ANALOG DEVICES ADAU1966 Service Manual

16-Channel High Performance
Differential Output, 192 kHz, 24-Bit DAC

FEATURES

118 dB DAC dynamic range and SNR
−98 dB THD + N Differential voltage DAC output
2.5 V digital and 3.3 V or 5 V analog and IO supplies 299 mW total (19 mW/channel) quiescent power at AVDD = 3.3 V PLL generated or direct MCLK master clock Low EMI design Linear regulator driver to generate digital supply Supports 24-bit and 32 kHz to 192 kHz sample rates Low propagation 192 kHz sample rate mode Log volume control with autoramp function Temperature sensor with digital readout ±3°C accuracy SPI and I Software-controllable clickless mute Software power-down Right-justified, left-justified, I Master and slave modes with up to 16-channel input/output 80-lead LQFP package Qualified for automotive applications

APPLICATIONS

Automotive audio systems Home theater systems Digital audio effects processors
2
C controllable for flexibility
2
S, and TDM modes
ADAU1966

GENERAL DESCRIPTION

The ADAU1966 is a high performance, single-chip DAC that provides 16 digital-to-analog converters (DACs) with differen­tial output using the Analog Devices, Inc., patented multibit sigma-delta (Σ-Δ) architecture. An SPI/I allowing a microcontroller to adjust volume and many other parameters. The ADAU1966 operates from 2.5 V digital and
3.3 V or 5 V analog supplies. A linear regulator is included to generate the digital supply voltage from the analog supply volt­age. The ADAU1966 is available in an 80-lead LQFP package.
The ADAU1966 is designed for low EMI. This consideration is apparent in both the system and circuit design architectures. By using the on-board PLL to derive the internal master clock from an external LRCLK, the ADAU1966 can eliminate the need for a separate high frequency master clock and can be used with or without a bit clock. The DACs are designed using the latest Analog Devices continuous time architectures to further minimize EMI. By using 2.5 V digital supplies, power consumption is minimized, and the digital waveforms are a smaller amplitude, further reducing emissions.
2
C port is included,

FUNCTIONAL BLOCK DIAGRAM

DIGIT AL AUDIO
ADAU1966
DAC
DAC
DAC
DIFFERENTIAL
ANALOG
AUDIO
OUTPUTS
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Anal og Devices for its use, nor for any infringements of patents or ot her rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
DAC
DAC
DAC
DAC
DAC
PRECISION
VOLTAGE
REFERENCE
DIGIT AL
FILTER
AND
VOLUME
CONTROL
SERIAL DAT A PORT
SDATA
IN
TIMING MANAGEMENT
AND CONTROL
(CLOCK AND PL L)
CONTROL PORT
CONTROL DATA
INPUT/OUTPUT
INPUT
CLOCKS
SPI/I2C
Figure 1.
DAC
SDATA
IN
DIGIT AL
FILTER
AND
VOLUME
CONTROL
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2011 Analog Devices, Inc. All rights reserved.
DAC
DAC
DAC
DAC
DAC
DAC
DAC
INTERNAL
TEMP
SENSOR
DIFFERENTIAL ANALOG AUDIO OUTPUTS
09434-001
ADAU1966

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Analog Performance Specifications ........................................... 3
Crystal Oscillator Specifications................................................. 5
Digital Input/Output Specifications........................................... 6
Power Supply Specifications........................................................ 6
Digital Filters ................................................................................. 7
Timing Specifications .................................................................. 7
Absolute Maximum Ratings ............................................................ 9
Thermal Resistance ...................................................................... 9
ESD Caution .................................................................................. 9
Pin Configuration and Function Descriptions ........................... 10
Typical Performance Characteristics ........................................... 13
Application Circuits ....................................................................... 14
Theory of Operation ...................................................................... 15
Digital-to-Analog Converters (DACs) .................................... 15
Clock Signals ............................................................................... 15
Power-Up and
Standalone Mode ........................................................................ 17
I2C Control Port .......................................................................... 17
Serial Control Port: SPI Control Mode ................................... 19
Power Supply and Voltage Reference ....................................... 19
Serial Data Ports—Data Format ............................................... 19
Time-Division Multiplexed (TDM) Modes ............................ 19
Temperature Sensor ................................................................... 20
Additional Modes ....................................................................... 22
Register Summary .......................................................................... 23
Register Details ............................................................................... 24
PLL and Clock Control 0 Register ........................................... 24
PLL and Clock Control 1 Register ........................................... 25
RST
..................................................................... 16
Block Power-Down and Thermal Sensor Control 1 Register26
Power-Down Control 2 Register .............................................. 27
Power-Down Control 3 Register .............................................. 28
Thermal Sensor Temperature Readout Register .................... 29
DAC Control 0 Register ............................................................ 30
DAC Control 1 Register ............................................................ 31
DAC Control 2 Register ............................................................ 32
DAC Individual Channel Mutes 1 Register ............................ 33
DAC Individual Channel Mutes 2 Register ............................ 34
Master Volume Control Register .............................................. 35
DAC 1 Volume Control Register .............................................. 35
DAC 2 Volume Control Register .............................................. 36
DAC 3 Volume Control Register .............................................. 36
DAC 4 Volume Control Register .............................................. 37
DAC 5 Volume Control Register .............................................. 37
DAC 6 Volume Control Register .............................................. 38
DAC 7 Volume Control Register .............................................. 38
DAC 8 Volume Control Register .............................................. 39
DAC 9 Volume Control Register .............................................. 39
DAC 10 Volume Control Register ............................................ 40
DAC 11 Volume Control Register ............................................ 40
DAC 12 Volume Control Register ............................................ 41
DAC 13 Volume Control Register ............................................ 41
DAC 14 Volume Control Register ............................................ 42
DAC 15 Volume Control Register ............................................ 42
DAC 16 Volume Control Register ............................................ 43
Common-Mode and Pad Strength Register ........................... 43
DAC Power Adjust 1 Register ................................................... 44
DAC Power Adjust 2 Register ................................................... 45
DAC Power Adjust 3 Register ................................................... 46
DAC Power Adjust 4 Register ................................................... 47
Outline Dimensions ....................................................................... 51
Ordering Guide .......................................................................... 51
Automotive Products ................................................................. 51

