR 20 µs LONG-TERM STABILITY1 ∆VO 1, 000 Hours 50 ppm OUTPUT VOLTAGE HYSTERESIS ∆V
100 ppm
O_HYS
RIPPLE REJECTION RATIO RRR fIN = 60 kHz 80 dB
VIN = 5 V 25 mA SHORT CIRCUIT TO GND ISC V
= 15 V 30 mA
IN
SHUTDOWN PIN
Shutdown Supply Current I Shutdown Logic Input Current I Shutdown Logic Low V Shutdown Logic High V
3 µA
SHDN
500 nA
LOGIC
0.8 V
INL
2.4 V
INH
1
The long-term stability specification is noncumulative. The drift subsequent 1,000 hour periods is significantly lower than in the first 1,000 hour period.
Rev. E | Page 6 of 20
ADR390/ADR391/ADR392/ADR395

ABSOLUTE MAXIMUM RATINGS

At 25°C, unless otherwise noted.
Table 6.
Parameter Rating
Supply Voltage 18 V Output Short-Circuit Duration to GND
Storage Temperature Range –65°C to +125°C Operating Temperature Range –40°C to +125°C Junction Temperature Range –65°C to +125°C Lead Temperature Range
(Soldering, 60 sec)
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
See Derating Curves
300°C

THERMAL RESISTANCE

θJA is specified for the worst-case conditions, i.e., θJA is specified
for a device soldered in a circuit board for surface-mount packages.
Table 7. Thermal Resistance
Package Type θJA θ
TSOT-23-5 (UJ-5) 230 146 °C/W
Unit
JC

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
Rev. E | Page 7 of 20
ADR390/ADR391/ADR392/ADR395
(

TERMINOLOGY

Temperature Coefficient
= VO(25°C) – V
V
O_HYS
O_TC
The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined by the following equation:
() ()
[]
O
Cppm/TCV
O
=°
()
O
TVTV
2
1
O
×°
25
()
TTCV
12
6
×
10
where:
V
(25°C) = VO at 25°C
O
V
(T1) = VO at Temperature 1
O
V
(T2) = VO at Temperature 2
O
Line Regulation
The change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either percent per volt, parts­per-million per volt, or microvolts per volt change in input voltage.
Load Regulation
The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either microvolts per milli­ampere, parts-per-million per milliampere, or ohms of dc output resistance.
Long-Term Stability
Typical shift of output voltage at 25°C on a sample of parts subjected to a test of 1,000 hours at 25°C.
)
VCV
°
[]
ppmV
O_HYS
O
=
25
O_TC
()
CV
°
25
O
6
×
10
where:
(25°C) = VO at 25°C
V
O
V
= VO at 25°C after a temperature cycle from + 25°C
O_TC
to –40°C to +125°C and back to +25°C
NOTES
Input Capacitor
Input capacitors are not required on the ADR39x. There is no limit for the value of the capacitor used on the input, but a 1 µF to 10 µF capacitor on the input will improve transient response in applications where the supply suddenly changes. An additional 0.1 µF in parallel will also help reduce noise from the supply.
Output Capacitor
The ADR39x does not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 µF, will filter out any low level noise voltage and will not affect the operation of the part. On the other hand, the load transient response can improve with an additional 1 µF to 10 µF output capacitor in parallel. A capacitor here will act as a source of stored energy for a sudden increase in load current. The only parameter that will degrade by adding an output capacitor is the turn-on time, and it depends on the size of the capacitor chosen.
200
DATA TAKEN IN CONTROLLED ENVIRONMENT @ 50
150
°C ± 1°C
V
= VO(t0) – VO(t1)
O
()
[]
ppmV
O
O
⎜ ⎝
0
O
()
O
()
tV
0
tVtV
1
6
10
×=
⎟ ⎠
where:
(T0) = VO at 25°C at Time 0
V
O
(T1) = VO at 25°C after 1,000 hours operation at 25°C
V
O
Thermal Hysteresis
The change of output voltage after the device is cycled through temperatures from +25°C to –40°C to +125°C and back to
100
50
0
DRIFT (ppm)
–50
–100
–150
0
86 176 250 324 440 640 840 1040
Figure 2. ADR391 Typical Long-Term Drift over 1,000 Hours
TIME (Hours)
00419-D-002
+25°C. This is a typical value from a sample of parts put through such a cycle.
Rev. E | Page 8 of 20
ADR390/ADR391/ADR392/ADR395

