ANALOG DEVICES ADAU1461 Service Manual

SigmaDSP Stereo, Low Power, 96 kHz,
J
24-Bit Audio Codec with Integrated PLL

FEATURES

SigmaDSP 28-/56-bit, 50 MIPS digital audio processor Fully programmable with SigmaStudio graphical tool 24-bit stereo audio ADC and DAC: >98 dB SNR Sampling rates from 8 kHz to 96 kHz Low power: 17 mW record, 18 mW playback, 48 kHz 6 analog input pins, configurable for single-ended or
differential inputs Flexible analog input/output mixers Stereo digital microphone input Analog outputs: 2 differential stereo, 2 single-ended stereo,
1 mono headphone output driver PLL supporting input clocks from 8 MHz to 27 MHz Analog automatic level control (ALC) Microphone bias reference voltage Analog and digital I/O: 3.3 V
2
I
C and SPI control interfaces
Digital audio serial data I/O: stereo and time-division
multiplexing (TDM) modes Software-controllable clickless mute GPIO pins for digital controls and outputs 32-lead, 5 mm × 5 mm LFCSP
−40°C to +105°C operating temperature range Qualified for automotive applications

APPLICATIONS

Automotive head units Automotive amplifiers Navigation systems Rear-seat entertainment systems

FUNCTIONAL BLOCK DIAGRAM

ADAU1461

GENERAL DESCRIPTION

The ADAU1461 is a low power, stereo audio codec with integrated digital audio processing that supports stereo 48 kHz record and playback at 35 mW from a 3.3 V analog supply. The stereo audio ADCs and DACs support sample rates from 8 kHz to 96 kHz as well as a digital volume control.
The SigmaDSP® core features 28-bit processing (56-bit double precision). The processor allows system designers to compensate for the real-world limitations of microphones, speakers, amplifiers, and listening environments, resulting in a dramatic improvement in the perceived audio quality through equalization, multiband compression, limiting, and third-party branded algorithms.
The SigmaStudio™ graphical development tool is used to program the ADAU1461. This software includes audio processing blocks such as filters, dynamics processors, mixers, and low level DSP functions for fast development of custom signal flows.
The record path includes an integrated microphone bias circuit and six inputs. The inputs can be mixed and muxed before the ADC, or they can be configured to bypass the ADC. The ADAU1461 includes a stereo digital microphone input.
The ADAU1461 includes five high power output drivers (two differential and three single-ended), supporting stereo head­phones, an earpiece, or other output transducer. AC-coupled or capless configurations are supported. Individual fine level controls are supported on all analog outputs. The output mixer stage allows for flexible routing of audio.
CM
IOVDD
DGND
ACKDET/MI CIN
LAUX
LINP
LINN
RINP
RINN
RAUX
MICBI AS
INPUT
MIXERS
ALC
MICRO PHONE
BIAS
DVDDOUT
HP JACK
DETECTION
ADC
ADC DAC
PLL
INPUT/OUTPUT PORTS
MCLK
ADC DIGI TAL FILTERS
SERIAL DATA
GPIO1
BCLK/
GPIO2
DC_SDATA/
REGULATOR
DAC
DIGITAL
FILTERS
GPIO3
LRCLK/
AGND
AVDD
AVDD
AGND
ADAU1461
LOUTP
SDA/
COUT
LOUTN
LHP
MONOOUT
RHP
ROUTP
ROUTN
8914-001
DAC
OUTPUT MIXERS
2
I
C/SPI
CONTROL PORT
SCL/
ADDR1/
ADDR0/
CLATCH
GPIO0
DAC_SDATA/
CDATA
CCLK
Figure 1.
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2010 Analog Devices, Inc. All rights reserved.
ADAU1461

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 2
Specifications ..................................................................................... 3
Analog Performance Specifications, TA = 25°C ....................... 3
Analog Performance Specifications, −40°C < TA < +105°C ... 5
Power Supply Specifications........................................................ 7
Digital Filters ................................................................................. 8
Digital Input/Output Specifications........................................... 8
Digital Timing Specifications ..................................................... 9
Digital Timing Diagrams........................................................... 10
Absolute Maximum Ratings .......................................................... 12
Thermal Resistance .................................................................... 12
ESD Caution ................................................................................ 12
Pin Configuration and Function Descriptions ........................... 13
Typical Performance Characteristics ........................................... 15
System Block Diagrams ................................................................. 18
Theory of Operation ...................................................................... 21
Startup, Initialization, and Power ................................................. 22
Power-Up Sequence ................................................................... 22
Power Reduction Modes ............................................................ 22
Digital Power Supply .................................................................. 22
Input/Output Power Supply ...................................................... 22
Clock Generation and Management ........................................ 22
Clocking and Sampling Rates ....................................................... 24
Core Clock ................................................................................... 24
Sampling Rates ............................................................................ 25
PLL ............................................................................................... 25
Record Signal Path .......................................................................... 27
Input Signal Paths ....................................................................... 27
Analog-to-Digital Converters ................................................... 29
Automatic Level Control (ALC) ................................................... 30
ALC Parameters .......................................................................... 30
Noise Gate Function .................................................................. 31

REVISION HISTORY

6/10—Revision 0: Initial Version
Playback Signal Path ...................................................................... 33
Output Signal Paths ................................................................... 33
Headphone Output .................................................................... 34
Pop-and-Click Suppression ...................................................... 35
Line Outputs ............................................................................... 35
Control Ports ................................................................................... 36
Burst Mode Writing and Reading ............................................ 36
I2C Port ........................................................................................ 36
SPI Port ........................................................................................ 39
Serial Data Input/Output Ports .................................................... 40
Applications Information .............................................................. 42
Power Supply Bypass Capacitors .............................................. 42
GSM Noise Filter ........................................................................ 42
Grounding ................................................................................... 42
Exposed Pad PCB Design ......................................................... 42
DSP Core ......................................................................................... 43
Signal Processing ........................................................................ 43
Architecture ................................................................................ 43
Program Counter ....................................................................... 43
Features ........................................................................................ 43
Startup .......................................................................................... 43
Numeric Formats ....................................................................... 44
Programming .............................................................................. 44
Program RAM, Parameter RAM, and Data RAM ..................... 45
Program RAM ............................................................................ 45
Parameter RAM .......................................................................... 45
Data RAM ................................................................................... 45
Read/Write Data Formats ......................................................... 45
Software Safeload ....................................................................... 46
Software Slew .............................................................................. 47
General-Purpose Input/Output .................................................... 48
GPIO Pins Set from the Control Port ...................................... 48
Control Registers ............................................................................ 49
Control Register Details ............................................................ 50
Outline Dimensions ....................................................................... 88
Ordering Guide .......................................................................... 88
Automotive Products ................................................................. 88
Rev. 0 | Page 2 of 88
ADAU1461

SPECIFICATIONS

Supply voltage (AVDD) = 3.3 V, TA = 25°C, master clock = 12.288 MHz (48 kHz fS, 256 × fS mode), input sample rate = 48 kHz, measurement bandwidth = 20 Hz to 20 kHz, word width = 24 bits, C
(digital output) = 20 pF, I
LOAD
unless otherwise noted. Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications.

