1. PIN NAMES ARE F OR THE CMOS P IN CONFIG URATION ONLY;
SEE FIGURE 7 FOR LVDS PIN NAMES.
FEATURES
1.8 V analog supply operation
1.8 V CMOS or LVDS outputs
SNR = 74.5 dBFS @ 70 MHz
SFDR = 91 dBc @ 70 MHz
Low power: 78 mW/channel ADC core @ 125 MSPS
Differential analog input with 650 MHz bandwidth
IF sampling frequencies to 200 MHz
On-chip voltage reference and sample-and-hold circuit
2 V p-p differential analog input
DNL = ±0.35 LSB
Serial port control options
Offset binary, gray code, or twos complement data format
Optional clock duty cycle stabilizer
Integer 1-to-8 input clock divider
Data output multiplex option
Built-in selectable digital test pattern generation
Energy-saving power-down modes
Data clock out with programmable clock and data
alignment
Analog-to-Digital Converter
FUNCTIONAL BLOCK DIAGRAM
APPLICATIONS
Communications
Diversity radio systems
Multimode digital receivers
GSM, EDGE, W-CDMA, LT E,
CDMA2000, WiMAX, TD-SCDMA
I/Q demodulation systems
Smart antenna systems
Broadband data applications
Battery-powered instruments
Hand held scope meters
Portable medical imaging
Ultrasound
Radar/LIDAR
1
This product is protected by a U.S patent.
Rev.
0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
Figure 1.
PRODUCT HIGHLIGHTS
1. The AD9648
power supply and features a separate digital output
driver supply to accommodate 1.8 V CMOS or LVDS
logic families.
2. The patented sample-and-hold circuit maintains
excellent performance for input frequencies up to
200 MHz and is designed for low cost, low power, and
ease of use.
3. A standard serial port interface supports various
product features and functions, such as data output
formatting, internal clock divider, power-down,
DCO/data timing and offset adjustments.
4. The AD9648 is packaged in a 64-lead RoHS compliant
LFCSP that is pin compatible with the AD9650/
AD9269/AD926816-bit ADC, the AD925814-bit
ADC, the AD9628/AD9231 12-bit ADCs, and the
AD9608/AD9204 10-bit ADCs, enabling a simple
migration path between 10-bit and 16-bit converters
sampling from 20 MSPS to 125 MSPS.
1
operates from a single 1.8 V analog
2011 Analog Devices, Inc. All rights reserved.
www.analog.com
AD9648
TABLE OF CONTENTS
Features .............................................................................................. 1
The AD9648 is a monolithic, dual-channel, 1.8 V supply, 14-bit,
105 MSPS/125 MSPS analog-to-digital converter (ADC). It
features a high performance sample-and-hold circuit and onchip voltage reference.
The product uses multistage differential pipeline architecture
with output error correction logic to provide 14-bit accuracy at
125 MSPS data rates and to guarantee no missing codes over the
full operating temperature range.
The ADC contains several features designed to maximize
flexibility and minimize system cost, such as programmable
clock and data alignment and programmable digital test pattern
generation. The available digital test patterns include built-in
deterministic and pseudorandom patterns, along with custom
user-defined test patterns entered via the serial port interface (SPI).
A differential clock input controls all internal conversion cycles.
An optional duty cycle stabilizer (DCS) compensates for wide
variations in the clock duty cycle while maintaining excellent
overall ADC performance.
The digital output data is presented in offset binary, Gray code, or
twos complement format. A data output clock (DCO) is provided
for each ADC channel to ensure proper latch timing with receiving
logic. Output logic levels of 1.8 V CMOS or LVDS are supported.
Output data can also be multiplexed onto a single output bus.
The AD9648 is available in a 64-lead RoHS compliant LFCSP and
is specified over the industrial temperature range (−40°C to
+85°C). This product is protected by a U.S. patent.