REVISION HISTORY

9/11—Revision 0: Initial Version
Rev. 0 | Page 2 of 52
ADAU1966

SPECIFICATIONS

Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications. Master clock = 12.288 MHz (48 kHz f width = 24 bits, load capacitance (digital output) = 20 pF, load current (digital output) = ±1 mA or 1.5 kΩ to ½ DVDD supply, input voltage high = 2.0 V, input voltage low = 0.8 V, unless otherwise noted.

ANALOG PERFORMANCE SPECIFICATIONS

Specifications guaranteed at AVDDx = 5 V and an ambient temperature of 25°C. Supply voltages = AVDDx = 5 V, DVDD = 2.5 V, ambient temperature
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
DIGITAL-TO-ANALOG CONVERTERS
Dynamic Range 20 Hz to 20 kHz, −60 dB input
No Filter (RMS) 105 115.5 dB
With A-Weighted Filter (RMS) 108 118 dB Total Harmonic Distortion + Noise 0 dBFS −90 dB Two channels running, −1 dBFS −98 dB 16 channels running, −1 dBFS −98 −85 dB Full-Scale Differential Output Voltage AVDDx = 5.0 V 3.00 (±8.49) V rms (V p-p) Gain Error −10 +10 % Offset Error −25 −6 +25 mV Gain Drift −30 +30 ppm/°C Interchannel Isolation 100 dB Interchannel Phase Deviation 0 Degrees Volume Control Step 0.375 dB Volume Control Range 95.25 dB De-emphasis Gain Error ±0.6 dB Output Resistance at Each Pin 100 Ω
REFERENCE VOLTAGES
Temperature Sensor Reference Voltage TS_REF pin, AVDDx = 5.0 V 1.50 V Common-Mode Reference Output CM pin, AVDDx = 5.0 V 2.14 2.25 2.29 V External Reference Voltage Source CM pin, AVDDx = 5.0 V 2.25 V
TEMPERATURE SENSOR
Temperature Accuracy −3 +3 °C Temperature Readout Range −60 +140 °C Temperature Readout Step Size 1 °C Temperature Sample Rate 0.25 6 Hz
REGULATOR
Input Supply Voltage VSUPPLY pin 3.0 5 5.5 V Regulated Output Voltage VSENSE pin 2.26 2.50 2.59 V
1
Functionally guaranteed at −40°C to +125°C case temperature.
1
(TA) = 25°C, unless otherwise noted.
, 256 × fS mode), input sample rate = 48 kHz, measurement bandwidth = 20 Hz to 20 kHz, word
S
Rev. 0 | Page 3 of 52
ADAU1966
Specifications guaranteed at AVDDx = 5 V and an ambient temperature of 105°C. Supply voltages = AVDDx = 5 V, DVDD = 2.5 V, ambient temperature
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
DIGITAL-TO-ANALOG CONVERTERS
Dynamic Range 20 Hz to 20 kHz, −60 dB input
No Filter (RMS) 109 113.5 dB
With A-Weighted Filter (RMS) 110.5 116 dB Total Harmonic Distortion + Noise 0 dBFS −85 dB Two channels running −92.5 dB Eight channels running −92.5 −85 dB Full-Scale Differential Output Voltage AVDDx = 5.0 V 3.00 (±8.49) V rms (V p-p) Gain Error −10 +10 % Offset Error −25 −6 +25 mV Gain Drift −30 +30 ppm/°C Interchannel Isolation 100 dB Interchannel Phase Deviation 0 Degrees Volume Control Step 0.375 dB Volume Control Range 95.25 dB De-emphasis Gain Error ±0.6 dB Output Resistance at Each Pin 100 Ω
REFERENCE
Temperature Sensor Reference Voltage TS_REF pin, AVDDx = 5.0 V 1.50 V Common-Mode Reference Output CM pin, AVDDx = 5.0 V 2.14 2.25 2.29 V External Reference Voltage Source CM pin, AVDDx = 5.0 V 2.25 V
REGULATOR
Input Supply Voltage VSUPPLY pin 3.0 5 5.5 V Regulated Output Voltage VSENSE pin 2.25 2.50 2.55 V
1
Functionally guaranteed at −40°C to +125°C case temperature.
Specifications guaranteed at AVDDx = 3.3 V and an ambient temperature of 25°C. Supply voltages = AVDDx = 3.3 V, DVDD = 2.5 V, ambient temperature
1
(TA) = 105°C, unless otherwise noted.
1
(TA) = 25°C, unless otherwise noted.
Table 3.
Parameter Test Conditions/Comments Min Typ Max Unit
DIGITAL-TO-ANALOG CONVERTERS
Dynamic Range 20 Hz to 20 kHz, −60 dB input
No Filter (RMS) 109 111 dB
With A-Weighted Filter (RMS) 111.5 113.5 dB Total Harmonic Distortion + Noise 0 dBFS −90 dB Two channels running −97 dB Eight channels running −97 −85 dB Full-Scale Differential Output Voltage AVDDx = 3.3 V 2.00 (±5.66) V rms (V p-p) Gain Error −10 +10 % Offset Error −25 −6 +25 mV Gain Drift −30 +30 ppm/°C Interchannel Isolation 100 dB Interchannel Phase Deviation 0 Degrees Volume Control Step 0.375 dB Volume Control Range 95.25 dB De-Emphasis Gain Error ±0.6 dB Output Resistance at Each Pin 100 Ω
Rev. 0 | Page 4 of 52
ADAU1966
Parameter Test Conditions/Comments Min Typ Max Unit
REFERENCE
Temperature Sensor Reference Voltage TS_REF pin, AVDDx = 3.3 V 1.50 V Common-Mode Reference Output CM pin, AVDDx = 3.3 V 1.43 1.50 1.56 V External Reference Voltage Source CM pin, AVDDx = 3.3 V 1.50 V
REGULATOR
Input Supply Voltage VSUPPLY pin 3.0 5 5.5 V Regulated Output Voltage VSENSE pin 2.26 2.50 2.59 V
1
Functionally guaranteed at −40°C to +125°C case temperature.
Specifications guaranteed at AVDDx = 3.3 V and an ambient temperature of 105°C. Supply voltages = AVDDx = 3.3 V, DVDD = 2.5 V,
ambient temperature
Table 4.
Parameter Conditions/Comments Min Typ Max Unit
DIGITAL-TO-ANALOG CONVERTERS
Dynamic Range 20 Hz to 20 kHz, −60 dB input
No Filter (RMS) 108 109 dB
With A-Weighted Filter (RMS) 110 112 dB Total Harmonic Distortion + Noise 0 dBFS −85 dB Two channels running −92 dB Eight channels running −92 −83 dB Full-Scale Differential Output Voltage AVDDx = 3.3 V 2.00 (5.66) V rms (V p-p) Gain Error −10 +10 % Offset Error −25 −6 +25 mV Gain Drift −30 +30 ppm/°C Interchannel Isolation 100 dB Interchannel Phase Deviation 0 Degrees Volume Control Step 0.375 dB Volume Control Range 95.25 dB De-emphasis Gain Error ±0.6 dB Output Resistance at Each Pin 100 Ω
REFERENCE
Temperature Sensor Reference Voltage TS_REF pin, AVDDx = 3.3 V 1.50 V Common-Mode Reference Output CM pin, AVDDx = 3.3 V 1.43 1.50 1.56 V External Reference Voltage Source CM pin, AVDDx = 3.3 V 1.50 V
REGULATOR
Input Supply Voltage VSUPPLY pin 3.0 5 5.5 V Regulated Output Voltage VSENSE pin 2.25 2.50 2.55 V
1
Functionally guaranteed at −40°C to +125°C case temperature.
1
(TA) = 105°C, unless otherwise noted.