ANALOG PERFORMANCE SPECIFICATIONS, TA = 25°C

IOVDD = 3.3 V ± 10%.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
ANALOG-TO-DIGITAL CONVERTERS
ADC Resolution All ADCs 24 Bits Digital Attenuation Step 0.375 dB Digital Attenuation Range 95 dB
INPUT RESISTANCE
Single-Ended Line Input −12 dB gain 80.4 kΩ 0 dB gain 21 kΩ 6 dB gain 10.5 kΩ PGA Inverting Inputs −12 dB gain 84.5 kΩ 0 dB gain 53 kΩ
35.25 dB gain 1.7 kΩ PGA Noninverting Inputs All gains 105 kΩ
SINGLE-ENDED LINE INPUT
Full-Scale Input Voltage (0 dB) 1.0 (2.83) V rms (V p-p) Dynamic Range 20 Hz to 20 kHz, −60 dB input
With A-Weighted Filter (RMS) 83.5 99 dB
No Filter (RMS) 83 96 dB Total Harmonic Distortion + Noise −1 dBFS −90 −71 dB Signal-to-Noise Ratio
With A-Weighted Filter (RMS) 99 dB
No Filter (RMS) 96 dB Input Mixer Gain per Step −12 dB to +6 dB range 2.89 3 3.07 dB Mute Attenuation
Interchannel Gain Mismatch −0.3 +0.032 +0.3 dB Offset Error −5 0 +5 mV Gain Error −17 −12 −8 % Interchannel Isolation 68 dB Power Supply Rejection Ratio CM capacitor = 20 F, 100 mV p-p @ 1 kHz 67 dB
PSEUDO-DIFFERENTIAL PGA INPUT
Full-Scale Input Voltage (0 dB) 1.0 (2.83) V rms (V p-p) Dynamic Range 20 Hz to 20 kHz, −60 dB input
With A-Weighted Filter (RMS) 94 98 dB
No Filter (RMS) 91 95 dB Total Harmonic Distortion + Noise −1 dBFS −89 −83 dB Signal-to-Noise Ratio
With A-Weighted Filter (RMS) 98 dB
No Filter (RMS) 95 dB PGA Boost Gain Error
ADC performance excludes mixers and PGA
LINPG[2:0], LINNG[2:0] = 000, RINPG[2:0], RINNG[2:0] = 000, MX1AUXG[2:0], MX2AUXG[2:0] = 000
20 dB gain setting (RDBOOST[1:0], LDBOOST[1:0] = 10)
(digital output) = 2 mA, VIH = 2 V, VIL = 0.8 V,
LOAD
−85.5 −77 dB
−8 +0.4 +8 dB
Rev. 0 | Page 3 of 88
ADAU1461
Parameter Test Conditions/Comments Min Typ Max Unit
Mute Attenuation PGA muted LDMUTE, RDMUTE = 0 −76 −73 dB RDBOOST[1:0], LDBOOST[1:0] = 00 −87 −82 dB Interchannel Gain Mismatch −0.6 −0.073 +0.6 dB Offset Error −6 0 +6 mV Gain Error −24 −14 −3 % Interchannel Isolation 83 dB Common-Mode Rejection Ratio 100 mV rms, 1 kHz −58 dB 100 mV rms, 20 kHz −52 −48 −44 dB
FULL DIFFERENTIAL PGA INPUT Differential PGA inputs
Full-Scale Input Voltage (0 dB) 1.0 (2.83) V rms (V p-p) Dynamic Range 20 Hz to 20 kHz, −60 dB input
With A-Weighted Filter (RMS) 94 98 dB
No Filter (RMS) 91 95 dB Total Harmonic Distortion + Noise −1 dBFS −78 −74 dB Signal-to-Noise Ratio
With A-Weighted Filter (RMS) 98 dB
No Filter (RMS) 95 dB PGA Boost Gain Error
Mute Attenuation PGA muted LDMUTE, RDMUTE = 0 −76 −73 dB RDBOOST[1:0], LDBOOST[1:0] = 00 −87 −82 dB Interchannel Gain Mismatch −0.3 −0.0005 +0.3 dB Offset Error −6 0 +6 mV Gain Error −17 −14 −9 % Interchannel Isolation 83 dB Common-Mode Rejection Ratio 100 mV rms, 1 kHz −58 dB 100 mV rms, 20 kHz −52 −48 −44 dB
MICROPHONE BIAS MBIEN = 1
Bias Voltage
0.65 × AVDD MBI = 1, MPERF = 0 2.00 2.145 2.19 V
MBI = 1, MPERF = 1 2.04 2.13 2.21 V
0.90 × AVDD MBI = 0, MPERF = 0 2.89 2.97 3.04 V
MBI = 0, MPERF = 1 2.89 2.99 3.11 V Bias Current Source MBI = 0, MPERF = 1 3 mA Noise in the Signal Bandwidth 1 kHz to 20 kHz MBI = 0, MPERF = 0 42 nV/√Hz MBI = 0, MPERF = 1 85 nV/√Hz MBI = 1, MPERF = 0 25 nV/√Hz MBI = 1, MPERF = 1 13 22 36 nV/√Hz
DIGITAL-TO-ANALOG CONVERTERS
DAC Resolution All DACs 24 Bits Digital Attenuation Step 0.375 dB Digital Attenuation Range 95 dB
DAC TO LINE OUTPUT
Full-Scale Output Voltage (0 dB) 0.92 (2.60) V rms (V p-p) Dynamic Range
With A-Weighted Filter (RMS) 95 101 dB
No Filter (RMS) 93.5 98 dB
20 dB gain setting (RDBOOST[1:0], LDBOOST[1:0] = 10)
DAC performance excludes mixers and headphone amplifier
20 Hz to 20 kHz, −60 dBFS input, line output mode
−8 −0.15 +8 dB
Rev. 0 | Page 4 of 88
ADAU1461
Parameter Test Conditions/Comments Min Typ Max Unit
Total Harmonic Distortion + Noise 0 dBFS, 10 kΩ load
Line Output Mode −92 −77 dB Headphone Output Mode −89 −79 dB
Signal-to-Noise Ratio Line output mode
With A-Weighted Filter (RMS) 101 dB No Filter (RMS) 98 dB
Mute Attenuation
Mixer 3 and Mixer 4 Muted
Mixer 5, Mixer 6, and Mixer 7 Muted
All Volume Controls Muted LOUTM, ROUTM = 0 −82 −74 dB
MONOM, LHPM, RHPM = 0 −74 −69 dB Interchannel Gain Mismatch −0.3 −0.005 +0.3 dB Offset Error −22 0 +22 mV Gain Error −10 +3 +10 % Interchannel Isolation 1 kHz, 0 dBFS input signal 100 dB Power Supply Rejection Ratio CM capacitor = 20 F, 100 mV p-p @ 1 kHz 70 dB
DAC TO HEADPHONE/EARPIECE
OUTPUT
Full-Scale Output Voltage (0 dB) Scales linearly with AVDD 0.92 (2.60) V rms (V p-p) Total Harmonic Distortion + Noise −4 dBFS, 16 Ω load, PO = 21.1 mW −82 dB
−4 dBFS, 32 Ω load, PO = 10.6 mW −82 dB
Capless Headphone Mode −2 dBFS, 16 Ω load −78 −71 dB
−2 dBFS, 32 Ω load −75 −65 dB
Headphone Output Mode 0 dBFS, 10 kΩ load −86 −77 dB Interchannel Isolation 1 kHz, 0 dBFS input signal, 32 Ω load Referred to GND 73 dB
Power Supply Rejection Ratio CM capacitor = 20 F, 100 mV p-p @ 1 kHz 67 dB
REFERENCE
Common-Mode Reference Output CM pin 1.62 1.65 1.67 V
MX3RM, MX3LM, MX4RM, MX4LM = 0, MX3AUXG[3:0], MX4AUXG[3:0] = 0000, MX3G1[3:0], MX3G2[3:0] = 0000, MX4G1[3:0], MX4G2[3:0] = 0000
MX5G3[1:0], MX5G4[1:0], MX6G3[1:0], MX6G4[1:0], MX7[1:0] = 00
LOUTx, ROUTx, LHP, RHP in headphone output mode; P channel
Referred to CM (capless headphone mode)
= output power per
O
−85 −78 dB
−89 −80 dB
50 dB