AD9648-105 AD9648-125
Parameter1 Temp Min Typ Max Min Typ Max Unit
SIGNAL-TO-NOISE-RATIO (SNR)
fIN = 9.7 MHz 25°C 75.4 75.0 dBFS
fIN = 30.5 MHz 25°C 75.2 74.7 dBFS
fIN = 70 MHz 25°C 74.8 74.5 dBFS
Full 73.8 73.0 dBFS
fIN = 100 MHz
fIN = 200 MHz 25°C 71.0 71.5 dBFS
SIGNAL-TO-NOISE AND DISTORTION (SINAD)
fIN = 9.7 MHz 25°C 74.3 73.9 dBFS
fIN = 30.5 MHz 25°C 74.0 73.4 dBFS
fIN = 70 MHz 25°C 73.4 73.3 dBFS
Full 73.0 72.8 dBFS
fIN = 100 MHz 25°C 72.8 72.8 dBFS
fIN = 200 MHz 25°C
EFFECTIVE NUMBER OF BITS (ENOB)
fIN = 9.7 MHz
fIN = 30.5 MHz
fIN = 70 MHz
fIN = 100 MHz
fIN = 200 MHz
WORST SECOND OR THIRD HARMONIC
fIN = 9.7 MHz
fIN = 30.5 MHz
fIN = 70 MHz
fIN = 100 MHz
fIN = 200 MHz
Full 172.3 181.3 202.5 211.5 mW
Full 180.4 189.4 211.5 220.5 mW
25°C 73.8 73.9 dBFS
25°C
12.0
11.9
dBFS
Bits
25°C
25°C
25°C
25°C
25°C
25°C
−98 −96
−90 −90
−93 −91
11.8
11.8
11.3
11.8
11.8
11.4
Bits
Bits
Bits
dBc
dBc
dBc
−86 −82
25°C
25°C
−92 −90
−81 −84
dBc
dBc
Rev. 0 | Page 5 of 44
AD9648
AD9648-105 AD9648-125
Parameter1 Temp Min Typ Max Min Typ Max Unit
SPURIOUS-FREE DYNAMIC RANGE (SFDR)
fIN = 9.7 MHz
fIN = 30.5 MHz
fIN = 70 MHz
fIN = 100 MHz
fIN = 200 MHz
WORST OTHER (HARMONIC OR SPUR)
fIN = 9.7 MHz
fIN = 30.5 MHz
fIN = 70 MHz
fIN = 100 MHz
fIN = 200 MHz
TWO-TONE SFDR
fIN = 29 MHz (−7 dBFS ), 32 MHz (−7 dBFS )
CROSSTALK2
ANALOG INPUT BANDWIDTH
1
See the AN-835 Application Note, Understanding High Speed ADC Testing and Evaluation, for a complete set of definitions.
2
Crosstalk is measured at 100 MHz with −1.0 dBFS on one channel and no input on the alternate channel.
25°C
25°C
25°C
Full
25°C
25°C
25°C
25°C
25°C
Full
25°C
25°C
25°C
Full
25°C
98 96
90 90
93 91
86 82
92 90
81 84
−98 −97
−96 −97
−96 −97
−91 −90
−92 −92
−90 −90
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
dBc
84 84
−95 −95
650 650
dBc
dB
MHz
DIGITAL SPECIFICATIONS
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS dierential input, 1.0 V internal reference, and DCS enabled, unless
otherwise noted.
Table 3.
