ANALOG DEVICES AD9559 Service Manual

Line Card Adaptive Clock Translator
AD9559
Rev. 0
Trademarks and registered trademarks are the prop erty of their respective owners.
Fax: 781.461.3113 ©2012 Analog Devices, Inc. All rights reserved.
REFERENCE
INPUT
MONITOR
AND MUX
STABLE
SOURCE
DIGITAL
PLL 0
DIGITAL
PLL 1
CLOCK
MULTIPLIER
ANALOG
PLL 0
ANALOG
PLL 1
÷3 TO ÷11
HF DIVIDER 0
÷3 TO ÷11
HF DIVIDER 1
EEPROM
SERIAL INTERFACE
(SPI OR I
2
C)
STATUS AND
CONTROL PINS
CHANNEL 0B
DIVIDER
CHANNEL 0A
DIVIDER
CHANNEL 1A
DIVIDER
CHANNEL 1B
DIVIDER
AD9559
10644-001
Data Sheet

FEATURES

Supports GR-1244 Stratum 3 stability in holdover mode Supports smooth reference switchover with virtually
no disturbance on output phase
Supports Telcordia GR-253 jitter generation, transfer, and
tolerance for SONET/SDH up to OC-192 systems Supports ITU-T G.8262 synchronous Ethernet slave clocks Supports ITU-T G.823, G.824, G.825, and G.8261 Auto/manual holdover and reference switchover Adaptive clocking allows dynamic adjustment of feedback
dividers for use in OTN mapping/demapping applications Dual digital PLL architecture with four reference inputs
(single-ended or differential) 4x2 crosspoint allows any reference input to drive either PLL Input reference frequencies from 2 kHz to 1250 MHz Reference validation and frequency monitoring (2 ppm) Programmable input reference switchover priority 20-bit programmable input reference divider 4 pairs of clock output pins with each pair configurable as a
single differential LVDS/HSTL output or as 2 single-ended
CMOS outputs Output frequencies: 262 kHz to 1250 MHz Programmable 17-bit integer and 24-bit fractional
feedback divider in digital PLL Programmable digital loop filter covering loop bandwidths
from 0.1 Hz to 2 kHz Low noise system clock multiplier Optional crystal resonator for system clock input On-chip EEPROM to store multiple power-up profiles
Dual PLL, Quad Input, Multiservice
Pin program function for easy frequency translation
configuration Software controlled power-down 72-lead (10 mm × 10 mm) LFCSP package

APPLICATIONS

Network synchronization, including synchronous Ethernet
and SDH to OTN mapping/demapping Cleanup of reference clock jitter SONET/SDH clocks up to OC-192, including FEC Stratum 3 holdover, jitter cleanup, and phase transient
control Wireless base station controllers Cable infrastructure Data communications

GENERAL DESCRIPTION

The AD9559 is a low loop bandwidth clock multiplier that provides jitter cleanup and synchronization for many systems, including synchronous optical networks (SONET/SDH). The
AD9559 generates an output clock synchronized to up to four
external input references. The digital PLL allows for reduction of input time jitter or phase noise associated with the external references. The digitally controlled loop and holdover circuitry of the AD9559 continuously generates a low jitter output clock even when all reference inputs have failed.
The AD9559 operates over an industrial temperature range of
−40°C to +85°C. If a single DPLL version of this part is needed, refer to the
AD9557.