ANALOG PERFORMANCE SPECIFICATIONS, −40°C < TA < +105°C

IOVDD = 3.3 V ± 10%.
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
SINGLE-ENDED LINE INPUT
Dynamic Range 20 Hz to 20 kHz, −60 dB input
With A-Weighted Filter (RMS) 74 dB
No Filter (RMS) 71 dB Total Harmonic Distortion + Noise −1 dBFS −67 dB Input Mixer Gain per Step −12 dB to +6 dB range 2.88 3.09 dB Mute Attenuation
Interchannel Gain Mismatch −0.5 +0.5 dB Offset Error −5 +5 mV Gain Error −22 −6 %
LINPG[2:0], LINNG[2:0] = 000, RINPG[2:0], RINNG[2:0] = 000, MX1AUXG[2:0], MX2AUXG[2:0] = 000
Rev. 0 | Page 5 of 88
−77 dB
ADAU1461
Parameter Test Conditions/Comments Min Typ Max Unit
PSEUDO-DIFFERENTIAL PGA INPUT
Dynamic Range 20 Hz to 20 kHz, −60 dB input
With A-Weighted Filter (RMS) 94 dB
No Filter (RMS) 91 dB Total Harmonic Distortion + Noise −1 dBFS −75 dB PGA Boost Gain Error
Mute Attenuation PGA muted LDMUTE, RDMUTE = 0 −73 dB RDBOOST[1:0], LDBOOST[1:0] = 00 −82 dB Interchannel Gain Mismatch −0.6 +0.6 dB Offset Error −6 +6 mV Gain Error −24 −3 % Common-Mode Rejection Ratio 100 mV rms, 1 kHz −64 −38 dB
100 mV rms, 20 kHz −53 −43 dB FULL DIFFERENTIAL PGA INPUT Differential PGA inputs
Dynamic Range 20 Hz to 20 kHz, −60 dB input
With A-Weighted Filter (RMS) 89 dB
No Filter (RMS) 86 dB Total Harmonic Distortion + Noise −1 dBFS −70 dB PGA Boost Gain Error
Mute Attenuation PGA muted LDMUTE, RDMUTE = 0 −73 dB RDBOOST[1:0], LDBOOST[1:0] = 00 −82 dB Interchannel Gain Mismatch −0.4 +0.4 dB Offset Error −6 +6 mV Gain Error −21 −7 % Common-Mode Rejection Ratio 100 mV rms, 1 kHz −64 −38 dB
100 mV rms, 20 kHz −53 −43 dB MICROPHONE BIAS MBIEN = 1
Bias Voltage
0.65 × AVDD MBI = 1, MPERF = 0 1.85 2.45 V
MBI = 1, MPERF = 1 1.87 2.45 V
0.90 × AVDD MBI = 0, MPERF = 0 2.65 3.40 V
MBI = 0, MPERF = 1 2.65 3.40 V Noise in the Signal Bandwidth 1 kHz to 20 kHz 11 36 nV/√Hz
DAC TO LINE OUTPUT
Dynamic Range
With A-Weighted Filter (RMS) 85 dB
No Filter (RMS) 78 dB Total Harmonic Distortion + Noise 0 dBFS, 10 kΩ load
Line Output Mode −76 dB
Headphone Output Mode −78 dB Mute Attenuation
Mixer 3 and Mixer 4 Muted
Mixer 5, Mixer 6, and Mixer 7 Muted
All Volume Controls Muted LOUTM, ROUTM = 0 −74 dB
MONOM, LHPM, RHPM = 0 −69 dB
20 dB gain setting (RDBOOST[1:0], LDBOOST[1:0] = 10)
20 dB gain setting (RDBOOST[1:0], LDBOOST[1:0] = 10)
20 Hz to 20 kHz, −60 dB input, line output mode
MX3RM, MX3LM, MX4RM, MX4LM = 0, MX3AUXG[3:0], MX4AUXG[3:0] = 0000, MX3G1[3:0], MX3G2[3:0] = 0000, MX4G1[3:0], MX4G2[3:0] = 0000
MX5G3[1:0], MX5G4[1:0], MX6G3[1:0], MX6G4[1:0], MX7[1:0] = 00
−11 −7 dB
−11 −7 dB
−77 dB
−77 dB
Rev. 0 | Page 6 of 88
ADAU1461
Parameter Test Conditions/Comments Min Typ Max Unit
Interchannel Gain Mismatch −0.3 +0.3 dB Offset Error −22 +22 mV Gain Error −10 +10 %
DAC TO HEADPHONE/EARPIECE
OUTPUT
LOUTx, ROUTx, LHP, RHP in headphone output mode; P
= output power per
O
channel
Total Harmonic Distortion + Noise
Capless Headphone Mode −2 dBFS, 16 Ω load −61 dB
−2 dBFS, 32 Ω load −63 dB Headphone Output Mode 0 dBFS, 10 kΩ load −76 dB
REFERENCE
Common-Mode Reference Output CM pin 1.47 1.83 V

POWER SUPPLY SPECIFICATIONS

Master clock = 12.288 MHz, input sample rate = 48 kHz, input tone = 1 kHz, ADC input @ −1 dBFS, DAC input @ 0 dBFS,
−40°C < T
Table 3.
Parameter Test Conditions/Comments Min Typ Max Unit
SUPPLIES
Voltage DVDDOUT 1.56 V AVDD 2.97 3.3 3.65 V IOVDD 2.97 3.3 3.65 V
Digital I/O Current (IOVDD) 20 pF capacitive load on all digital pins
f
f
Analog Current (AVDD)
< +105°C, IOVDD = 3.3 V ± 10%. For total power consumption, add the IOVDD current listed in Tabl e 3.
A
Slave Mode fS = 48 kHz 0.48 mA
= 96 kHz 0.9 mA
S
f
= 8 kHz 0.13 mA
S
Master Mode fS = 48 kHz 1.51 mA
= 96 kHz 3 mA
S
f
= 8 kHz 0.27 mA
S
Record Stereo Differential to ADC PLL bypass 5.24 mA Integer PLL 6.57 mA DAC Stereo Playback to Line Output 10 kΩ load PLL bypass 5.55 mA Integer PLL 6.90 mA DAC Stereo Playback to Headphone 32 Ω load PLL bypass 30.9 mA Integer PLL 32.25 mA DAC Stereo Playback to Capless Headphone 32 Ω load PLL bypass 56.75 mA Integer PLL 58 mA
Rev. 0 | Page 7 of 88
ADAU1461

DIGITAL FILTERS

Table 4.
Parameter Mode Factor Min Typ Max Unit
ADC DECIMATION FILTER All modes, typ @ 48 kHz
Pass Band 0.4375 fS 21 kHz Pass-Band Ripple ±0.015 dB Transition Band 0.5 fS 24 kHz Stop Band 0.5625 fS 27 kHz Stop-Band Attenuation 67 dB Group Delay 22.9844/fS 479 µs
DAC INTERPOLATION FILTER
Pass Band 48 kHz mode, typ @ 48 kHz 0.4535 fS 22 kHz 96 kHz mode, typ @ 96 kHz 0.3646 fS 35 kHz Pass-Band Ripple 48 kHz mode, typ @ 48 kHz ±0.01 dB 96 kHz mode, typ @ 96 kHz ±0.05 dB Transition Band 48 kHz mode, typ @ 48 kHz 0.5 fS 24 kHz 96 kHz mode, typ @ 96 kHz 0.5 fS 48 kHz Stop Band 48 kHz mode, typ @ 48 kHz 0.5465 fS 26 kHz 96 kHz mode, typ @ 96 kHz 0.6354 fS 61 kHz Stop-Band Attenuation 48 kHz mode, typ @ 48 kHz 69 dB 96 kHz mode, typ @ 96 kHz 68 dB Group Delay 48 kHz mode, typ @ 48 kHz 25/fS 521 µs
96 kHz mode, typ @ 96 kHz 11/fS 115 µs

DIGITAL INPUT/OUTPUT SPECIFICATIONS

−40°C < TA < +105°C, IOVDD = 3.3 V ± 10%.
Table 5.
Parameter Test Conditions/Comments Min Typ Max Unit
INPUT SPECIFICATIONS
Input Voltage High (VIH) 0.7 × IOVDD V Input Voltage Low (VIL) 0.3 × IOVDD V Input Leakage
Pull-Ups/Pull-Downs Disabled IIH @ VIH = 3.3 V −0.17 +0.17 µA I I
Pull-Ups Enabled IIH @ VIH = 3.3 V −0.7 +0.7 µA I
Pull-Downs Enabled IIH @ VIH = 3.3 V 2.7 8.3 µA I
Input Capacitance 5 pF
OUTPUT SPECIFICATIONS
Output Voltage High (VOH) IOH = 2 mA @ 3.3 V 0.8 × IOVDD V Output Voltage Low (VOL) IOL = 2 mA @ 3.3 V 0.1 × IOVDD V
@ VIL = 0 V −0.17 +0.17 µA
IL
@ VIL = 0 V (MCLK pin) −13.5 −0.5 µA
IL
@ VIL = 0 V −13.5 −0.5 µA
IL
@ VIL = 0 V −0.18 +0.18 µA
IL
Rev. 0 | Page 8 of 88
ADAU1461