TYPICAL PERFORMANCE CHARACTERISTICS

2.060
5.006
2.056
(V)
2.052
2.048
OUTPUT VOLTAGE
SAMPLE 1
2.044
2.040 –40 –5
SAMPLE 2
30 65 100 125
TEMPERATURE (°C)
Figure 3. ADR390 Output Voltage vs. Temperature
2.506
2.504
SAMPLE 1
2.502
(V)
2.500
OUT
V
2.498
2.496
SAMPLE 3
SAMPLE 2
SAMPLE 3
00419-D-003
5.004 SAMPLE 3
5.002 SAMPLE 2
(V)
5.000
OUT
V
4.998
4.996
4.994
–40 –5 30 65 125
SAMPLE 1
TEMPERATURE (°C)
100
Figure 6. ADR395 Output Voltage vs. Temperature
140
+125
°
A)
µ
SUPPLY CURRENT (
120
100
80
60
+85°C
+25
–40
C
°
C
°
C
00419-D-006
2.494 –40 –5
30 65 100 125
TEMPERATURE (°C)
Figure 4. ADR391 Output Voltage vs. Temperature
4.100
4.098 SAMPLE 3
4.096
(V)
4.094
OUT
SAMPLE 1
V
4.092
4.090
4.088
–40 0 40 80 125
SAMPLE 2
TEMPERATURE (°C)
Figure 5. ADR392 Output Voltage vs. Temperature
00419-D-004
00419-D-005
40
2.5 15.05.0
7.5 10.0 12.5
INPUT VOLTAGE (V)
Figure 7. ADR390 Supply Current vs. Input Voltage
140
120
A)
µ
100
80
SUPPLY CURRENT (
60
40
2.5 15.05.0
+85°C
+25
°
C
7.5 10.0 12.5
INPUT VOLTAGE (V)
Figure 8. ADR391 Supply Current vs. Input Voltage
–40
00419-D-007
°
C
00419-D-008
Rev. E | Page 9 of 20
ADR390/ADR391/ADR392/ADR395
140
120
+125°C
180
IL= 0mA TO 5mA
160
100
80
SUPPLY CURRENT (µA)
60
40
57911 15
INPUT VOLTAGE(V)
+25°C
–40°C
13
Figure 9. ADR392 Supply Current vs. Input Voltage
140
120
100
80
SUPPLY CURRENT (µA)
60
40
5.5 7.0 8.5 10.0 14.5
+125°C
+25°C
–40°C
11.5
INPUT VOLTAGE (V)
13.0
Figure 10. ADR395 Supply Current vs. Input Voltage
120
IL= 0mA TO 5mA
100
80
60
VIN = 3.0V
40
VIN = 5.0V
00419-D-009
00419-D-010
140
VIN = 3.0V
120
LOAD REGULATION (ppm/mA)
100
80
–40 –10
20 TEMPERATURE (
50 80 110 125
VIN = 5.0V
°C)
Figure 12. ADR391 Load Regulation vs. Temperature
90
IL= 0mA TO 5mA
80
VIN = 7.5V
70
60
LOAD REGULATION (ppm/mA)
50
40
–40 –5 30 65 125
TEMPERATURE (
100
°C)
Figure 13. ADR392 Load Regulation vs. Temperature
80
IL= 0mA TO 5mA
70
60
50
V
= 7.5V
IN
VIN = 5V
V
= 5V
IN
00419-D-012
00419-D-013
LOAD REGULATION (ppm/mA)
20
0
–40 –10
20 50 80 125
TEMPERATURE (
°C)
Figure 11. ADR390 Load Regulation vs. Temperature
110
00419-D-011
Rev. E | Page 10 of 20
LOAD REGULATION (ppm/mA)
40
30
–40 –5 30 65 125
TEMPERATURE (°C)
100
Figure 14. ADR395 Load Regulation vs. Temperature
00419-D-014
ADR390/ADR391/ADR392/ADR395
25
14
20
15
10
LINE REGULATION (ppm/V)
5
0
40
10
20 80 110 125
TEMPERATURE (°C)
50
Figure 15. ADR390 Line Regulation vs. Temperature
25
20
15
10
LINE REGULATION (ppm/V)
5
00419-D-015
12
10
8
6
4
LINE REGULATION (ppm/V)
2
0 –40–53065 125
VIN = 5.3V TO 15V
TEMPERATURE (°
100
C)
Figure 18. ADR395 Line Regulation vs. Temperature
3.0
+125°
2.8
2.6
2.4
VIN_MIN (V)
+85°
C
2.2
+25°
–40°
C
C
C
00419-D-018
0
40
10
20 80 110 125
TEMPERATURE (°C)
50
Figure 16. ADR391 Line Regulation vs. Temperature
14
12
10
8
6
4
LINE REGULATION (ppm/V)
2
0
40–53065 125
VIN = 4.4V TO 15V
TEMPERATURE (°
100
00419-D-017
C)
Figure 17. ADR392 Line Regulation vs. Temperature
00419-D-016
2.0 01
234
LOAD CURRENT (mA)
Figure 19. ADR390 Minimum Input Voltage vs. Load Current
3.6
3.4
3.2
3.0
VIN_MIN (V)
2.8
2.6 01
2345