CRYSTAL OSCILLATOR SPECIFICATIONS

Table 5.
Parameter Min Typ Max Unit
Transconductance, TA = 25°C 6.4 7 to 10 14 mmhos Transconductance, TA = 105°C 5.2 7.5 to 8.5 12 mmhos
Rev. 0 | Page 5 of 52
ADAU1966

DIGITAL INPUT/OUTPUT SPECIFICATIONS

−40°C < TA < +105°C, IOVDD = 5.0 V and 3.3 V ± 10%.
Table 6.
Parameter Test Conditions/Comments Min Typ Max Unit
High Level Input Voltage (VIH) IOVDD = 5.0 V 3.7 V IOVDD = 3.3 V 2.5 V Low Level Input Voltage (VIL) IOVDD = 5.0 V 1.3 V IOVDD = 3.3 V 0.8 V Input Leakage IIH at VIH = 2.4 V 10 μA I High Level Output Voltage (VOH) IOH = 1 mA IOVDD − 0.60 V Low Level Output Voltage (VOL) IOL = 1 mA 0.4 V Input Capacitance 5 pF

POWER SUPPLY SPECIFICATIONS

Table 7.
Parameter Test Conditions/Comments Min Typ Max Unit
SUPPLIES
Voltage AVDD 3.0 5.0 5.5 V DVDD 2.25 2.5 3.6 V PLLVDD 2.25 2.5 3.6 V IOVDD 3.0 5.0 5.5 V VSUPPLY 3.0 5.0 5.5 V Analog Current—AVDD = 5.0 V
Normal Operation 82 mA Power-Down 1 μA
Analog Current—AVDD = 3.3 V
Normal Operation 60 mA Power-Down 1 μA
Digital Current—DVDD = 2.5 V
Normal Operation fS = 48 kHz to 192 kHz 30 mA Power-Down No MCLK or I2S 4 μA
PLL Current—PLLVDD = 2.5 V
Normal Operation fS = 48 kHz to 192 kHz 5 mA Power-Down 1 μA
IO Current—IOVDD = 3.3 V
Normal Operation 4 mA Power-Down 1 μA
QUIESCENT DISSIPATION—DITHER INPUT
Operation MCLK = 256 × fS, 48 kHz
All Supplies AVDDx = 5.0 V, DVDD/PLLVDD = 2.5 V, IOVDD = 3.3 V 511 mW All Supplies AVDDx = 3.3 V, DVDD/PLLVDD = 2.5 V, IOVDD = 3.3 V 299 mW Analog Supply AVDDx = 5.0 V 410 mW Analog Supply AVDDx = 3.3 V 198 mW Digital Supply DVDD = 2.5 V 75 mW PLL Supply PLLVDD= 2.5 V 13 mW I/O Supply IOVDD = 3.3 V 13 mW
Power-Down, All Supplies 0 mW
POWER SUPPLY REJECTION RATIO
Signal at Analog Supply Pins 1 kHz, 200 mV p-p 85 dB
20 kHz, 200 mV p-p 85 dB
at VIL = 0.8 V 10 μA
IL
Rev. 0 | Page 6 of 52
ADAU1966