AD9628-105/125
Parameter Temp Min Typ Max Unit
DIFFERENTIAL CLOCK INPUTS (CLK+, CLK−)
Logic Compliance CMOS/LVDS/LVPECL
Internal Common-Mode Bias Full 0.9 V
Differential Input Voltage Full 0.3 3.6 V p-p
Input Voltage Range Full AGND - 0.3 AVDD + 0.2 V
Input Common-Mode Range Full 0.9 1.4 V
High Level Input Current Full −10 +10 μA
Low Level Input Current Full −10 +10 μA
Input Capacitance Full 4 pF
Input Resistance Full 8 10 12 kΩ
LOGIC INPUT (CSB)1
High Level Input Voltage Full 1.22 DRVDD + 0.2 V
Low Level Input Voltage Full 0 0.6 V
High Level Input Current Full −10 +10 μA
Low Level Input Current Full 40 132 μA
Input Resistance Full 26 kΩ
Input Capacitance Full 2 pF
Rev. 0 | Page 6 of 44
AD9648
AD9628-105/125
Parameter Temp Min Typ Max Unit
LOGIC INPUT (SCLK/DFS/SYNC)2
High Level Input Voltage Full 1.22 DRVDD + 0.2 V
Low Level Input Voltage Full 0 0.6 V
High Level Input Current (VIN = 1.8 V) Full −92 −135 μA
Low Level Input Current Full −10 +10 μA
Input Resistance Full 26 kΩ
Input Capacitance Full 2 pF
LOGIC INPUT/OUTPUT (SDIO/DCS)1
High Level Input Voltage Full 1.22 DRVDD + 0.2 V
Low Level Input Voltage Full 0 0.6 V
High Level Input Current Full −10 +10 μA
Low Level Input Current Full 38 128 μA
Input Resistance Full 26 kΩ
Input Capacitance Full 5 pF
LOGIC INPUTS (OEB, PDWN)2
High Level Input Voltage Full 1.22 DRVDD + 0.2 V
Low Level Input Voltage Full 0 0.6 V
High Level Input Current (VIN = 1.8 V) Full −90 −134 μA
Low Level Input Current Full −10 +10 μA
Input Resistance Full 26 kΩ
Input Capacitance Full 5 pF
DIGITAL OUTPUTS
CMOS Mode—DRVDD = 1.8 V
High Level Output Voltage
IOH = 50 μA Full 1.79 V
IOH = 0.5 mA Full 1.75 V
Low Level Output Voltage
IOL = 1.6 mA Full 0.2 V
IOL = 50 μA Full 0.05 V
LVDS Mode—DRVDD = 1.8 V
Differential Output Voltage (VOD), ANSI Mode Full 290 345 400 mV
Output Offset Voltage (VOS), ANSI Mode Full 1.15 1.25 1.35 V
Differential Output Voltage (VOD), Reduced Swing Mode Full 160 200 230 mV
Output Offset Voltage (VOS), Reduced Swing Mode Full 1.15 1.25 1.35 V
1
Pull up.
2
Pull down.
Rev. 0 | Page 7 of 44
AD9648
SWITCHING SPECIFICATIONS
AVDD = 1.8 V, DRVDD = 1.8 V, maximum sample rate, VIN = −1.0 dBFS differential input, 1.0 V internal reference, and DCS enabled, unless
otherwise noted.
Table 4.
AD9648-105 AD9648-125
Parameter Temp Min Typ Max Min Typ Max Unit
CLOCK INPUT PARAMETERS
Input Clock Rate Full 1000 1000 MHz
Conversion Rate1
DCS Enabled Full 20 105 20 125 MSPS
DCS Disabled Full 10 105 10 125 MSPS
CLK Period—Divide-by-1 Mode (t
CLK Pulse Width High (tCH) Full 4.76 4 ns
Aperture Delay (tA) Full 1.0 1.0 ns
Aperture Uncertainty (Jitter, tJ) Full 0.07 0.07 ps rms
DATA OUTPUT PARAMETERS
CMOS Mode (DRVDD = 1.8 V)
Data Propagation Delay (tPD) Full 1.8 2.9 4.4 1.8 2.9 4.4 ns
DCO Propagation Delay (t
DCO to Data Skew (t
SKEW
LVDS Mode (DRVDD = 1.8 V)
Data Propagation Delay (tPD) Full 2.4
DCO Propagation Delay (t
DCO to Data Skew (t
SKEW
CMOS Mode Pipeline Delay (Latency) Full 16 16 Cycles
LVDS Mode Pipeline Delay (Latency) Channel A/Channel B Full 16/16.5 16/16.5 Cycles
Wake-Up Time (Power Down)3 Full 350 350 µs
Wake-Up Time (Standby) Full 250 250 ns
Out-of-Range Recovery Time Full 2 2 Cycles
1
Conversion rate is the clock rate after the divider.