LOAD CURRENT (mA)
+125
+85
Figure 20. ADR391 Minimum Input Voltage vs. Load Current
+25
–40
00419-D-019
5
°
C
°
C
°
C
°
C
00419-D-020
Rev. E | Page 11 of 20
ADR390/ADR391/ADR392/ADR395
4.8
°
C
4.6
4.4
4.2
VIN_MIN (V)
4.0
+125
+25°C
–40
°
C
70
TEMPERATURE: +25°C
60
50
40
30
FREQUENCY
20
10
–40
°C
+125
°C +25°C
3.8 0123 5
LOAD CURRENT (mA)
4
Figure 21. ADR392 Minimum Input Voltage vs. Load Current
6.0
5.8
°
C
5.6
5.4
5.2
VIN_MIN (V)
5.0
4.8
4.6 0123 5
LOAD CURRENT (mA)
+125
+25
–40
°
C
°
C
4
Figure 22. ADR395 Minimum Input Voltage vs. Load Current
60
TEMPERATURE: +25
50
40
30
FREQUENCY
20
10
0
–0.18 –0.06
–0.24
Figure 23. ADR390 V
–0.12
V
–40°C
°C
0 0.06 0.18
DEVIATION (mV)
OUT
Hysteresis Distribution
OUT
+125°C +25°C
0.12 0.24
0.30
00419-D-021
00419-D-022
00419-D-023
0
–0.41 –0.11
–0.56 –0.26
Figure 24. ADR391 V
1k
VIN = 5V
VOLTAGE NOISE DENSITY (nV/ Hz)
100
10 10k100
V
DEVIATION (mV)
OUT
OUT
ADR391
ADR390
FREQUENCY(Hz)
0.04 0.19
Hysteresis Distribution
1k
Figure 25. Voltage Noise Density vs. Frequency
0
0
0
0
V/DIV)
µ
0
0
VOLTAGE (2
0
0
0
TIME (1 Sec/DIV)
Figure 26. ADR391 Typical Voltage Noise 0.1 Hz to 10 Hz
0.34
00419-D-024
00419-D-025
00419-D-026
Rev. E | Page 12 of 20
ADR390/ADR391/ADR392/ADR395
CL = 0nF
00419-D-030
CL = 1nF
VOLTAGE (100µV/DIV)
TIME (10µs/DIV)
Figure 27. ADR391 Voltage Noise 10 Hz to 10 kHz
C
BYPASS
= 0µF
V
OUT
V
ON
LOAD
VOLTAGE (1V/DIV)
TIME (200
LOAD OFF
µs/DIV)
Figure 30. ADR391 Load Transient Response
V
OUT
LINE INTERRUPTION
VOLTAGE
V
OUT
TIME (10µs/DIV)
Figure 28. ADR391 Line Transient Response
LINE INTERRUPTION
VOLTAGE
V
OUT
C
BYPASS
0.5V/DIV
1V/DIV
0.5V/DIV
1V/DIV
= 0.1
LOAD OFF
VOLTAGE (1V/DIV)
V
ON
LOAD
00419-D-028
TIME (200
µ
s/DIV)
00419-D-031
Figure 31. ADR391 Load Transient Response
µF
V
OUT
LOAD OFF
V
LOAD
ON
VOLTAGE (1V/DIV)
CL = 100nF
TIME (10
µs/DIV)
Figure 29. ADR391 Line Transient Response
00419-D-029
Rev. E | Page 13 of 20
TIME (200
µs/DIV)
Figure 32. ADR391 Load Transient Response
00419-D-032
ADR390/ADR391/ADR392/ADR395
VIN= 15V
RL= 500
5V/DIV
V
IN
VOLTAGE
V
OUT
2V/DIV
TIME (20µs/DIV)
Figure 33. ADR391 Turn-On Response Time at 15 V
VIN= 15V
VOLTAGE
V
V
IN
OUT
5V/DIV
2V/DIV
00419-D-033
V
VOLTAGE
OUT
V
IN
2V/DIV
5V/DIV
TIME (200µs/DIV)
Figure 36. ADR391 Turn-On/Turn-Off Response at 5 V
RL= 500
CL= 100nF
V
OUT
VOLTAGE (5V/DIV)
V
IN
2V/DIV
5V/DIV
00419-D-036
TIME (40µs/DIV)
Figure 34. ADR391 Turn-Off Response at 15 V
C
= 0.1µF
BYPASS
V
OUT
VOLTAGE
V
IN
2V/DIV
5V/DIV
TIME (200
µ
s/DIV)
Figure 35. ADR391 Turn-On/Turn-Off Response at 5 V
00419-D-034
00419-D-035
TIME (200
µ
s/DIV)
Figure 37. ADR391 Turn-On/Turn-Off Response at 5 V
80
60
40
20
0
–20
–40
–60
RIPPLE REJECTION (dB)
–80
–100
–120
10 1M100
1k 10k 100k
FREQUENCY (Hz)
Figure 38. Ripple Rejection vs. Frequency
00419-D-037
00419-D-038
Rev. E | Page 14 of 20
ADR390/ADR391/ADR392/ADR395
100
90
80
)
70 60
50
40
30
OUTPUT IMPEDANCE (
20
10
0
10 1M100
CL = 1µF
1k 10k 100k
FREQUENCY (Hz)
CL = 0µF
CL = 0.1µF
00419-D-039
Figure 39. Output Impedance vs. Frequency
Rev. E | Page 15 of 20
ADR390/ADR391/ADR392/ADR395