DIGITAL FILTERS

Table 8.
Parameter Mode Factor Min Typ Max Unit
DAC INTERPOLATION FILTER
Pass Band 48 kHz mode, typical at 48 kHz 0.4535 × fS 22 kHz 96 kHz mode, typical at 96 kHz 0.3646 × fS 35 kHz 192 kHz mode, typical at 192 kHz 0.3646 × fS 70 kHz Pass-Band Ripple 48 kHz mode, typical at 48 kHz ±0.01 dB 96 kHz mode, typical at 96 kHz ±0.05 dB 192 kHz mode, typical at 192 kHz ±0.1 dB Transition Band 48 kHz mode, typical at 48 kHz 0.5 × fS 24 kHz 96 kHz mode, typical at 96 kHz 0.5 × fS 48 kHz 192 kHz mode, typical at 192 kHz 0.5 × fS 96 kHz Stop Band 48 kHz mode, typical at 48 kHz 0.5465 × fS 26 kHz 96 kHz mode, typical at 96 kHz 0.6354 × fS 61 kHz 192 kHz mode, typical at 192 kHz 0.6354 × fS 122 kHz Stop-Band Attenuation 48 kHz mode, typical at 48 kHz 68 dB 96 kHz mode, typical at 96 kHz 68 dB 192 kHz mode, typical at 192 kHz 68 dB Propagation Delay 48 kHz mode, typical at 48 kHz 25/fS 521 μs
96 kHz mode, typical at 96 kHz 11/fS 115 μs 192 kHz mode, typical at 192 kHz 8/fS 42 μs 192 kHz low delay mode, typical at 192 kHz 2/fS 10 μs

TIMING SPECIFICATIONS

−40°C < TA < +105°C, DVDD = 2.5 V ± 10%.
Table 9.
Parameter Description Min Typ Max Unit
INPUT MASTER CLOCK (MCLK) AND RESET
tMH
tMH
MCLK duty cycle, DAC clock source = PLL clock at
, 384 × fS, 512 × fS, and 768 × fS
256 × f
S
DAC clock source = direct MCLK at 512 × f
(bypass
S
on-chip PLL)
f
MCLKI frequency, PLL mode 6.9 40.5 MHz
MCLK
f
Direct MCLK 512 × fS mode 27.1 MHz
MCLK
f
DBCLK frequency, PLL mode 27.0 MHz
BCLK
t
Low 15 ns
PDR
t
Recovery, reset to active output 300 ms
PDRR
PLL
Lock Time MCLK input 10 ms Lock Time DLRCLK input 50 ms 256 × fS VCO Clock, Output Duty Cycle, MCLKO Pin 40 60 %
SPI PORT See Figure 14
t
CCLK high 35 ns
CCH
t
CCLK low 35 ns
CCL
f
CCLK frequency, f
CCLK
t
CDATA setup, time to CCLK rising 10 ns
CDS
t
CDATA hold, time from CCLK rising 10 ns
CDH
t
CLS
t
CLH
t
CLHIGH
setup, time to CCLK rising
CLATCH
hold, time from CCLK falling
CLATCH
high, not shown in Figure 14
CLATCH
CCLK
= 1/t
CCP
; only t
shown in Figure 14 10 MHz
CCP
40 60 %
40 60 %
10 ns 10 ns 10 ns
Rev. 0 | Page 7 of 52
ADAU1966
Parameter Description Min Typ Max Unit
t
COUT enable from CCLK falling 30 ns
COE
t
COUT delay from CCLK falling 30 ns
COD
t
COUT hold from CCLK falling, not shown in Figure 14 30 ns
COH
t
COUT tristate from CCLK falling 30 ns
COTS
I2C See Figure 2 and Figure 13
f
SCL clock frequency 400 kHz
SCL
t
SCL low 1.3 μs
SCLL
t
SCL high 0.6 μs
SCLH
t
SCS
Setup time (start condition), relevant for repeated start condition
t
SCH
Hold time (start condition), first clock generated after this period
t
Setup time (stop condition) 0.6 μs
SSH
tDS Data setup time 100 ns tSR SDA and SCL rise time 300 ns tSF SDA and SCL fall time 300 ns t
Bus-free time between stop and start 1.3 μs
BFT
DAC SERIAL PORT See Figure 16
t
DBCLK high, slave mode 10 ns
DBH
t
DBCLK low, slave mode 10 ns
DBL
t
DLRCLK setup, time to DBCLK rising, slave mode 10 ns
DLS
t
DLRCLK hold from DBCLK rising, slave mode 5 ns
DLH
t
DLRCLK skew from DBCLK falling, master mode −8 +8 ns
DLS
t
DSDATAx setup to DBCLK rising 10 ns
DDS
t
DSDATAx hold from DBCLK rising 5 ns
DDH
t
t
SCLH
DS
t
SCH
SDA
t
SCH
t
SR
0.6 μs
0.6 μs
SCL
t
SCLL
t
SF
Figure 2. I
2
C Timing Diagram
Rev. 0 | Page 8 of 52
t
SCS
t
BFT
09434-002
ADAU1966