2
Additional DCO delay can be added by writing to Bits[2:0] in SPI Register 0x17 (see Table 18).
3
Wake-up time is defined as the time required to return to normal operation from power-down mode.
) Full 9.52 8 ns
CLK
)2 Full 2.0 3.1 4.4 2.0 3.1 4.4 ns
DCO
) Full −1.2
)2 Full
DCO
2.4 2.4
−0.1
+1.0−1.2
−0.1
+1.0ns
2.4 ns
ns
) Full −0.20 +0.03 +0.25 −0.20+0.03 +0.25 ns
Rev. 0 | Page 8 of 44
AD9648
SSYNC
HIGH
t
PD
t
SKEW
t
CH
t
DCO
t
CLK
N – 16N – 17
N – 1
N + 1
N + 2
N + 3
N + 5
N + 4
N
N – 15N – 14N – 13N – 12
VIN
CLK+
CLK–
CH A/CH B D ATA
DCOA/DCOB
t
A
09975-002
TIMING SPECIFICATIONS
Table 5.
Parameter Description Limit
SYNC TIMING
REQUIREMENTS
t
SYNC to rising edge of CLK+ setup time 0.24 ns typ
t
SYNC to rising edge of CLK+ hold time 0.40 ns typ
HSYNC
SPI TIMING
REQUIREMENTS
tDS Setup time between the data and the rising edge of SCLK 2 ns min
tDH Hold time between the data and the rising edge of SCLK 2 ns min
t
Period of the SCLK 40 ns min
CLK
tS Setup time between CSB and SCLK 2 ns min
tH Hold time between CSB and SCLK 2 ns min
t
SCLK pulse width high 10 ns min
t
SCLK pulse width low 10 ns min
LOW
t
Time required for the SDIO pin to switch from an input to an output relative
EN_SDIO
10 ns min
to the SCLK falling edge
t
Time required for the SDIO pin to switch from an output to an input relative
DIS_SDIO
10 ns min
to the SCLK rising edge
Timing Diagrams
Unit
Figure 2. CMOS Default Output Mode Data Output Timing
Rev. 0 | Page 9 of 44
AD9648
t
PD
t
SKEW
t
CH
t
DCO
t
CLK
CH A
N – 16
CH B
N – 15
CH A
N – 14
CH B
N – 13
CH A
N – 12
CH B
N – 11
CH A
N – 10
CH B
N – 9
CH A
N – 8
N – 1
N + 1
N + 2
N + 3
N + 5
N + 4
N
VIN
CLK+
CLK–
CH A DATA
DCOA/DCOB
t
A
CH B DATA
CH B
N – 16
CH A
N – 15
CH B
N – 14
CH A
N – 13
CH B
N – 12
CH A
N – 11
CH B
N – 10
CH A
N – 9
CH B
N – 8
09975-003
t
PD
t
SKEW
t
CH
t
DCO
t
CLK
CH A
N – 12
CH B
N – 12
CH A
N – 11
CH B
N – 11
CH A
N – 10
CH B
N – 10
CH A
N – 9
CH B
N – 9
CH A
N – 8
N – 1
N + 1
N + 2
N + 3
N + 5
N + 4
N
VIN
CLK+
CLK–
DCO+
DCO–
D0+ (LSB)
PARALLEL
INTERLEAVED
MODE
D0– (LSB)
D13+ (MSB)
D13– (MSB)
t
A
CH A
N – 12
CH B
N – 12
CH A
N – 11
CH B
N – 11
CH A
N – 10
CH B
N – 10
CH A
N – 9
CH B
N – 9
CH A
N – 8
CH A0
N – 12
CH A1
N – 12
CH A0
N – 11
CH A1
N – 11
CH A0
N – 10
CH A1
N – 10
CH A0
N – 9
CH A1
N – 9
CH A0
N – 8
D1+/0+ (L S B)
CHANNEL
MULTIPLEXED
MODE
CHANNEL A
D1–/D0– (LSB)
D13+/D12+ (MS B)
D13–/D12– (MSB)
CH A12
N – 12
CH A13
N – 12
CH A12
N – 11
CH A13
N – 11
CH A12
N – 10
CH A13
N – 10
CH A12