FUNCTIONAL BLOCK DIAGRAM

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subj ect to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com
AD9559 Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 3
Specifications ..................................................................................... 4
Supply Voltage ............................................................................... 4
Supply Current .............................................................................. 4
Power Dissipation ......................................................................... 5
System Clock Inputs (XOA, XOB) ............................................. 5
Reference Inputs ........................................................................... 6
Reference Monitors ...................................................................... 7
Reference Switchover Specifications .......................................... 7
Distribution Clock Outputs ........................................................ 8
Time Duration of Digital Functions ........................................ 10
Digital PLL (DPLL_0 and DPLL_1) ........................................ 10
Analog PLL (APLL_0 and APLL_1) ........................................ 10
Digital PLL Lock Detection ...................................................... 10
Holdover Specifications ............................................................. 10
Serial Port Specifications—SPI Mode ...................................... 11
Serial Port Specifications—I2C Mode ...................................... 12
Logic Inputs (
Logic Outputs (M5 to M0) ........................................................ 12
Jitter Generation ......................................................................... 13
Absolute Maximum Ratings .......................................................... 16
ESD Caution ................................................................................ 16
Pin Configuration and Function Descriptions ........................... 17
Typical Performance Characteristics ........................................... 20
Input/Output Termination Recommendations .......................... 26
Getting Started ................................................................................ 27
Chip Power Monitor and Startup ............................................. 27
Multifunction Pins at Reset/Power-Up ................................... 27
Device Register Programming Using a Register Setup File .. 27
Register Programming Overview ............................................. 28
Theory of Operation ...................................................................... 31
Overview ...................................................................................... 31
Reference Input Physical Connections .................................... 32
Reference Monitors .................................................................... 32
Reference Input Block ................................................................ 32
Reference Switchover ................................................................. 33
RESET
, M5 to M0) ............................................. 12
Rev. 0 | Page 2 of 120
Digital PLL (DPLL) Core .......................................................... 34
Loop Control State Machine ..................................................... 36
System Clock (SYSCLK) ................................................................ 37
SYSCLK Inputs ........................................................................... 37
SYSCLK Multiplier ..................................................................... 37
Output PLL (APLL) ....................................................................... 39
APLL Configuration .................................................................. 39
APLL Calibration ....................................................................... 39
Clock Distribution .......................................................................... 40
Clock Dividers ............................................................................ 40
Output Enable ............................................................................. 40
Output Mode and Power-Down ............................................... 40
Clock Distribution Synchronization ........................................ 41
Status and Control .......................................................................... 42
Multifunction Pins (M0 to M5) ............................................... 42
IRQ Function .............................................................................. 42
Watchd o g Tim e r ......................................................................... 43
EEPROM ..................................................................................... 43
Serial Control Port ......................................................................... 49
SPI/I²C Port Selection ................................................................ 49
SPI Serial Port Operation .......................................................... 49
I²C Serial Port Operation .......................................................... 53
Programming the I/O Registers ................................................... 56
Buffered/Active Registers .......................................................... 56
Write Detect Registers ............................................................... 56
Autoclear Registers ..................................................................... 56
Register Access Restrictions ...................................................... 56
Thermal Performance .................................................................... 57
Power Supply Partitions ................................................................. 58
3.3 V Supplies .............................................................................. 58
1.8 V Supplies .............................................................................. 58
Bypass Capacitors for Pin 21 and Pin 33 ................................. 58
Register Map ................................................................................... 59
Register Map Bit Descriptions ...................................................... 72
Serial Control Port Configuration (Register 0x0000 to
Register 0x0005) ......................................................................... 72
Clock Part Family ID (Register 0x000C and
Register 0x000D) ........................................................................ 72
User Scratchpad (Register 0x000E and Register 0x000F) ..... 73
General Configuration (Register 0x0100 to
Register 0x0109) ......................................................................... 73
Data Sheet AD9559
IRQ Mask (Register 0x010A to Register 0x112) ..................... 74
System Clock (Register 0x0200 to Register 0x0207) .............. 76
Reference Input A (Register 0x0300 to Register 0x031A) ..... 77
Reference Input B (Register 0x0320 to Register 0x033A) ...... 78
Reference Input C (Register 0x0340 to Register 0x035A) ..... 79
Reference Input D (Register 0x0360 to Register 0x037A) ..... 81
DPLL_0 Controls (Register 0x0400 to Register 0x0415) ....... 82
APLL_0 Configuration (Register 0x0420 to
Register 0x0423) .......................................................................... 84
PLL_0 Output Sync and Clock Distribution
(Register 0x0424 to Register 0x042E) ....................................... 85
DPLL_0 Settings for Reference Input A (REFA)
(Register 0x0440 to Register 0x044C) ...................................... 87
DPLL_0 Settings for Reference Input B (REFB)
(Register 0x044D to Register 0x0459) ...................................... 88
DPLL_0 Settings for Reference Input C (REFC)
(Register 0x045A to Register 0x0466) ...................................... 89
DPLL_0 Settings for Reference Input D (REFD)
(Register 0x0467 to Register 0x0473) ....................................... 90
DPLL_1 Controls (Register 0x0500 to Register 0x0515) ....... 91
APLL_1 Configuration (Register 0x0520 to
Register 0x0523) .......................................................................... 93
PLL_1 Output Sync and Clock Distribution
(Register 0x0524 to Register 0x052E) ....................................... 94
DPLL_1 Settings for Reference Input C (REFC)
(Register 0x0540 to Register 0x054C) ...................................... 96
DPLL_1 Settings for Reference Input D (REFD)
(Register 0x054D to Register 0x0559) ...................................... 97
DPLL_1 Settings for Reference Input A (REFA)
(Register 0x055A to Register 0x0566) ...................................... 98
DPLL_1 Settings for Reference Input B (REFB)
(Register 0x0567 to Register 0x0573) ....................................... 99
Digital Loop Filter Coefficients (Register 0x0800 to
Register 0x0817) ........................................................................ 100
Common Operational Controls (Register 0x0A00 to
Register 0x0A0E) ...................................................................... 101
PLL_0 Operational Controls (Register 0x0A20 to
Register 0x0A24) ....................................................................... 104
PLL_1 Operational Controls (Register 0x0A40 to
Register 0x0A44) ....................................................................... 106
Status ReadBack (Register 0x0D00 to Register 0x0D05) ..... 107
IRQ Monitor (Register 0x0D08 to Register 0x0D10) .......... 108
PLL_0 Read-Only Status (Register 0x0D20 to
Register 0x0D2A) ...................................................................... 110
PLL_1 Read-Only Status (Register 0x0D40 to
Register 0x0D4A) ...................................................................... 112
EEPROM Control (Register 0x0E00 to Register 0x0E03) ... 113
EEPROM Storage Sequence (Register 0x0E10 to
Register 0x0E3C) ....................................................................... 113
Outline Dimensions ...................................................................... 120
Ordering Guide ......................................................................... 120