ABSOLUTE MAXIMUM RATINGS

Table 10.
Parameter Rating
Analog (AVDD) −0.3 V to +5.5 V I/O (IOVDD) −0.3 V to +5.5 V Digital (DVDD) −0.3 V to +3.6 V PLL (PLLVDD) −0.3 V to +3.6 V VSUPPLY −0.3 V to +6.0 V Input Current (Except Supply Pins) ±20 mA Analog Input Voltage (Signal Pins) –0.3 V to AVDD + 0.3 V Digital Input Voltage (Signal Pins) −0.3 V to DVDD + 0.3 V Operating Temperature Range (Case) −40°C to +125°C Storage Temperature Range −65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA represents junction-to-ambient thermal resistance; θ sents the junction-to-case thermal resistance. All characteristics are for a 4-layer board with a solid ground plane.
Table 11. Thermal Resistance
Package Type θ
80-Lead LQFP 42.3 10.0 °C/W
JA
θ
JC
JC
Unit
repre-

ESD CAUTION

Rev. 0 | Page 9 of 52
ADAU1966

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

AGND3
DAC12N
DAC12P
DAC11N
DAC11P
DAC10N
DAC10P
DAC9N
DAC9P
DAC8N
DAC8P
DAC7N
DAC7P
DAC6N
DAC6P
DAC5N
DAC5P
TS_REFCMAGND2
6162636465666768697071727374757677787980
DAC_BIAS3
DAC_BIAS4
AVDD3
DAC13P
DAC13N
DAC14P
DAC14N
DAC15P
DAC15N
DAC16P
DAC16N
AVDD4
AGND4
PLLGND
PLLVDD
MCLKI/XTALI
XTALO
MCLKO
DVDD
1
PIN 1 INDICATOR
2
3
4
5
6
7
8
9
10
11
12
13
14
15
LF
16
17
18
19
20
ADAU1966
TOP VIEW
(Not to Scale)
60
DAC_BIAS2
59
DAC_BIAS1
58
AVDD2
57
DAC4N
56
DAC4P
55
DAC3N
54
DAC3P
53
DAC2N
52
DAC2P
51
DAC1N
50
DAC1P
49
AVDD1
48
AGND1
47
PU/RST
46
SA_MODE
45
CLATCH/ADDR0/ SA*
44
CCLK/SCL/SA*
43
COUT/SDA/ SA*
42
CDATA/ADDR1/SA*
41
DVDD
4039383736353433323130292827262524232221
DGND
IOVDD
VDRIVE
VSENSE
VSUPPLY
*SEE TABLE 15 FOR SA_MODE SETTINGS.
DGND
DVDD
DBCLK
DGND
DLRCLK
DSDATA6
DSDATA5
DSDATA4
DSDATA3
DSDATA2
DSDATA8/SA*
DSDATA7/SA*
DGND
IOVDD
DSDATA1
Figure 3. Pin Configuration
Table 12. Pin Function Descriptions
Pin No. Type1 Mnemonic Description
1 I DAC_BIAS3 DAC Bias 3. AC couple with 470 nF to AGND3. 2 I DAC_BIAS4 DAC Bias 4. AC couple with 470 nF to AVDD3. 3 PWR AVDD3 Analog Power. 4 O DAC13P DAC13 Positive Output. 5 O DAC13N DAC13 Negative Output. 6 O DAC14P DAC14 Positive Output. 7 O DAC14N DAC14 Negative Output. 8 O DAC15P DAC15 Positive Output. 9 O DAC15N DAC15 Negative Output. 10 O DAC16P DAC16 Positive Output. 11 O DAC16N DAC16 Negative Output. 12 PWR AVDD4 Analog Power. 13 GND AGND4 Analog Ground. 14 GND PLLGND PLL Ground. 15 O LF PLL Loop Filter, Reference to PLLVDD. 16 PWR PLLVDD Apply 2.5 V to power PLL. 17 I MCLKI/XTALI Master Clock Input, Input to Crystal Inverter. 18 O XTALO Output from Crystal Inverter. 19 O MCLKO Master Clock Output. 20, 29, 41 PWR DVDD Digital Power, 2.5 V. 21, 26, 30, 40 GND DGND Digital Ground.
9434-003
Rev. 0 | Page 10 of 52
ADAU1966
Pin No. Type1 Mnemonic Description
22, 39 PWR IOVDD Power for Digital Input and Output Pins, 3.3 V to 5 V. 23 I VSENSE
24 O VDRIVE Drive for Base of Pass Transistor. 25 I VSUPPLY
27 I/O DBCLK Bit Clock for DACs. 28 I/O DLRCLK Frame Clock for DACs. 31 I DSDATA8/SA
32 I DSDATA7/SA