THEORY OF OPERATION

Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR390/ADR391/ADR392/ADR395 are no exception. The uniqueness of these devices lies in the architecture. As shown in Figure 40, the ideal zero TC band gap voltage is referenced to the output, not to ground. Therefore, if noise exists on the ground line, it will be greatly attenuated on V The band gap cell consists of the PNP pair, Q51 and Q52, running at unequal current densities. The difference in V results in a voltage with a positive TC, which is amplified by a ratio of
R58
2 ×
R54
This PTAT voltage, combined with V
s of Q51 and Q52,
BE
produces a stable band gap voltage.
Reduction in the band gap curvature is performed by the ratio of the resistors R44 and R59, one of which is linearly temperature dependent. Precision laser trimming and other patented circuit techniques are used to further enhance the drift performance.
V
IN
Q1
R59 R44
V
OUT (FORCE)
V
OUT (SENSE)
.
OUT
BE

Device Power Dissipation Considerations

The ADR390/ADR391/ADR392/ADR395 are capable of delivering load currents to 5 mA with an input voltage that ranges from 2.8 V (ADR391 only) to 15 V. When these devices are used in applications with large input voltages, care should be taken to avoid exceeding the specified maximum power dissipation or junction temperature because it could result in premature device failure. The following formula should be used to calculate a device’s maximum junction temperature or dissipation:
TT
J
Pθ=
D
In this equation, T ambient temperatures, P
θ
is the device package thermal resistance.
JA
A
JA
and TA are, respectively, the junction and
J
is the device power dissipation, and
D

Shutdown Mode Operation

The ADR390/ADR391/ADR392/ADR395 include a shutdown feature that is TTL/CMOS level compatible. A Logic Low or a
SHDN
zero volt condition on the
pin is required to turn the devices off. During shutdown, the output of the reference becomes a high impedance state where its potential would then be determined by external circuitry. If the shutdown feature is
SHDN
not used, the
pin should be connected to VIN (Pin 2).
SHDN
R58
R54
Q51
R60
Figure 40. Simplified Schematic
R49
R53
Q52
R48
R61
GND
00419-D-040
Rev. E | Page 16 of 20
ADR390/ADR391/ADR392/ADR395