DIGITAL TIMING SPECIFICATIONS

−40°C < TA < +105°C, IOVDD = 3.3 V ± 10%.
Table 6. Digital Timing
Limit
Parameter
t
MIN
MAX
MASTER CLOCK
tMP 74 488 ns MCLK period, 256 × fS mode. tMP 37 244 ns MCLK period, 512 × fS mode. tMP 24.7 162.7 ns MCLK period, 768 × fS mode. tMP 18.5 122 ns MCLK period, 1024 × fS mode.
SERIAL PORT
t
5 ns BCLK pulse width low.
BIL
t
5 ns BCLK pulse width high.
BIH
t
5 ns LRCLK setup. Time to BCLK rising.
LIS
t
5 ns LRCLK hold. Time from BCLK rising.
LIH
t
5 ns DAC_SDATA setup. Time to BCLK rising.
SIS
t
5 ns DAC_SDATA hold. Time from BCLK rising.
SIH
t
50 ns ADC_SDATA delay. Time from BCLK falling in master mode.
SODM
SPI PORT
f
10 MHz CCLK frequency.
CCLK
t
10 ns CCLK pulse width low.
CCPL
t
10 ns CCLK pulse width high.
CCPH
t
5 ns
CLS
t
10 ns
CLH
t
10 ns
CLPH
t
5 ns CDATA setup. Time to CCLK rising.
CDS
t
5 ns CDATA hold. Time from CCLK rising.
CDH
t
50 ns
COD
I2C PORT
f
400 kHz SCL frequency.
SCL
t
0.6 µs SCL high.
SCLH
t
1.3 µs SCL low.
SCLL
t
0.6 µs Setup time; relevant for repeated start condition.
SCS
t
0.6 µs Hold time. After this period, the first clock is generated.
SCH
tDS 100 ns Data setup time. t
300 ns SCL rise time.
SCR
t
300 ns SCL fall time.
SCF
t
300 ns SDA rise time.
SDR
t
300 ns SDA fall time.
SDF
t
0.6 µs Bus-free time. Time between stop and start.
BFT
DIGITAL MICROPHONE R
t
10 ns Digital microphone clock fall time.
DCF
t
10 ns Digital microphone clock rise time.
DCR
t
22 30 ns Digital microphone delay time for valid data.
DDV
t
0 12 ns Digital microphone delay time for data three-stated.
DDH
Unit Description t
CLATCH CLATCH CLATCH
COUT three-stated. Time from CLATCH
setup. Time to CCLK rising. hold. Time from CCLK rising. pulse width high.
= 1 MΩ, C
LOAD
LOAD
= 14 pF.
rising.
Rev. 0 | Page 9 of 88
ADAU1461

DIGITAL TIMING DIAGRAMS

t
LIH
t
SIS
LSB
t
SIH
08914-002
RIGHT-JUSTIFIED
BCLK
LRCLK
DAC_SDATA
LEFT-JUSTIFIED
MODE
DAC_SDATA
2
I
S MODE
DAC_SDATA
MODE
BCLK
t
BIH
t
BIL
t
LIS
t
SIS
MSB
t
SIH
8-BIT CLOCKS (24-BIT DATA)
12-BIT CLOCKS (20-BIT DATA)
14-BIT CLOCKS (18-BIT DATA)
16-BIT CLOCKS (16-BIT DATA)
t
SIS
MSB – 1
MSB
t
SIH
t
SIS
MSB
t
SIH
Figure 2. Serial Input Port Timing
t
BIH
t
BIL
LRCLK
ADC_SDATA
LEFT-JUSTIFIED
MODE
ADC_SDATA
2
I
S MODE
ADC_SDATA
RIGHT -JUSTI FIED
MODE
t
SODM
MSB
8-BIT CLOCKS (24-BIT DATA)
12-BIT CLO CKS (20-BIT DATA)
14-BIT CLO CKS (18-BIT DATA)
16-BIT CLO CKS (16-BIT DATA)
t
SODM
MSB – 1
MSB
Figure 3. Serial Output Port Timing
Rev. 0 | Page 10 of 88
t
SODM
MSB
LSB
08914-003
ADAU1461
t
CLS
t
CCPL
CLATCH
CCLK
CDATA
COUT
t
CDS
t
CCPH
t
CDH
Figure 4. SPI Port Timing
t
t
SCLH
DS
t
SCH
SDA
t
SCH
t
SCR
t
CLH
t
COD
t
CLPH
08914-004
SCL
t
SCLL
t
SCF
Figure 5. I
t
2
C Port Timing
SCS
t
BFT
08914-005
t
CLK
DATA1/
DATA1 DATA1 DATA2DATA2
DATA2
DCF
t
DDH
t
DDH
t
DDV
t
DCR
t
DDV
08914-006
Figure 6. Digital Microphone Timing
Rev. 0 | Page 11 of 88
ADAU1461

ABSOLUTE MAXIMUM RATINGS

Table 7.
Parameter Rating
Power Supply (AVDD) −0.3 V to +3.65 V Input Current (Except Supply Pins) ±20 mA Analog Input Voltage (Signal Pins) −0.3 V to AVDD + 0.3 V Digital Input Voltage (Signal Pins) −0.3 V to IOVDD + 0.3 V Operating Temperature Range −40°C to +105°C Storage Temperature Range −65°C to +150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

θJA represents thermal resistance, junction-to-ambient; θJC repre­sents thermal resistance, junction-to-case. All characteristics are for a 4-layer board.
Table 8. Thermal Resistance
Package Type θJA θ
32-Lead LFCSP 50.1 17 °C/W
Unit
JC

ESD CAUTION

Rev. 0 | Page 12 of 88
ADAU1461

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

SCL/CCLK
SDA/COUT
ADDR1/CDATA
LRCLK/GPI O3
BCLK/GPIO 2
DAC_SDATA/GPI O0
ADC_SDATA/GPI O1
DGND
28
27
26
25
29
31
30
32
14
15
RAUX
ROUTP
24 DVDDOUT 23 AVDD 22 AGND 21 MONOOUT 20 LHP 19 RHP 18 LOUTP 17 LOUTN
16
ROUTN
08914-007
1IOVDD
PIN 1
2MCLK
INDICATOR
3ADDR0/CLATCH 4JACKDET/MICI N
ADAU1461
5MICBIAS
TOP VIEW
6LAUX
(Not to Scale)
7CM 8AVDD
9
11
12
13
10
LINP
LINN
RINP
RINN
AGND
NOTES
1. THE EXPOSED PAD IS CONNECTED INT ERNALLY TO THE ADAU1461 GROUNDS. FOR INCREASED REL IABILITY OF T HE SOLDER JOINTS AND MAXIMUM THERMAL CAPABILITY, IT IS RECOMMENDED THAT THE PAD BE SOL DERED TO THE GROUND PLANE.
Figure 7. Pin Configuration
Table 9. Pin Function Descriptions
Pin No. Mnemonic Type
1 IOVDD PWR
1
Description
Supply for Digital Input and Output Pins. The digital output pins are supplied from IOVDD, which also sets the highest input voltage that should be seen on the digital input pins. IOVDD should be set to 3.3 V. The current draw of this pin is variable because it is dependent on the loads of the digital outputs. IOVDD should be decoupled to DGND with a 100 nF
capacitor and a 10 F capacitor. 2 MCLK D_IN External Master Clock Input. 3
ADDR0/CLATCH
D_IN I2C Address Bit 0 (ADDR0).
SPI Latch Signal (CLATCH
). Must go low at the beginning of an SPI transaction and high at the end of a transaction. Each SPI transaction can take a different number of CCLKs to complete, depending on the address and read/write bit that are sent at the beginning of the SPI transaction.
4 JACKDET/MICIN D_IN Detect Insertion/Removal of Headphone Plug (JACKDET).
Digital Microphone Stereo Input (MICIN).
5 MICBIAS A_OUT Bias Voltage for Electret Microphone. 6 LAUX A_IN Left Channel Single-Ended Auxiliary Input. Biased at AVDD/2. 7 CM A_OUT
AVDD/2 V Common-Mode Reference. A 10 F to 47 F standard decoupling capacitor should be connected between this pin and AGND to reduce crosstalk between the ADCs and DACs. This pin can be used to bias external analog circuits, as long as they are not drawing current from CM (for example, the noninverting input of an op amp).
8 AVDD PWR
3.3 V Analog Supply for DAC and Microphone Bias. This pin should be decoupled locally to AGND with a 100 nF capacitor.
9 AGND PWR
Analog Ground. The AGND and DGND pins can be tied together on a common ground plane. AGND should be decoupled locally to AVDD with a 100 nF capacitor.
10 LINP A_IN Left Channel Noninverting Input or Single-Ended Input 0. Biased at AVDD/2. 11 LINN A_IN Left Channel Inverting Input or Single-Ended Input 1. Biased at AVDD/2. 12 RINP A_IN Right Channel Noninverting Input or Single-Ended Input 2. Biased at AVDD/2. 13 RINN A_IN Right Channel Inverting Input or Single-Ended Input 3. Biased at AVDD/2. 14 RAUX A_IN Right Channel Single-Ended Auxiliary Input. Biased at AVDD/2. 15 ROUTP A_OUT Right Line Output, Positive. Biased at AVDD/2. 16 ROUTN A_OUT Right Line Output, Negative. Biased at AVDD/2. 17 LOUTN A_OUT Left Line Output, Negative. Biased at AVDD/2. 18 LOUTP A_OUT Left Line Output, Positive. Biased at AVDD/2.
Rev. 0 | Page 13 of 88
ADAU1461
Pin No. Mnemonic Type
1
Description
19 RHP A_OUT Right Headphone Output. Biased at AVDD/2. 20 LHP A_OUT Left Headphone Output. Biased at AVDD/2. 21 MONOOUT A_OUT
Mono Output or Virtual Ground for Capless Headphone. Biased at AVDD/2 when set as mono output.
22 AGND PWR
Analog Ground. The AGND and DGND pins can be tied together on a common ground plane. AGND should be decoupled locally to AVDD with a 100 nF capacitor.
23 AVDD PWR
3.3 V Analog Supply for ADC, Output Driver, and Input to Digital Supply Regulator. This pin should be decoupled locally to AGND with a 100 nF capacitor.
24 DVDDOUT PWR
Digital Core Supply Decoupling Point. The digital supply is generated from an on-board regulator and does not require an external supply. DVDDOUT should be decoupled to DGND with a 100 nF capacitor and a 10 F capacitor.
25 DGND PWR
Digital Ground. The AGND and DGND pins can be tied together on a common ground plane. DGND should be decoupled to DVDDOUT and to IOVDD with 100 nF capacitors and 10 F capacitors.
26 ADC_SDATA/GPIO1 D_IO ADC Serial Output Data (ADC_SDATA).
General-Purpose Input/Output 1 (GPIO1).
27 DAC_SDATA/GPIO0 D_IO DAC Serial Input Data (DAC_SDATA).
General-Purpose Input/Output 0 (GPIO0).
28 BCLK/GPIO2 D_IO Serial Data Port Bit Clock (BCLK).
General-Purpose Input/Output 2 (GPIO2).
29 LRCLK/GPIO3 D_IO Serial Data Port Frame Clock (LRCLK).
General-Purpose Input/Output 3 (GPIO3).
30 ADDR1/CDATA D_IN I2C Address Bit 1 (ADDR1).
SPI Data Input (CDATA).
31 SDA/COUT D_IO
2
C Data (SDA). This pin is a bidirectional open-collector input/output. The line connected to
I this pin should have a 2 kΩ pull-up resistor.
SPI Data Output (COUT). This pin is used for reading back registers and memory locations. It is three-state when an SPI read is not active.
32 SCL/CCLK D_IN
2
C Clock (SCL). This pin is always an open-collector input when in I2C control mode. The line
I connected to this pin should have a 2 kΩ pull-up resistor. SPI Clock (CCLK). This pin can run continuously or be gated off between SPI transactions.
EP Exposed Pad
Exposed Pad. The exposed pad is connected internally to the ADAU1461 grounds. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the ground plane. See the Exposed Pad PCB Design section for more information.
1
A_IN = analog input, A_OUT = analog output, D_IN = digital input, D_IO = digital input/output, PWR = power.
Rev. 0 | Page 14 of 88
ADAU1461