N – 9
CH A13
N – 9
CH A12
N – 8
CH B0
N – 12
CH B1
N – 12
CH B0
N – 11
CH B1
N – 11
CH B0
N – 10
CH B1
N – 10
CH B0
N – 9
CH B1
N – 9
CH B0
N – 8
D1+/D0+ (L S B)
CHANNEL
MULTIPLEXED
MODE
CHANNEL B
D1–/D0– (LSB)
D13+/D12+ (MS B)
D13–/D12– (MSB)
CH B12
N – 12
CH B13
N – 12
CH B12
N – 11
CH B13
N – 11
CH B12
N – 10
CH B13
N – 10
CH A12
N – 9
CH A13
N – 9
CH A12
N – 8
09975-004
Figure 3. CMOS Interleaved Output Mode Data Output Timing
Figure 4. LVDS Modes for Data Output Timing
Rev. 0 | Page 10 of 44
AD9648
SYNC
CLK+
t
HSYNC
t
SSYNC
09975-005
Figure 5. SYNC Input Timing Requirements
Rev. 0 | Page 11 of 44
AD9648
Ψ
ABSOLUTE MAXIMUM RATINGS
Table 6.
Parameter Rating
Electrical
1
AVDD to AGND −0.3 V to +2.0 V
DRVDD to AGND −0.3 V to +2.0 V
VIN+A/VIN+B, VIN−A/VIN−B to AGND −0.3 V to AVDD + 0.2 V
CLK+, CLK− to AGND −0.3 V to AVDD + 0.2 V
SYNC to AGND −0.3 V to AVDD + 0.2 V
VCM to AGND −0.3 V to AVDD + 0.2 V
RBIAS to AGND −0.3 V to AVDD + 0.2 V
CSB to AGND −0.3 V to DRVDD + 0.2 V
SCLK/DFS to AGND −0.3 V to DRVDD + 0.2 V
SDIO/DCS to AGND −0.3 V to DRVDD + 0.2 V
OEB −0.3 V to DRVDD + 0.2 V
PDWN −0.3 V to DRVDD + 0.2 V
D0A/D0B through D13A/D13B to
AGND
DCOA/DCOB to AGND
−0.3 V to DRVDD + 0.2 V
−0.3 V to DRVDD + 0.2 V
Environmental
Operating Temperature Range
−40°C to +85°C
(Ambient)
Maximum Junction Temperature
150°C
Under Bias
Storage Temperature Range
−65°C to +150°C
(Ambient)
1
The inputs and outputs are rated to the supply voltage (AVDD or DRVDD) +
0.2 V but should not exceed 2.1 V.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
THERMAL CHARACTERISTICS
The exposed paddle must be soldered to the ground plane for
the LFCSP package. Soldering the exposed paddle to the PCB
increases the reliability of the solder joints and maximizes the
thermal capability of the package.
Table 7. Thermal Resistance
Airflow
Velocity
Package Type
64-Lead LFCSP
9 mm × 9 mm
(CP-64-4)
1
Per JEDEC 51-7, plus JEDEC 25-5 2S2P test board.
2
Per JEDEC JESD51-2 (still air) or JEDEC JESD51-6 (moving air).
3
Per MIL-Std 883, Method 1012.1.
4
Per JEDEC JESD51-8 (still air).
(m/sec) θ
0 22.3 1.4 N/A 0.1 °C/W
1.0 19.5 N/A 11.8 0.2 °C/W
2.5 17.5 N/A N/A 0.2 °C/W
1, 2
JA
θ
1, 3
JC
θ
1, 4
JB
1,2
JT
Unit
Typ i c a l θJA is specified for a 4-layer PCB with a solid ground
plane. As shown Table 7, airflow improves heat dissipation,
which reduces θ
. In addition, metal in direct contact with the
JA
package leads from metal traces, through holes, ground, and
power planes reduces θ