33 I DSDATA6 DAC11 and DAC 12 Serial Data Input. 34 I DSDATA5 DAC9 and DAC 10 Serial Data Input. 35 I DSDATA4 DAC7 and DAC 8 Serial Data Input. 36 I DSDATA3 DAC5 and DAC 6 Serial Data Input. 37 I DSDATA2 DAC3 and DAC 4 Serial Data Input. 38 I DSDATA1 DAC1 and DAC 2 Serial Data Input. 42 I CDATA/ADDR1/SA
43 I/O COUT/SDA/SA
44 I CCLK/SCL/SA
45 I
/ADDR0/SA Control Chip Select (SPI) (Low Active)/Address 0 (I2C)/SA_MODE State (see the
CLATCH
46 I SA_MODE
47 I
PU/RST 48 GND AGND1 Analog Ground. 49 PWR AVDD1 Analog Power. 50 O DAC1P DAC1 Positive Output. 51 O DAC1N DAC1 Negative Output. 52 O DAC2P DAC2 Positive Output. 53 O DAC2N DAC2 Negative Output. 54 O DAC3P DAC3 Positive Output. 55 O DAC3N DAC3 Negative Output. 56 O DAC4P DAC4 Positive Output. 57 O DAC4N DAC4 Negative Output. 58 PWR AVDD2 Analog Power. 59 I DAC_BIAS1 DAC Bias 1. AC couple with 470 nF to AVDD2. 60 I DAC_BIAS2 DAC Bias 2. AC couple with 470 nF to AGND2. 61 GND AGND2 Analog Ground. 62 O CM
63 O TS_REF
64 O DAC5P DAC5 Positive Output. 65 O DAC5N DAC5 Negative Output. 66 O DAC6P DAC6 Positive Output. 67 O DAC6N DAC6 Negative Output. 68 O DAC7P DAC7 Positive Output. 69 O DAC7N DAC7 Negative Output. 70 O DAC8P DAC8 Positive Output.
2.5 V Output of Regulator, Collector of Pass Transistor. Bypass with 10 μF in parallel with 100 nF.
5 V Input to Voltage Regulator, Emitter of Pass Transistor. Bypass with 10 μF in parallel with 100 nF.
DAC15 and DAC 16 Serial Data Input/SA_MODE TDM State (see the Standalone Mode section, Table 15, and Table 16).
DAC13 and DAC 14 Serial Data Input/SA_MODE TDM State (see the Standalone Mode section, Table 15, and Table 16).
2
Control Data Input (SPI)/Address 1 (I
C)/SA_MODE State (see the Standalone Mode
section and Table 15).
2
Control Data Output (SPI)/Control Data Input (I
C)/SA_MODE State (see the
Standalone Mode section and Tabl e 15).
2
Control Clock Input (SPI)/Control Clock Input (I
C)/SA_MODE State (see the Standalone
Mode section and Table 15).
Standalone Mode section and Tabl e 15). Standalone Mode. This pin allows mode control of ADAU1966 using Pin 42 to Pin 45,
Pin 31, and Pin 32 (high active, see Table 1 5 and Table 1 6). Power-Up/Reset (Low Active).
Common-Mode Reference Filter Capacitor Connection. Bypass with 10 μF in parallel with 100 nF to AGND2. This reference can be shut off in the PLL_CLK_CTRL1 register and the pin can be driven with an outside voltage source.
Voltage Reference Filter Capacitor Connection. Bypass with 10 μF in parallel with 100 nF to AGND2.
Rev. 0 | Page 11 of 52
ADAU1966
Pin No. Type1 Mnemonic Description
71 O DAC8N DAC8 Negative Output. 72 O DAC9P DAC9 Positive Output. 73 O DAC9N DAC9 Negative Output. 74 O DAC10P DAC10 Positive Output. 75 O DAC10N DAC10 Negative Output. 76 O DAC11P DAC11 Positive Output. 77 O DAC11N DAC11 Negative Output. 78 O DAC12P DAC12 Positive Output. 79 O DAC12N DAC12 Negative Output. 80 GND AGND3 Analog Ground.
1
I = input, O = output, I/O = input/output, PWR = power, GND = ground.
Rev. 0 | Page 12 of 52
ADAU1966