TYPICAL PERFORMANCE CHARACTERISTICS

28
26
24
22
20
18
16
14
12
10
8
6
STEREO OUTPUT PO WER (mW)
4
2
0
–60 0–10–20–30–40–50
DIGITAL 1kHz INPUT SIGNAL (dBFS)
Figure 8. Headphone Amplifier Power vs. Input Level, 16 Ω Load
08914-055
30
–35
–40
–45
–50
–55
–60
–65
–70
–75
THD + N (dBV)
–80
–85
–90
–95
–100
–105
–60 0–10–20–30–40–50
DIGITAL 1kHz INPUT SIGNAL (dBFS)
Figure 11. Headphone Amplifier THD + N vs. Input Level, 16 Ω Load
08914-056
18
16
14
12
10
8
6
4
STEREO OUTPUT PO WER (mW)
2
0
–60 0–10–20–30–40–50
DIGITAL 1kHz INPUT SIGNAL (dBFS)
Figure 9. Headphone Amplifier Power vs. Input Level, 32 Ω Load
0
10
20
30
40
50
60
MAGNITUDE (d BFS)
70
80
90
100
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FREQUENCY (NORMALIZED T O
f
)
S
Figure 10. ADC Decimation Filter, 64× Oversampling, Normalized to fS
0
–10
–20
–30
–40
–50
–60
THD + N (dBV)
–70
–80
–90
–100
–60 0–10–20–30–40–50
08914-057
DIGITAL 1kHz INPUT SI GNAL (dBFS)
08914-058
Figure 12. Headphone Amplifier THD + N vs. Input Level, 32 Ω Load
0.04
0.02
0
–0.02
MAGNITUDE (dBFS)
–0.04
–0.06
0 0.05 0.10 0.20 0.30 0.400.15 0.25 0. 35
08914-008
FREQUENCY (NORMALIZED TO
f
)
S
08914-009
Figure 13. ADC Decimation Filter Pass-Band Ripple, 64× Oversampling,
Normalized to f
S
Rev. 0 | Page 15 of
88
ADAU1461
0
–10
–20
–30
–40
–50
–60
MAGNITUDE (d BFS)
–70
–80
–90
–100
0.10 0.2 0.3 0. 4 0.5 0.6 0.7 0.8 0.9 1.0
FREQUENCY (NORMALIZED TO
f
)
S
Figure 14. ADC Decimation Filter, 128× Oversampling, Normalized to fS
4-010 0891
0.10
0.08
0.06
0.04
0.02
0
–0.02
MAGNITUDE (d BFS)
–0.04
–0.06
–0.08
–0.10
0 0.05 0.10 0.20 0.30 0.400.15 0.25 0.35 0.500.45
FREQUENCY (NORMALIZED TO
f
)
S
Figure 17. ADC Decimation Filter Pass-Band Ripple, 128× Oversampling,
Normalized to f
S
08914-011
0
–10
–20
–30
–40
–50
–60
MAGNITUDE (d BFS)
–70
–80
–90
–100
0
0.1 0. 2 0.3 0.4 0.5 0. 6 0. 7 0.8 0.9 1.0
FREQUENCY (NORMALIZED TO
f
)
S
4-0120891
Figure 15. ADC Decimation Filter, 128× Oversampling, Double-Rate Mode,
Normalized to f
0
10
20
30
40
50
60
MAGNITUDE (dBFS)
70
80
90
100
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FREQUENCY (NORMALIZED TO
S
f
)
S
8914-014
Figure 16. DAC Interpolation Filter, 64× Oversampling, Double-Rate Mode,
Normalized to f
S
0.04
0.02
0
0.02
MAGNITUDE (dBFS)
0.04
0.06
0 0.05 0.10 0.20 0.30 0.400.15 0.25 0. 35
FREQUENCY (NO RMALIZED T O
f
)
S
Figure 18. ADC Decimation Filter Pass-Band Ripple, 128× Oversampling,
Double-Rate Mode, Normalized to f
0.20
0.15
0.10
0.05
0
–0.05
MAGNITUDE (dBFS)
–0.10
–0.15
–0.20
0 0.05 0.10 0.20 0.30 0.400. 15 0.25 0.35
FREQUENCY (NORMALIZED TO
S
f
)
S
Figure 19. DAC Interpolation Filter Pass-Band Ripple, 64× Oversampling,
Double-Rate Mode, Normalized to f
S
08914-013
08914-015
Rev. 0 | Page 16 of 88
ADAU1461
0
–10
–20
–30
–40
–50
–60
MAGNITUDE (dBFS)
–70
–80
–90
–100
0.10 0.20.30.40.50.60.70.80.91.0
f
FREQUENCY (NORMALIZED TO
)
S
Figure 20. DAC Interpolation Filter, 128× Oversampling, Normalized to fS
0
10
20
30
40
50
60
MAGNITUDE (dBFS)
70
80
90
100
0.10 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FREQUENCY (NORMALIZED TO
f
)
S
Figure 21. DAC Interpolation Filter, 128× Oversampling, Double-Rate Mode,
Normalized to f
S
0.05
0.04
0.03
0.02
0.01
0
–0.01
MAGNITUDE (dBFS)
–0.02
–0.03
–0.04
–0.05
0 0.05 0.10 0.20 0.30 0.400.15 0.25 0.35 0.500.45
8914-016
FREQUENCY (NORMALIZED TO
f
)
S
08914-017
Figure 23. DAC Interpolation Filter Pass-Band Ripple, 128× Oversampling,
Normalized to f
0.20
0.15
0.10
0.05
0
–0.05
MAGNITUDE (d BFS)
–0.10
–0.15
–0.20
0 0.05 0.10 0.20 0.30 0.400.15 0.25 0.35
914-018 08
FREQUENCY (NO RMALIZED T O
S
f
)
S
08914-019
Figure 24. DAC Interpolation Filter Pass-Band Ripple, 128× Oversampling,
Double-Rate Mode, Normalized to f
S
12
11
10
9
8
7
6
5
CURRENT (mA)
4
3
2
1
0
0 100 200 300 400 500 600 700 800 900 1000 1100
INSTRUCTIO NS
Figure 22. Typical DSP Current Draw
8914-065
90
80
70
60
50
40
IMPEDANCE (k)
30
20
10
0
0075502500755025007550
35.
32.
30.
28.
26.
23.
21.
19.
17.
25
14.
12.
10.
GAIN (dB)
007550
8.5.3.
25
1.
Figure 25. Input Impedance vs. Gain for Analog Inputs
002550 –1.
–3.
–5.
75 –7.
00
–10.
25
–12.
08914-125
Rev. 0 | Page 17 of
88
ADAU1461