APPLICATIONS

BASIC VOLTAGE REFERENCE CONNECTION

The circuit shown in Figure 41 illustrates the basic configuration for the ADR39x family. Decoupling capacitors are not required for circuit stability. The ADR39x family is capable of driving capacitive loads from 0 µF to 10 µF. However, a 0.1 µF ceramic output capacitor is recommended to absorb and deliver the charge as required by a dynamic load.
SHUTDOWN
INPUT
C
*NOT REQUIRED
*
0.1µF
B
SHDN
V
IN
V
OUT(S)
Figure 41. Basic Configuration for the ADR39x Family
ADR39x
V
OUT(F)
GND
OUTPUT
*
0.1µF
C
B
00419-D-041

Stacking Reference ICs for Arbitrary Outputs

Some applications may require two reference voltage sources, which are a combined sum of standard outputs. Figure 42 shows how this “stacked output” reference can be implemented.
OUTPUTTABLE
U1/U2
ADR390/ADR390 ADR391/ADR391 ADR392/ADR392 ADR395/ADR395
V
IN
1
C2
0.1
µ
F
1
C2
0.1
µ
F
SHDN
SHDN
V
OUT1
2.048
2.5
4.096 5
2
V
GND
5
2
V
GND
5
IN
IN
(V)
U2
V
OUT(F)
V
OUT(S)
U1
V
OUT(F)
V
OUT(S)
V
OUT2
4.096
5.0
8.192 10
(V)
4
3
4 3
V
V
OUT2
OUT1
Two reference ICs are used, fed from an unregulated input, V
.
IN
The outputs of the individual ICs are simply connected in series, which provides two output voltages, V
is the terminal voltage of U1, while V
V
OUT1
and V
OUT1
is the sum of
OUT2
OUT2
.
this voltage and the terminal voltage of U2. U1 and U2 are simply chosen for the two voltages that supply the required outputs (see the Output Table in Figure 42). For example, if both U1 and U2 are ADR391s, V
is 2.5 V and V
OUT1
OUT2
is 5.0 V.
While this concept is simple, a precaution is in order. Since the lower reference circuit must sink a small bias current from U2 plus the base current from the series PNP output transistor in U2, either the external load of U1 or R1 must provide a path for this current. If the U1 minimum load is not well defined, the R1 resistor should be used and set to a value that will conservatively pass 600 µA of current with the applicable V
across it. Note
OUT1
that the two U1 and U2 reference circuits are treated locally as macrocells; each has its own bypasses at input and output for best stability. Both U1 and U2 in this circuit can source dc currents up to their full rating. The minimum input voltage, V is determined by the sum of the outputs, V
, plus the dropout
OUT2
IN
voltage of U2.

A Negative Precision Reference without Precision Resistors

A negative reference can be easily generated by adding an op amp, A1, and is configured as shown in Figure 43. V
are at virtual ground and, therefore, the negative reference
V
OUTS
OUTF
and
can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output.
+V
DD
2
V
V
OUT(F)
V
OUT(S)
GND
5
IN
SHDN
1
–V
REF
4
3
A1
,
00419-D-042
Figure 42. Stacking Voltage References with the
ADR390/ADR391/ADR392/ADR395
–V
DD
Figure 43. Negative Reference
00419-D-043
Rev. E | Page 17 of 20
ADR390/ADR391/ADR392/ADR395

General-Purpose Current Source

Many times in low power applications, the need arises for a precision current source that can operate on low supply voltages. ADR390/ADR391/ADR392/ADR395 can be configured as a precision current source. As shown in Figure 45, the circuit configuration is a floating current source with a grounded load. The reference’s output voltage is bootstrapped across R this configuration, circuit precision is maintained for load currents in the range from the reference’s supply current, typically 90 µA to approximately 5 mA.