TYPICAL PERFORMANCE CHARACTERISTICS

0.05
0.04
0.03
0.02
0.01
0
–0.01
MAGNITUDE (dB)
–0.02
–0.03
–0.04
–0.05
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
FREQUENCY (FACTORED T O
Figure 4. DAC Pass-Band Filter Response, 48 kHz
0
–10
–20
–30
–40
–50
–60
MAGNITUDE (dB)
–70
–80
–90
–100
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FREQUENCY (FACTORED TO
Figure 5. DAC Stop-Band Filter Response, 48 kHz
f
)
S
f
)
S
09434-004
09434-005
0.20
0.15
0.10
0.05
0
–0.05
MAGNITUDE (dB)
–0.10
–0.15
–0.20
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
FREQUENCY (FACTORED T O
f
)
S
Figure 6. DAC Pass-Band Filter Response, 96 kHz
0
–10
–20
–30
–40
–50
–60
MAGNITUDE (dB)
–70
–80
–90
–100
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FREQUENCY (F ACTORED TO
f
S
Figure 7. DAC Stop-Band Filter Response, 96 kHz
)
09434-006
09434-007
Rev. 0 | Page 13 of 52
ADAU1966
F

APPLICATION CIRCUITS

Typical application circuits are shown in Figure 8 to Figure 11. Recommended loop filters for DLRCLK and MCLKI/XTALI modes of the PLL reference are shown in Figure 8. Output filters for the DAC outputs are shown in Figure 9 and Figure 10, and an external regulator circuit is shown in Figure 11.
DLRCLK
LF
39nF
2.2nF
3.32k
PLLVDD
PLLVDD
Figure 8. Recommended Loop Filters for DLRCLK or MCLKI/XTALI PLL Reference Modes
2.7nF
10µF
+
10µF
+
49.9k 49.9k
DACP OUTP
DACN OUTN
237
237
Figure 9. Typical DAC Output Passive Filter Circuit (Differential)
1.1n
MCLKI/XTALI
LF
5.6nF
562
390pF
09434-008
09434-009
AD8672ARZ
5
6
1nF 4.7µF
1nF 4.7µF
2
3
422
422
7
2.49k
2.49k
1
100
100
4.7µF +
4.7µF +
100k
100k
+
+
OUTPUT1P
OUTPUT1N
+12V DC
8
V+ V–
4
–12V DC
DAC1P
0.1µF
0.1µF
DAC1N
1.50k 1.54k
+
4.7µF
+
4.7µF
1.50k 1.54k
AD8672ARZ
1.1nF
09434-010
Figure 10. Typical DAC Output Active Filter Circuit (Differential)
100nF
VSUPPLY 5V
1k
VDRIVE
VSENSE 2.5V
100nF
10µF
+
E
B
FZT953
C
+
10µF
09434-011
Figure 11. Recommended 2.5 V Regulator Circuit
Rev. 0 | Page 14 of 52
ADAU1966

THEORY OF OPERATION

DIGITAL-TO-ANALOG CONVERTERS (DACS)

The 16 ADAU1966 digital-to-analog converter (DAC) channels are differential for improved noise and distortion performance and are voltage output for simplified connection. The DACs include on-chip digital interpolation filters with 68 dB stop-band attenuation and linear phase response, operating at an over­sampling ratio of 256× (48 kHz range), 128× (96 kHz range), or 64× (192 kHz range). Each channel has its own independently programmable attenuator, adjustable in 255 steps in increments of 0.375 dB. Digital inputs are supplied through eight serial data input pins (two channels on each pin), a common frame clock (DLRCLK), and a bit clock (DBCLK). Alternatively, any one of the TDM modes can be used to access up to 16 channels on a single TDM data line.
The ADAU1966 has a low propagation delay mode; this mode is an option for an f CTRL0[2:1]. By setting these bits to b11, the propagation delay is reduced by the amount shown in Ta bl e 8 . The shorter delay is achieved by reducing the amount of digital filtering; the nega­tive impact of selecting this mode is reduced audio frequency response and increased out-of-band energy.
When AVDD is supplied with 5 V, each analog output pin has a nominal common-mode (CM) dc level of 2.25 V and swings ±8.49 V p-p (3 V rms differential) from a 0 dBFS digital input signal. An AVDD of 3.3 V generates a CM dc voltage of 1.5 V and allows differential audio swings of ±5.66 V p-p (2 V rms) from a 0 dBFS digital input signal. The differential analog outputs require only a single-order passive differential RC filter to provide the specified DNR performance; see Figure 9 for an example filter. The outputs can easily drive differential inputs on a separate PCB through cabling as well as differential inputs on the same PCB.
If more signal level is required or if a more robust filter is needed, a single op amp gain stage designed as a second-order, low-pass Bessel filter can be used to remove the high frequency out-of­band noise present on each pin of the differential outputs. The choice of components and design of this circuit is critical to yield the full DNR of the DACs (see the recommended passive and active circuits in Figure 9 and Figure 10). This filter can be built into an active difference amplifier to provide a single-ended output with gain, if necessary. Note that the use of op amps with low slew rate or low bandwidth can cause high frequency noise and tones to fold down into the audio band; exercise care when selecting these components.
of 192 kHz and is enabled in Register DAC_
S
The ADAU1966 offers control over the analog performance of the DACs; it is possible to program the registers to reduce the power consumption with the trade-off of lower SNR and THD + N. The reduced power consumption is the result of changing the internal bias current to the analog output amplifiers.
Register DAC_POWER1 to Register DAC_POWER4 present four basic settings for the DAC power vs. performance in each of the 16 channels: best performance, good performance, low power, and lowest power. Alternatively, in Register PLL_CLK_ CTRL1[7:6], the LOPWR_MODE bits offer global control over the power and performance for all 16 channels. The default setting is b00. This setting allows the channels to be controlled individually using the DAC_POWERx registers. Setting b10 and Setting b11 select the low power and lowest power settings. The data presented in Tabl e 13 shows the result of setting all 16 channels to each of the four settings. The SNR and THD + N specifications are shown in relation to the measured perfor­mance of a device at the best performance setting.
The voltage at CM, the common-mode reference pin, can be used to bias the external op amps that buffer the output signals (see the Power Supply and Voltage Reference section).