SYSTEM BLOCK DIAGRAMS

10µF
+
1.2nH
LOUTP
LOUTN
RHP
MONOOUT
LHP
ROUTP
ROUTN
0.1µF
0.1µF
9.1pF
EARPIECE SPEAKER
CAPLESS HEADPHONE OUTPUT
EARPIECE SPEAKER
THE INPUT CAPACI TOR VALUE DE PENDS ON THE INPUT IMPE DANCE, WHICH VARI ES WITH T HE VOLUME SETTING.
10µF
LEFT
MICROPHONE
10µF
2k
2k
10µF
10µF 10µ F
0.1µF 0.1µF
LINP
LINN
MICBIAS
++
AVDDIOVDD AVDDDVDDOUT
ADAU1461
RIGHT
MICROPHONE
AUX LEFT
AUX RIGHT
1k
1k
10µF
JACK
DETECTIO N
SIGNAL
CLOCK
SOURCE
10µF
10µF
49.9
RINN
RINP
JACKDET/MICI N
LAUX
RAUX
MCLK
DGND
AGND
Figure 26. System Block Diagram
ADC_SDATA/GPIO 1
DAC_SDATA/GPIO 0
LRCLK/GPI O3
BCLK/GPIO 2
ADDR1/CDATA
SDA/COUT
SCL/CCLK
ADDR0/CLATCH
CM
AGND
0.1µF
SERIAL DATA
SYSTEM
CONTRO LLER
10µF
+
08914-045
Rev. 0 | Page 18 of 88
ADAU1461
10µF
+
1.2nH
0.1µF
0.1µF
9.1pF
THE INPUT CAPACI TOR VALUE DE PENDS ON THE INPUT IMPE DANCE, WHICH VARI ES WITH T HE VOLUME SETTING.
MICBIAS
10µF
0.1µF
10µF
++
0.1µF
AVDDIOVDD AVDDDVDDOUT
V
DD
SINGLE-ENDED
ANALOG
MICROPHONE
GND
V
DD
SINGLE-ENDED
ANALOG
MICROPHONE
GND
AUX LEFT
AUX RIGHT
OUTPUT
OUTPUT
1k
1k
CM
CM
JACK
DETECT ION
SIGNAL
CLOCK
SOURCE
10µF
10µF
10µF
10µF
49.9
LINN
LINP
RINN
RINP
JACKDET/MICI N
LAUX
RAUX
MCLK
DGND
ADAU1461
AGND
LOUTP
LOUTN
RHP
MONOOUT
LHP
ROUTP
ROUTN
ADC_SDATA/GPI O1
DAC_SDATA/GPI O0
LRCLK/GPIO3
BCLK/G PIO2
ADDR1/CDATA
SDA/CO UT
SCL/CCLK
ADDR0/CLATCH
CM
AGND
SERIAL DATA
SYSTEM
CONTROLL ER
0.1µF 10µF
EARPIECE SPEAKER
CAPLESS HEADPHONE OUTPUT
EARPIECE SPEAKER
+
Figure 27. System Block Diagram with Analog Microphones
Rev. 0 | Page 19 of 88
08914-059
ADAU1461
10µF
+
1.2nH
0.1µF
0.1µF
9.1pF
10µF
0.1µF
10µF
++
0.1µF
0.1µF
0.1µF
V
DD
V
DD
AUX LEFT
AUX RIGHT
CLK
DIGITAL
MICROPHONE
CLK
DIGITAL
MICROPHONE
1k
1k
GNDL/R SELECT
GNDL/R SELECT
DATA
DATA
BCLK
BCLK
CM
10µF
10µF
49.9
MICBIAS
LINP
LINN
RINN
RINP
JACKDET/MICI N
LAUX
RAUX
MCLK
ADAU1461
AVDDIOVDD AVDDDVDDOUT
RHP
MONOOUT
LHP
LOUTP
LOUTN
ROUTP
ROUTN
ADC_SDATA/GPI O1
DAC_SDATA/GPI O0
LRCLK/GPI O3
BCLK/G PIO2
ADDR1/CDATA
SDA/COUT
SCL/CCLK
ADDR0/CLATCH
CAPLESS
HEADPHONE
OUTPUT
22nF
22nF
22nF
22nF
10µF
R
EXT
INL+
R
EXT
INL–
R
EXT
INR+
R
EXT
INR–
SERIAL DATA
SYSTEM
CONTROLL ER
2.5V TO 5.0V
0.1µF
VDDVDD
SSM2306
CLASS-D 2W
STEREO SPEAKER
DRIVER
GNDSD GND
SHUTDOWN
OUTL+ OUTL–
OUTR+ OUTR–
LEFT SPEAKER
RIGHT SPEAKER
CLOCK
SOURCE
DGND
AGND
AGND
CM
0.1µF 10µF
+
08914-060
Figure 28. System Block Diagram with Digital Microphones and SSM2306 Class-D Speaker Driver
Rev. 0 | Page 20 of 88
ADAU1461

THEORY OF OPERATION

The ADAU1461 is a low power audio codec with an integrated stream-oriented DSP core, making it an all-in-one package that offers high quality audio, low power, small size, and many advanced features. The stereo ADC and stereo DAC each have an SNR of at least +98 dB and a THD + N of at least −90 dB. The serial data port is compatible with I justified, and TDM modes for interfacing to digital audio data. The operating voltage is 3.3 V, with an on-board regulator generating the internal digital supply voltage.
The record signal path includes very flexible input configurations that can accept differential and single-ended analog microphone inputs as well as a digital microphone input. A microphone bias pin provides seamless interfacing to electret microphones. Input configurations can accept up to six single-ended analog signals or variations of stereo differential or stereo single-ended signals with two additional auxiliary single-ended inputs. Each input signal has its own programmable gain amplifier (PGA) for volume adjustment and can be routed directly to the playback path output mixers, bypassing the ADCs. An automatic level control (ALC) can also be implemented to keep the recording volume constant.
The ADCs and DACs are high quality, 24-bit Σ- converters that operate at selectable 64× or 128× oversampling ratios. The base sampling rate of the converters is set by the input clock rate and can be further scaled with the converter control register settings. The converters can operate at sampling frequencies from 8 kHz to 96 kHz. The ADCs and DACs also include very fine-step digital volume controls.
The playback path allows input signals and DAC outputs to be mixed into various output configurations. Headphone drivers are available for a stereo headphone output, and the other output pins are capable of differentially driving an earpiece speaker. Capless headphone outputs are possible with the use of the mono output as a virtual ground connection. The stereo line outputs can be used as either single-ended or differential outputs and as an optional mix-down mono output.
The DSP core introduces many features that make this codec unique and optimized for audio processing. The program and parameter RAMs can be loaded with custom audio processing signal flow built using the SigmaStudio graphical programming software from Analog Devices, Inc. The values stored in the parameter RAM control individual signal processing blocks, such as equalization filters, dynamics processors, audio delays, and mixer levels.
2
S, left-justified, right-
The SigmaStudio software is used to program and control the SigmaDSP through the control port. Along with designing and tuning a signal flow, the tools can be used to configure all of the DSP registers. The SigmaStudio graphical interface allows any­one with digital or analog audio processing knowledge to easily design DSP signal flow and port it to a target application. At the same time, it provides enough flexibility and programmability for an experienced DSP programmer to have in-depth control of the design. In SigmaStudio, the user can connect graphical blocks (such as biquad filters, dynamics processors, mixers, and delays), compile the design, and load the program and parameter files into the ADAU1461 memory through the control port. Signal processing blocks available in the provided libraries include the following:
Enhanced stereo capture
Single- and double-precision biquad filters
FIR filters
Dynamics processors with peak or rms detection for mono
and multichannel dynamics
Mixers and splitters
Tone and noise generators
Fixed and variable gain
Loudness
Delay
Stereo enhancement
Dynamic bass boost
Noise and tone sources
Level detectors
Additional processing blocks are always being developed. Analog Devices also provides proprietary and third-party algorithms for applications such as matrix decoding, bass enhancement, and surround virtualizers. Contact Analog Devices ( these algorithms.
The ADAU1461 can generate its internal clocks from a wide range of input clocks by using the on-board fractional PLL. The PLL accepts inputs from 8 MHz to 27 MHz.
The ADAU1461 is provided in a small, 32-lead, 5 mm × 5 mm LFCSP with an exposed bottom pad.
www.analog.com) for information about licensing
Rev. 0 | Page 21 of 88
ADAU1461

STARTUP, INITIALIZATION, AND POWER

This section describes the procedure for properly starting up the ADAU1461. The following sequence provides a high level approach to the proper initiation of the system.
1. Apply power to the ADAU1461.
2. Lock the PLL to the input clock (if using the PLL).
3. Enable the core clock.
4. Load the register settings.
See the Startup section for more information about the proper start-up sequence.