REVISION HISTORY

7/12—Revision 0: Initial Version
Rev. 0 | Page 3 of 120
AD9559 Data Sheet
VDD
1.71
1.80
1.89 V

SPECIFICATIONS

Minimum (min) and maximum (max) values apply for the full range of supply voltage and operating temperature variations. Typical (typ) values apply for VDD3 = 3.3 V; VDD = 1.8 V; T

SUPPLY VOLTAGE

Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
SUPPLY VOLTAGE
VDD3 3.135 3.30 3.465 V

SUPPLY CURRENT

The test conditions for the maximum (max) supply current are at the maximum supply voltage found in Tab l e 1. The test conditions for the typical (typ) supply current are at the typical supply voltage found in Tabl e 1. The test conditions for the minimum (min) supply current are at the minimum supply voltage found in Table 1.
Table 2.
Parameter Min Typ Max Unit Test Conditions/Comments
SUPPLY CURRENT FOR TYPICAL CONFIGURATION
I
34 42 50 mA
VDD3
I
253 316 380 mA
VDD
SUPPLY CURRENT FOR ALL BLOCKS RUNNING
CONFIGURATION I
75 94 113 mA
VDD3
I
256 320 384 mA
VDD
= 25°C, unless otherwise noted.
A
Typical values are for the Typical Configuration parameter listed in Table 3
Maximum values are for the All Blocks Running parameter listed in Table 3
Rev. 0 | Page 4 of 120
Data Sheet AD9559

POWER DISSIPATION

All Blocks Running
0.71
0.89
1.1
W
SYSTEM CLOCK REFERENCE INPUT PATH
POWER DISSIPATION
Table 3.
Parameter Min Typ Max Unit Test Conditions/Comments
Typical Configuration 0.57 0.71 0.85 W
Full Power-Down 75 110 mW
Incremental Power Dissipation
Complete DPLL/APLL On/Off 171 214 257 mW
Input Reference On/Off
Differential Without Divide-by-2 19 25 31 mW Additional current draw is in the VDD3 domain only Differential With Divide-by-2 25 32 39 mW Additional current draw is in the VDD3 domain only Single-Ended (Without Divide-by-2) 5 6.6 8 mW Additional current draw is in the VDD3 domain only
Output Distribution Driver On/Off
LVDS (at 750 MHz) 12 17 22 mW Additional current draw is in the VDD domain only HSTL (at 750 MHz) 14 21 28 mW Additional current draw is in the VDD domain only
1.8 V CMOS (at 250 MHz) 14 21 28 mW A single 1.8 V CMOS output with an 80 pF load
3.3 V CMOS (at 250 MHz) 18 27 36 mW A single 3.3 V CMOS output with an 80 pF load
System clock: 49.152 MHz crystal; two DPLLs active; two 19.44 MHz input references in differential mode; two HSTL drivers at 644.53125 MHz; two 3.3 V CMOS drivers at 161.1328125 MHz and 80 pF capacitive load on CMOS output
System clock: 49.152 MHz crystal; two DPLLs active, all input references in differential mode; two HSTL drivers at 750 MHz; four 3.3 V CMOS drivers at 250 MHz and 80 pF capacitive load on CMOS outputs
Typical configuration with no external pull-up or pull­down resistors; about 2/3 of this power is on VDD3
Typical configuration; table values show the change in power due to the indicated operation
This power delta is computed relative to the typical configuration; the blocks powered down include one reference input, one DPLL, one APLL, one P divider, two channel dividers, one HSTL driver, and one CMOS driver; roughly 2/3 of the power savings is on the 1.8 V supply