CLOCK SIGNALS

Upon powering the ADAU1966 and asserting the PU/ high, the part starts in either standalone mode (SA_MODE) or program mode, depending on the state of SA_MODE (Pin 46). The clock functionality of SA_MODE is described in the Standalone Mode ADAU1966 is for the MCLKO pin to feed a buffered output of the MCLKI signal. The default for the DLRCLK and DBCLK ports is slave mode; the DAC must be driven with a coherent set of MCLK, LRCLK, and BCLK signals to function.
The MCLKO pin can be programmed to provide different clock signals using Register Bits PLL_CLK_CTRL1[5:4]. The default, b10, provides a buffered copy of the clock signal that is driving the MCLKI pin. Two modes, b00 and b01, provide low jitter clock signals. The b00 setting yields a clock rate between 4 MHz and 6 MHz, and b01 yields a clock rate between 8 MHz and 12 MHz. Both of these clock frequencies are scaled as ratios of MCLK automatically inside the ADAU1966. As an example, an MCLK of 8.192 MHz and a setting of b00 yield an MCLKO of (8.192/2) = 4.096 MHz. Alternatively, an MCLK of 36.864 MHz and a setting of b01 yield an MCLKO frequency of (36.864/3) =
12.288 MHz. The setting b11 shuts off the MCLKO pin.
section. In program mode, the default for the
RST
pin
Table 13. DAC Power vs. Performance
Register Setting Best Performance Good Performance Low Power Lowest Power
Total AVDD Current 82 mA 73 mA 64 mA 54 mA SNR Reference −0.2 dB −1.5 dB −14.2 dB THD + N (−1 dbFS signal) Reference −1.8 dB −3.0 dB −5.8 dB
Rev. 0 | Page 15 of 52
ADAU1966
After the PU/
RST
pin has been asserted high, the PLL_CLK_ CTRLx registers (0x00 and 0x01) can be programmed. The on-chip phase-locked loop (PLL) can be selected to use the clock appearing at the MCLKI/XTALI pin at a frequency of 256, 384, 512, or 768 times the sample rate (f
), referenced to
S
the 48 kHz mode from the master clock select (MCS) setting, as described in . In 96 kHz mode, the master clock fre-
Tabl e 14 quency stays at the same absolute frequency; therefore, the actual multiplication rate is divided by 2. In 192 kHz mode, the actual multiplication rate is divided by 4. For example, if the ADAU1966 is programmed in 256 × f
mode, the frequency
S
of the master clock input is 256 × 48 kHz = 12.288 MHz. If the ADAU1966 is then switched to 96 kHz operation (by writing to DAC_CTRL0 [2:1]), the frequency of the master clock should remain at 12.288 MHz, which is 128 × f 192 kHz mode, MCS becomes 64 × f
The internal clock for the digital core varies by mode: 512 × f (48 kHz mode), 256 × f
(96 kHz mode), or 128 × fS (192 kHz
S
in this example. In
S
.
S
S
mode). By default, the on-board PLL generates this internal master clock from an external clock.
The PLL should be powered and stable before the ADAU1966 is used as a source for quality audio. The PLL is enabled by reset and does not require writing to the I
2
C or SPI port for normal
operation.
With the PLL enabled, the performance of the ADAU1966 is not affected by jitter as high as a 300 ps rms time interval error (TIE). If the internal PLL is not used, it is best to use an independ­ent crystal oscillator to generate the master clock.
If the ADAU1966 is to be used in direct MCLK mode, the PLL can be powered down in the PDN_THRMSENS_CTRL_1 regis­ter. For direct MCLK mode, a 512 × f
(referenced to 48 kHz
S
mode) master clock must be used as MCLK, and the CLK_SEL bit in the PLL_CLK_CTRL1 register must be set to b1.
The ADAU1966 PLL can also be programmed to run from an external LRCLK. When the PLLIN bits in the PLL_CLK_CTRL0 register are set to 01 and the appropriate loop filter is connected to the LF pin (see Figure 8), the ADAU1966 PLL generates all of the necessary internal clocks for operation with no external MCLK. This mode reduces the number of high frequency signals in the design, reducing EMI emissions.
It is possible to further reduce EMI emissions of the circuit by using the internal DBCLK generation setting of the BCLK_GEN
bit in the DAC_CTRL1 register. With the BCLK_GEN bit set to b1 (internal) and the SAI_MS bit set to b0 (slave), the ADAU1966 generate its own DBCLK; this works with the PLL input set to either MCLKI/XTALI or DLRCLK. DLRCLK is the only required clock in DLRCLK PLL mode.
POWER-UP AND RST
Power sequencing for the ADAU1966 should start with AVDD and IOVDD, followed by DVDD. It is very important that AVDD be settled at a regulated voltage and that IOVDD be within 10% of regulated voltage before applying DVDD. When using the ADAU1966 internal regulator, this timing occurs by default.
To guarantee proper startup, the PU/ low by an external resistor and then driven high after the power supplies have stabilized. The PU/ using a simple RC network.
RST
Driving the PU/
pin low puts the part into a very low power
state (<3 μA). All functionality of the ADAU1966 is disabled
RST
until the PU/
pin is asserted high. Once this pin is asserted high, the ADAU1966 requires 300 ms to stabilize. The MMUTE bit in the DAC_CTRL0 register must be toggled for operation.
The PUP bit in the PLL_CLK_CTRL0 register can be used to power down the ADAU1966. Engaging the master power-down puts the ADAU1966 in an idle state while maintaining the set­tings of all registers. Additionally, the power-down bits in the PDN_THRMSENS_CTRL1 register (TS_PDN, PLL_PDN, and VREG_PDN) can be used to power down individual sections of the ADAU1966.
The SOFT_RST bit in the PLL_CLK_CTRL0 register sets all of the control registers to their default settings while maintaining the internal clocks in default mode. The SOFT_RST bit does not power down the analog outputs; toggling this bit does not cause audible popping sounds at the differential analog outputs.
Proper startup of the ADAU1966 should proceed as follows:
1. Apply power to the ADAU1966 as described previously.
2. Assert the PU/
RST
pin high after power supplies have
stabilized.
3. Set the PUP bit to b1.
4. Program all necessary registers for the desired settings.
5. Set the MMUTE bit to b0 to unmute all channels.
RST
pin should be pulled
RST
can also be pulled high
Rev. 0 | Page 16 of 52
Loading...
+ 36 hidden pages