High Power Performance with Current Limit

In some cases, the user may want higher output current delivered to a load and still achieve better than 0.5% accuracy out of the ADR39x. The accuracy for a reference is normally specified on the data sheet with no load. However, the output voltage changes with load current.
The circuit in Figure 45 provides high current without compromising the accuracy of the ADR39x. The series pass transistor Q1 provides up to 1 A load current. The ADR39x delivers only the base drive to Q1 through the force pin. The sense pin of the ADR39x is a regulated output and is connected to the load.
, which sets the output current into the load. With
SET
V
IN
SHDN
V
OUT
ADR39x
V
V
OUT
IN
GND
(I
I
SY
SET
0.1µF
ADJUST
)
I
SET
R1
R1
R
= I
SET
P1
+ ISY(I
SET
SET
I
SY
I
OUT
R
L
Figure 44. A General-Purpose Current Source
)
00419-D-044
The transistor Q2 protects Q1 during short-circuit limit faults by robbing its base drive. The maximum current is
0.6 V/RS
I
LMAX
R1
4.7k
V
IN
U1
SHDN V
IN
V
OUT (FORCE)
V
OUT (SENSE)
ADR39x
GND
Q2N2222
Q2
R
R
Q1
Q2N4921
S
L
I
L
00419-D-045
Figure 45. ADR39x for High Power Performance with Current Limit
A similar circuit function can also be achieved with the Darlington transistor configuration, as shown in see Figure 46.
R1
4.7k
SHDN
V
IN
V
OUT (FORCE)
V
OUT (SENSE)
ADR39x
U1
GND
Q2N2222
Q1
Q2
Q2N4921
R
S
R
L
V
IN
Figure 46. ADR39x for High Output Current
with Darlington Drive Configuration
00419-D-046
Rev. E | Page 18 of 20
ADR390/ADR391/ADR392/ADR395

OUTLINE DIMENSIONS

2.90 BSC
45
0.50
0.30
2.80 BSC
0.95 BSC
1.00 MAX
SEATING PLANE
(UJ-5)
0.20
0.08
8° 4°
0.60
0.45
0.30
1.60 BSC
13
2
PIN 1
0.90
0.87
0.84
0.10 MAX
Figure 47. 5-Lead Thin Small Outline Transistor Package [TSOT ]
1.90 BSC
COMPLIANT TO JEDEC STANDARDS MO-193AB
Dimensions shown in millimeters

ORDERING GUIDE

Models
ADR390AUJZ-REEL71 2.048 6 0.29 25 TSOT UJ-5 R0A 3,000 –40°C to +125°C ADR390AUJZ-R21 2.048 6 0.29 25 TSOT UJ-5 R0A 250 –40°C to +125°C ADR390BUJZ-REEL71 2.048 4 0.19 9 TSOT UJ-5 R0B 3,000 –40°C to +125°C ADR390BUJZ-R21 2.048 4 0.19 9 TSOT UJ-5 R0B 250 –40°C to +125°C ADR391AUJZ-REEL71 2.5 6 0.24 25 TSOT UJ-5 R1A 3,000 –40°C to +125°C ADR391AUJZ-R21 2.5 6 0.24 25 TSOT UJ-5 R1A 250 –40°C to +125°C ADR391BUJZ-REEL71 2.5 4 0.16 9 TSOT UJ-5 R1B 3,000 –40°C to +125°C ADR391BUJZ-R21 2.5 4 0.16 9 TSOT UJ-5 R1B 250 –40°C to +125°C ADR392AUJZ-REEL71 4.096 6 0.15 25 TSOT UJ-5 RCA 3,000 –40°C to +125°C ADR392AUJZ-R21 4.096 6 0.15 25 TSOT UJ-5 RCA 250 –40°C to +125°C ADR392BUJZ-REEL71 4.096 5 0.12 9 TSOT UJ-5 RCB 3,000 –40°C to +125°C ADR392BUJZ-R21 4.096 5 0.12 9 TSOT UJ-5 RCB 250 –40°C to +125°C ADR395AUJZ-REEL71 5.0 6 0.12 25 TSOT UJ-5 RDA 3,000 –40°C to +125°C ADR395AUJZ-R21 5.0 6 0.12 25 TSOT UJ-5 RDA 250 –40°C to +125°C ADR395BUJZ-REEL71 5.0 5 0.10 9 TSOT UJ-5 RDB 3,000 –40°C to +125°C ADR395BUJZ-R21 5.0 5 0.10 9 TSOT UJ-5 RDB 250 –40°C to +125°C
1
Z = Pb-free part.
Output Voltage (V
)
O
Initial Accuracy (mV) (%)
Temperature Coefficient (ppm/°C)
Package Description
Package Option
Branding
Number of Parts per Reel
Temperature Range
Rev. E | Page 19 of 20
ADR390/ADR391/ADR392/ADR395
NOTES
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.
C00419–0 –4/04(E)
Rev. E | Page 20 of 20
Loading...