SYSTEM CLOCK INPUTS (XOA, XOB)

Table 4.
Parameter Min Typ Max Unit Test Conditions/Comments
SYSTEM CLOCK MULTIPLIER
PLL Output Frequency Range 750 805 MHz
Phase Frequency Detector (PFD) Rate 150 MHz Frequency Multiplication Range 4 255 Assumes valid system clock and PFD rates
Input Frequency Range 10 400 MHz Minimum Input Slew Rate 50 V/μs
Common-Mode Voltage 1.05 1.16 1.27 V Internally generated Differential Input Voltage Sensitivity 250 mV p-p
System Clock Input Doubler Duty Cycle
System Clock input = 50 MHz 45 50 55 % System Clock input = 20 MHz 46 50 54 %
System Clock input = 16 MHz to 20 MHz 47 50 53 % Input Capacitance 3 pF Single-ended, each pin Input Resistance 4.1 kΩ
Rev. 0 | Page 5 of 120
VCO range may place limitations on nonstandard system clock input frequencies
Minimum limit imposed for jitter performance; jitter performance affected if sine wave input ≤ 20 MHz
Minimum voltage across pins required to ensure switching between logic states; the instantaneous voltage on either pin must not exceed supply rails; single-ended input can be accommodated by ac grounding complementary input; 1 V p-p recommended for optimal jitter performance
Amount of duty cycle variation that can be tolerated on the system clock input to use the doubler
AD9559 Data Sheet
Sinusoidal Input
10 750
MHz
fIN = 800 MHz to 1050 MHz
320
mV
LVPECL
390
ps
Input Voltage High (VIH)
1.8 V to 2.5 V Threshold Setting
0.5 V
Parameter Min Typ Max Unit Test Conditions/Comments
CRYSTAL RESONATOR PAT H
Crystal Resonator Frequency Range 10 50 MHz Fundamental mode, AT cut crystal Maximum Crystal Motional Resistance 100

REFERENCE INPUTS

Table 5.
Parameter Min Typ Max Unit Test Conditions/Comments
DIFFERENTIAL OPERATION
Frequency Range
LVPECL Input 0.002 1250 MHz
LVDS Input 0.002 750 MHz Minimum Input Slew Rate 40 V/μs Minimum limit imposed for jitter performance Common-Mode Input Voltage
AC-Coupled 1.9 2 2.1 V Internally generated
DC-Coupled 1.0 2.4 V Differential Input Voltage Sensitivity mV
fIN < 800 MHz 240 mV
The reference input divide-by-2 block must be engaged
> 705 MHz
for f
IN
Minimum differential voltage across pins required to ensure switching between logic levels; instantaneous voltage on either pin must not exceed the supply rails
fIN = 1050 MHz to 1250 MHz 400 mV Differential Input Voltage Hysteresis 55 100 mV Input Resistance 21 kΩ Input Capacitance 3 pF Minimum Pulse Width High
LVDS 640 ps Minimum Pulse Width Low
LVPECL 390 ps
LVDS 640 ps
SINGLE-ENDED OPERATION
Frequency Range (CMOS) 0.002 300 MHz Minimum Input Slew Rate 40 V/μs Minimum limit imposed for jitter performance
1.2 V to 1.5 V Threshold Setting 1.0 V
1.8 V to 2.5 V Threshold Setting 1.4 V
3.0 V to 3.3 V Threshold Setting 2.0 V
Input Voltage Low (VIL)
1.2 V to 1.5 V Threshold Setting 0.35 V
3.0 V to 3.3 V Threshold Setting 1.0 V Input Resistance 47 kΩ Input Capacitance 3 pF Minimum Pulse Width High 1.5 ns Minimum Pulse Width Low 1.5 ns
Rev. 0 | Page 6 of 120
Data Sheet AD9559