POWER-UP SEQUENCE

The ADAU1461 uses a power-on reset (POR) circuit to reset the registers upon power-up. The POR monitors the DVDDOUT pin and generates a reset signal whenever power is applied to the chip. During the reset, the ADAU1461 is set to the default values documented in the register map (see the Control Registers section). Typically, with a 10 F capacitor on AVDD, the POR takes approximately 14 ms.
1.5V
DVDDOUT
AVDD
POR
POR
ACTIVE
The PLL lock time is dependent on the MCLK rate. Typical lock times are provided in Tab l e 1 0 . The DSP can be enabled immediately after the PLL is locked.
Table 10. PLL Lock Times
PLL Mode MCLK Frequency Lock Time (Typical)
Fractional 8 MHz 3.5 ms Fractional 12 MHz 3.0 ms Integer 12.288 MHz 2.96 ms Fractional 13 MHz 2.4 ms Fractional 14.4 MHz 2.4 ms Fractional 19.2 MHz 2.98 ms Fractional 19.68 MHz 2.98 ms Fractional 19.8 MHz 2.98 ms Fractional 24 MHz 2.95 ms Integer 24.576 MHz 2.96 ms Fractional 26 MHz 2.4 ms Fractional 27 MHz 2.4 ms
1.35V
PART READY
POR FINISHED
Figure 29. Power-On Reset Sequence
0.95V
POR ACTIVE
8914-061

POWER REDUCTION MODES

Sections of the ADAU1461 chip can be turned on and off as needed to reduce power consumption. These include the ADCs, the DACs, the PLL, and the DSP core.
The digital filters of the ADCs and DACs can each be set to over­sampling ratios of 64× or 128× (default). Setting the oversampling ratios to 64× for these filters lowers power consumption with a minimal impact on performance. See the Digital Filters section for specifications; see the Typical Performance Characteristics section for graphs of these filters.

DIGITAL POWER SUPPLY

The digital power supply for the ADAU1461 is generated from an internal regulator. This regulator generates a 1.5 V supply internally. The only external connection to this regulator is the DVDDOUT bypassing point. A 100 nF capacitor and a 10 F capacitor should be connected between this pin and DGND.

INPUT/OUTPUT POWER SUPPLY

The power for the digital output pins is supplied from IOVDD, and this pin also sets the highest input voltage that should be seen on the digital input pins. IOVDD should be set to 3.3 V; no digital input signal should be at a voltage level higher than the one on IOVDD. The current draw of this pin is variable because it depends on the loads of the digital outputs. IOVDD should be decoupled to DGND with a 100 nF capacitor and a 10 F capacitor.

CLOCK GENERATION AND MANAGEMENT

The ADAU1461 uses a flexible clocking scheme that enables the use of many different input clock rates. The PLL can be bypassed or used, resulting in two different approaches to clock manage­ment. For more information about clocking schemes, PLL configuration, and sampling rates, see the Clocking and Sampling Rates section.

Case 1: PLL Is Bypassed

If the PLL is bypassed, the core clock is derived directly from the MCLK input. The rate of this clock must be set properly in Register R0 (clock control register, Address 0x4000) using the INFREQ[1:0] bits. When the PLL is bypassed, supported external clock rates are 256 × f is the base sampling rate. The core clock of the chip is off until the core clock enable bit (COREN) is asserted. If a clock slower than 1024 × f
is directly input to the ADAU1461 (bypassing the
S
PLL), the number of available SigmaDSP processing cycles is reduced, and the DSPSR bits in Register R57 (Address 0x40EB) should be adjusted accordingly.
, 512 × fS, 768 × fS, and 1024 × fS, where fS
S
Rev. 0 | Page 22 of 88
ADAU1461

Case 2: PLL Is Used

The core clock to the entire chip is off during the PLL lock acquisition period. The user can poll the lock bit to determine when the PLL has locked. After lock is acquired, the ADAU1461 can be started by asserting the core clock enable bit (COREN) in Register R0 (clock control register, Address 0x4000). This bit enables the core clock to all the internal blocks of the ADAU1461.

PLL Lock Acquisition

During the lock acquisition period, only Register R0 (Address 0x4000) and Register R1 (Address 0x4002) are accessible through the control port. Because all other registers require a valid master clock for reading and writing, do not attempt to access any other register. Any read or write is prohibited until the core clock enable bit (COREN) and the lock bit are both asserted.
To program the PLL during initialization or reconfiguration of the clock setting, the following procedure must be followed:
1. Power down the PLL.
2. Reset the PLL control register.
3. Start the PLL.
4. Poll the lock bit.
5. Assert the core clock enable bit after the PLL lock
is acquired.
The PLL control register (Register R1, Address 0x4002) is a 48-bit register where all bits must be written with a single continuous write to the control port.
Rev. 0 | Page 23 of 88
ADAU1461
G

CLOCKING AND SAMPLING RATES

R1: PLL CONT ROL REGISTER
MCLK
÷ X
× (R + N/M)
CLKSRC

CORE CLOCK

Clocks for the converters, the serial ports, and the DSP are derived from the core clock. The core clock can be derived directly from MCLK or it can be generated by the PLL. The CLKSRC bit (Bit 3 in Register R0, Address 0x4000) determines the clock source.
The INFREQ[1:0] bits should be set according to the expected input clock rate selected by CLKSRC; this value also determines the core clock rate and the base sampling frequency, f
For example, if the input to CLKSRC = 49.152 MHz (from PLL), then
INFREQ[1:0] = 1024 × f
f
= 49.152 MHz/1024 = 48 kHz
S
The PLL output clock rate is always 1024 × f control register automatically sets the INFREQ[1:0] bits to 1024 × f
when using the PLL. When using a direct clock, the
S
INFREQ[1:0] frequency should be set according to the MCLK pin clock rate and the desired base sampling frequency.
S
, and the clock
S
R0: CLOCK
CONTROL REGISTER
INFREQ[1:0]
256 ×
f
768 ×
f
S
Figure 30. Clock Tree Diagram
.
S
, 512 ×
S
, 1024 ×
R57: DSP SAMPLIN
RATE SETTING
DSPSR[3:0]
f
/0.5, 1, 1.5, 2, 3, 4, 6
S
R17: CONVERTER
CORE
CLOCK
f
,
S
f
S
SAMPLING RAT E
CONVSR[2:0]
f
/0.5, 1, 1.5, 2, 3, 4, 6
S
R64: SERIAL PO RT
SAMPLING RAT E
SPSR[2:0]
f
/0.5, 1, 1.5, 2, 3, 4, 6
S
ADC_SDATA/GPI O1
DAC_SDATA/GPI O0
BCLK/GPI O2
LRCLK/GPIO3
ADCs
DACs
SERIAL
DATA INPUT/
OUTPUT PO RT
To utilize the maximum amount of DSP instructions, the core clock should run at a rate of 1024 × f
.
S
Table 11. Clock Control Register (Register R0, Address 0x4000)
Bits Bit Name Settings
3 CLKSRC
0: Direct from MCLK pin (default) 1: PLL clock
[2:1] INFREQ[1:0]
0 COREN
00: 256 × f 01: 512 × f 10: 768 × f 11: 1024 × f
0: Core clock disabled (default)
(default)
S
S
S
S
1: Core clock enabled
08914-020
Rev. 0 | Page 24 of 88
ADAU1461