REFERENCE MONITORS

REFERENCE MONITORS
Table 6.
Parameter Min Typ Max Unit Test Conditions/Comments
Reference Monitor
Loss of Reference Detection Time 1.15
DPLL PFD
Nominal phase detector period = R/f
period
Frequency Out-of Range Limits 2 105
Δf/f
REF
(ppm)
Programmable (lower bound subject to quality of the system clock (SYSCLK)); SYSCLK accuracy must be less than the lower bound
Validation Timer 0.001 65.535 sec Programmable in 1 ms increments
1
f
is the frequency of the active reference; R is the frequency division factor determined by the R divider.
REF

REFERENCE SWITCHOVER SPECIFICATIONS

Table 7.
Parameter Min Typ Max Unit Test Conditions/Comments
REFERENCE SWITCHOVER SPECIFICATIONS
Maximum Output Phase Perturbation
(Phase Build-Out Switchover)
50 Hz DPLL Loop Bandwidth
Peak ±55 ±100 ps Steady State ±55 ±100 ps
Time Required to Switch to a New Reference
Phase Build-Out Switchover 10
DPLL PFD period
Assumes a jitter-free reference; satisfies Telcordia GR-1244-CORE requirements; base loop filter selection bit set to 1b for all active references
Tes t conditions: 19.44 MHz to 174.70308 MHz; DPLL BW = 50 Hz; 49.152 MHz signal generator used for system clock source
Calculated using the nominal phase detector period (NPDP = R/f
); the total time required
REF
is the time plus the reference validation time, plus the time required to lock to the new reference
REF
1
Rev. 0 | Page 7 of 120
AD9559 Data Sheet
HSTL MODE
Up to f
= 700 MHz
44
48
53 %
0.262
1250
MHz
Up to f
= 800 MHz
42.5
48
53.5 %
1.8 V Supply
0.302
250
MHz
10 pF load