SAMPLING RATES

The ADCs, DACs, and serial port share a common sampling rate that is set in Register R17 (Converter Control 0 register, Address 0x4017). The CONVSR[2:0] bits set the sampling rate as a ratio of the base sampling frequency. The DSP sampling rate is set in Register R57 (DSP sampling rate setting register, Address 0x40EB) using the DSPSR[3:0] bits, and the serial port sampling rate is set in Register R64 (serial port sampling rate register, Address 0x40F8) using the SPSR[2:0] bits.
It is recommended that the sampling rates for the converters, serial ports, and DSP be set to the same value, unless appropriate compensation filtering is done within the DSP. Ta b le 1 2 and Tabl e 13 list the sampling rate divisions for common base sampling rates.
Table 12. 48 kHz Base Sampling Rate Divisions
Base Sampling Frequency
fS = 48 kHz fS/1 48 kHz
Table 13. 44.1 kHz Base Sampling Rate Divisions
Base Sampling Frequency
fS = 44.1 kHz fS/1 44.1 kHz
Sampling Rate Scaling Sampling Rate
fS/6 8 kHz fS/4 12 kHz fS/3 16 kHz fS/2 24 kHz fS/1.5 32 kHz fS/0.5 96 kHz
Sampling Rate Scaling Sampling Rate
fS/6 7.35 kHz fS/4 11.025 kHz fS/3 14.7 kHz fS/2 22.05 kHz fS/1.5 29.4 kHz fS/0.5 88.2 kHz
PLL
The PLL uses the MCLK as a reference to generate the core clock. PLL settings are set in Register R1 (PLL control register, Address 0x4002). Depending on the MCLK frequency, the PLL must be set for either integer or fractional mode. The PLL can accept input frequencies in the range of 8 MHz to 27 MHz.
All six bytes in the PLL control register must be written with a single continuous write to the control port.
TO PLL
MCLK
÷ X
× (R + N/M)
Figure 31. PLL Block Diagram

Integer Mode

Integer mode is used when the MCLK is an integer (R) multiple of the PLL output (1024 × f
).
S
For example, if MCLK = 12.288 MHz and f
PLL required output = 1024 × 48 kHz = 49.152 MHz
R = 49.152 MHz/12.288 MHz = 4
In integer mode, the values set for N and M are ignored.

Fractional Mode

Fractional mode is used when the MCLK is a fractional (R + (N/M)) multiple of the PLL output.
For example, if MCLK = 12 MHz and f
PLL required output = 1024 × 48 kHz = 49.152 MHz
R + (N/M) = 49.152 MHz/12 MHz = 4 + (12/125)
Common fractional PLL parameter settings for 44.1 kHz and 48 kHz sampling rates can be found in Table 1 5 and Ta b l e 1 6 .
The PLL outputs a clock in the range of 41 MHz to 54 MHz, which should be taken into account when calculating PLL values and MCLK frequencies.
CLOCK DIVIDER
= 48 kHz, then
S
= 48 kHz, then
S
08914-021
Table 14. PLL Control Register (Register R1, Address 0x4002)
Bits Bit Name Description
[47:32] M[15:0] Denominator of the fractional PLL: 16-bit binary number
0x00FD: M = 253 (default)
[31:16] N[15:0] Numerator of the fractional PLL: 16-bit binary number
0x000C: N = 12 (default)
[14:11] R[3:0] Integer part of PLL: four bits, only values 2 to 8 are valid
0010: R = 2 (default) 0011: R = 3 0100: R = 4 0101: R = 5 0110: R = 6 0111: R = 7 1000: R = 8
Rev. 0 | Page 25 of 88
ADAU1461
Bits Bit Name Description
[10:9] X[1:0] PLL input clock divider
00: X = 1 (default) 01: X = 2 10: X = 3 11: X = 4
8 Type PLL operation mode
0: Integer (default) 1: Fractional
1 Lock PLL lock (read-only bit)
0: PLL unlocked (default) 1: PLL locked
0 PLLEN PLL enable
0: PLL disabled (default) 1: PLL enabled
Table 15. Fractional PLL Parameter Settings for f
= 44.1 kHz (PLL Output = 45.1584 MHz = 1024 × fS)
S
MCLK Input (MHz) Input Divider (X) Integer (R) Denominator (M) Numerator (N) R2: PLL Control Setting (Hex)
8 1 5 625 403 0x0271 0193 2901 12 1 3 625 477 0x0271 01DD 1901 13 1 3 8125 3849 0x1FBD 0F09 1901
14.4 2 6 125 34 0x007D 0022 3301
19.2 2 4 125 88 0x007D 0058 2301
19.68 2 4 1025 604 0x0401 025C 2301
19.8 2 4 1375 772 0x055F 0304 2301 24 2 3 625 477 0x0271 01DD 1B01 26 2 3 8125 3849 0x1FBD 0F09 1B01 27 2 3 1875 647 0x0753 0287 1B01
Table 16. Fractional PLL Parameter Settings for f
= 48 kHz (PLL Output = 49.152 MHz = 1024 × fS)
S
MCLK Input (MHz) Input Divider (X) Integer (R) Denominator (M) Numerator (N) R2: PLL Control Setting (Hex)
8 1 6 125 18 0x007D 0012 3101 12 1 4 125 12 0x007D 000C 2101 13 1 3 1625 1269 0x0659 04F5 1901
14.4 2 6 75 62 0x004B 003E 3301
19.2 2 5 25 3 0x0019 0003 2B01
19.68 2 4 205 204 0x00CD 00CC 2301
19.8 2 4 825 796 0x0339 031C 2301 24 2 4 125 12 0x007D 000C 2301 26 2 3 1625 1269 0x0659 04F5 1B01 27 2 3 1125 721 0x0465 02D1 1B01
Table 17. Integer PLL Parameter Settings for f
= 48 kHz (PLL Output = 49.152 MHz = 1024 × fS)
S
MCLK Input (MHz) Input Divider (X) Integer (R) Denominator (M) Numerator (N) R2: PLL Control Setting (Hex)
12.288 1 4 Don’t care Don’t care 0xXXXX XXXX 2001
24.576 1 2 Don’t care Don’t care 0xXXXX XXXX 1001
1
X = don’t care.
Rev. 0 | Page 26 of 88
1
ADAU1461

RECORD SIGNAL PATH

MICIN LEF T
DIGITAL
JACKDET/MICI N
LINN
LINP
PGA
–12dB TO +35.25dB
LINNG[2:0]
–12dB TO +6d B
LDBOOST [1:0]
MUTE/0dB/20dB
LINPG[ 2:0]
MICROPHONE
INTERFACE
MIXER 1
(LEFT RECORD
MIXER)
MICIN RIGHT
LEFT
ADC
–12dB TO +6d B
ALCSEL[2:0]
PGA
ALC CONTROL
–12dB TO +35.25dB
ALCSEL[2:0]
ALC CONTROL
MX1AUXG[2:0]
–12dB TO +6d B
MX2AUXG[2:0]
–12dB TO +6d B
RINPG[2:0]
–12dB TO +6d B
RDBOOST[1: 0]
MUTE/0dB/20dB
RINNG[2:0]
–12dB TO +6d B
LDVOL[5:0]
LAUX
RAUX
RINP
RINN
RDVOL[5:0]
Figure 32. Record Signal Path

INPUT SIGNAL PATHS

The ADAU1461 can accept both line level and microphone inputs. The analog inputs can be configured in a single-ended or differential configuration. There is also an input for a digital microphone. The analog inputs are biased at AVDD/2. Unused input pins should be connected to CM.
Each of the six analog inputs has individual gain controls (boost or cut). The input signals are mixed and routed to an ADC. The mixed input signals can also bypass the ADCs and be routed directly to the playback mixers. Left channel inputs are mixed before the left ADC; however, it is possible to route the mixed analog signal around the ADC and output it into a left or right output channel. The same capabilities apply to the right channel and the right ADC.
MIXER 1 OUTPUT
(TO PLAYBACK
MIXER)
AUXILIARY BYPASS
MIXER 2
OUTPUT
(TO PLAYBACK
MIXER)
MIXER 2
(RIGHT RECORD
MIXER)
RIGHT
ADC
INSEL
INSEL
DECIMATOR/
ALC/ DIGITAL VOLUME
08914-022
Signals are inverted through the PGAs and the mixers. The result of this inversion is that differential signals input through the PGA are output from the ADCs at the same polarity as they are input. Single-ended inputs that pass through the mixer but not through the PGA are inverted. The ADCs are noninverting.
The input impedance of the analog inputs varies with the gain of the PGA. This impedance ranges from 1.7 k at the 35.25 dB gain setting to 80.4 k at the −12 dB setting. This range is shown in Figure 25.
Rev. 0 | Page 27 of 88
Loading...
+ 61 hidden pages