DISTRIBUTION CLOCK OUTPUTS

Table 8.
Parameter Min Typ Max Unit Test Conditions/Comments
Output Frequency
OUT0A, OUT0A and OUT0B, OUT0B
OUT1A, OUT1A and OUT1B, OUT1B Rise/Fall Time (20% to 80%)1 140 250 ps 100 Ω termination across the output pair Duty Cycle
OUT
Up to f
Up to f Differential Output Voltage Swing
= 750 MHz 43 48 54 %
OUT
= 1250 MHz 43 %
OUT
Common-Mode Output Voltage 750 850 1000 mV Output driver static Reference Input-to-Output Delay Variation
over Temperature
Static Phase Offset Variation from Active
Reference to Output over Voltage
Extremes
LVDS MODE
Output Frequency
OUT0A, OUT0A and OUT0B, OUT0B
OUT1A, OUT1A and OUT1B, OUT1B Rise/Fall Time (20% to 80%)1 185 280 ps 100 Ω termination across the output pair Duty Cycle
Up to f
Up to f Differential Output Voltage Swing
= 750 MHz 43 48 53 %
OUT
OUT
= 1250 MHz 43 %
OUT
Balanced, VOD 247 454 mV
Unbalanced, ΔVOD 50 mV
Offset Voltage
Common Mode, VOS 1.125 1.25 1.375 V Output driver static
Common-Mode Difference, ΔVOS 50 mV
Short-Circuit Output Current 10 24 mA Output driver static
CMOS MODE
Output Frequency
0.262 1250 MHz
0.302 1250 MHz
700 925 1200 mV
3.2 ps/°C
0.875 ps/mV
0.302 1250 MHz
Magnitude of voltage across pins; output driver static
HSTL mode; DPLL locked to same input reference at all times; stable system clock source (non-XTAL)
Valid for HSTL, LVDS, and 1.8 V CMOS output driver modes
Voltage swing between output pins; output driver static
Absolute difference between voltage swing of normal pin and inverted pin; output driver static
Voltage difference between pins; output driver static
OUT0A, OUT0A and OUT0B, OUT0B OUT1A, OUT1A and OUT1B, OUT1B
0.262 250 MHz 10 pF load
0.302 250 MHz 10 pF load
3.3 V Supply (OUT0A and OUT1A) Strong Drive Strength Setting
OUT0A, OUT0A
0.262 250 MHz 10 pF load
OUT1A, OUT1A
Weak Drive Strength Setting
OUT0A, OUT0A OUT1A, OUT1A
0.262 25 MHz 10 pF load
0.302 25 MHz 10 pF load
Rev. 0 | Page 8 of 120
Data Sheet AD9559
Duty Cycle
VDD3 = 3.3 V, IOH = 1 mA
VDD3 − 0.1
V
Parameter Min Typ Max Unit Test Conditions/Comments
Rise/Fall Time (20% to 80%)1
1.8 V Mode 1.5 3 ns 10 pF load
3.3 V Strong Mode 0.4 0.6 ns 10 pF load
3.3 V Weak Mode 8 ns 10 pF load
1.8 V Mode 50 % 10 pF load
3.3 V Strong Mode 47 51 56 % 10 pF load
3.3 V Weak Mode 51 % 10 pF load
Output Voltage High (VOH) Output driver static; strong drive strength
VDD3 = 3.3 V, IOH = 10 mA VDD3 − 0.3 V
VDD3 = 1.8 V, IOH = 1 mA VDD − 0.2 V
Output Voltage Low (VOL) Output driver static; strong drive strength
VDD3 = 3.3 V, IOL = 10 mA 0.3 V VDD3 = 3.3 V, IOL = 1 mA 0.1 V VDD3 = 1.8 V, IOL = 1 mA 0.1 V
OUTPUT TIMING SKEW 10 pF load
Between OUT0A, OUT0A and OUT0B, OUT0B
or OUT1A, OUT1A and OUT1B, OUT1B
Additional Delay on One Driver by
Changing Its Logic Type HSTL to LVDS 0 +15 +35 ps
HSTL to 1.8 V CMOS −5 0 +5 ps
OUT0B, OUT0B HSTL to OUT0B, OUT0B
3.3 V CMOS, Strong Mode
OUT1B, OUT1B HSTL to OUT1B, OUT1B
3.3 V CMOS, Strong Mode
1
The listed values are for the slower edge (rising or falling).
116 265 ps
HSTL mode on both drivers; rising edge only; any divide value
Positive value indicates that the LVDS edge is delayed relative to HSTL
Positive value indicates that the CMOS edge is delayed relative to HSTL
−765 −280 +250 ns The CMOS edge is delayed relative to HSTL
−765 −280 +250 ns The CMOS edge is delayed relative to HSTL
Rev. 0 | Page 9 of 120
AD9559 Data Sheet
Closed Loop Peaking
<0.1
dB
Programmable design parameter; part can be programmed

TIME DURATION OF DIGITAL FUNCTIONS

Table 9.
Parameter Min Typ Max Unit Test Conditions/Comments
TIME DURATION OF DIGITAL FUNCTIONS
EEPROM-to-Register Download Time 16 25 ms Uses default EEPROM storage sequence (see Register 0x0E10
Register-to-EEPROM Upload Time 180 ms Uses default EEPROM storage sequence (see Register 0x0E10
Power-Down Exit Time
1
ms Time from power-down exit to system clock lock detect; system

DIGITAL PLL (DPLL_0 AND DPLL_1)

Table 10.
Parameter Min Typ Max Unit Test Conditions/Comments
DIGITAL PLL
Phase Frequency Detector (PFD) Input
Frequency Range
Loop Bandwidth 0.1 2000 Hz Programmable design parameter;
Phase Margin 45 89 Degrees Programmable design parameter
2 100 kHz
to Register 0x0E4F)
to Register 0x0E4F
clock stability timer setting should be added to calculate the time needed for system clock stable
note that (f
for <0.1 dB peaking in accordance with Telcordia GR-253-CORE jitter transfer
/loop BW) ≥ 20
PFD

ANALOG PLL (APLL_0 AND APLL_1)

Table 11.
Parameter Min Typ Max Unit Test Conditions/Comments
ANALOG PLL0
VCO Frequency Range 2940 3543 MHz Phase Frequency Detector (PFD) Input
Frequency Range Loop Bandwidth 240 kHz Programmable design parameter Phase Margin 68 Degrees Programmable design parameter
ANALOG PLL1
VCO Frequency Range 3405 4260 MHz Phase Frequency Detector (PFD) Input
Frequency Range Loop Bandwidth 240 kHz Programmable design parameter Phase Margin 68 Degrees Programmable design parameter
180 195 MHz
180 195 MHz

DIGITAL PLL LOCK DETECTION

Table 12.
Parameter Min Typ Max Unit Test Conditions/Comments
PHASE LOCK DETECTOR
Threshold Programming Range 10 224 − 1 ps Reference-to-feedback phase difference Threshold Resolution 1 ps
FREQUENCY LOCK DETECTOR
Threshold Programming Range 10 224 − 1 ps Reference-to-feedback period difference Threshold Resolution 1 ps

HOLDOVER SPECIFICATIONS

Table 13.
Parameter Min Typ Max Unit Test Conditions/Comments
HOLDOVER SPECIFICATIONS
Initial Frequency Accuracy <0.01 ppm Excludes frequency drift of SYSCLK source; excludes frequency
drift of input reference prior to entering holdover; compliant with GR-1244 Stratum 3
Rev. 0 | Page 10 of 120
Data Sheet AD9559
M5/EE CS
M5/ACS
is a dual function pin; the values in
Input Logic 0 Voltage
0.8 V
Input Logic 0 Current
1
µA
As an Input
Output Logic 1 Voltage
VDD3 − 0.6
V
1 mA load current
SCLK

SERIAL PORT SPECIFICATIONS—SPI MODE

Table 14.
Parameter Min Typ Max Unit Test Conditions/Comments
Input Logic 1 Voltage
2.2 V
Input Logic 1 Current 20 µA Input Logic 0 Current Input Capacitance
SCLK
Input Logic 1 Voltage Input Logic 0 Voltage Input Logic 1 Current
50 µA 2 pF Internal 10 kΩ pull-down resistor
2.2 V
0.8 V 200 µA
Input Capacitance 2 pF
SDIO
E
A
this table apply when this pin is used as a serial port pin, that is, ACS
EE
A
; see Table 16 for the specifications when this pin is used as a multifunction pin (M5)
Input Logic 1 Voltage 2.2 V Input Logic 0 Voltage Input Logic 1 Current Input Logic 0 Current Input Capacitance
As an Output
Output Logic 1 Voltage Output Logic 0 Voltage
M4/SDO
0.8 V 1 µA 1 µA 2 pF
VDD3 − 0.6 V 1 mA load current
0.4 V 1 mA load current M4/SDO is a dual function pin; the values in
this table apply when this pin is used as a serial port pin, that is SDO; see Table 16 for the specifications when this pin is used as a multifunction pin (M4)
Output Logic 0 Voltage 0.4 V 1 mA load current
TIMING
Clock Rate, 1/t Pulse Width High, t
Pulse Width Low, t SDIO to SCLK Setup, t SCLK to SDIO Hold, t
40 MHz
CLK
HIGH
LOW
DS
DH
SCLK to Valid SDIO and SDO, t
EE
AA
AACS
to SCLK Setup (tS)
EE
AA
AACS
to SCLK Hold (tC)
EE
AA
AACS
Minimum Pulse Width High
10 ns
13 ns
3 ns
6 ns
See Figure 47 and Figure 50
10 ns
DV
10 ns 0 ns 6 ns
Rev. 0 | Page 11 of 120
AD9559 Data Sheet
Input Logic 1 Voltage
0.7 × VDD3
V

SERIAL PORT SPECIFICATIONS—I2C MODE

Table 15.
Parameter Min Typ Max Unit Test Conditions/Comments
SDA, SCL (AS INPUTS)
Input Logic 0 Voltage 0.3 × VDD3 V Input Current Hysteresis of Schmitt Trigger Inputs Pulse Width of Spikes That Must Be Suppressed
by the Input Filter, t
SP
SDA (AS OUTPUT)
Output Logic 0 Voltage Output Fall Time from V
IHmin
to V
20 + 0.1 C
ILmax
TIMING
SCL Clock Rate
Bus-Free Time Between a Stop and Start
Condition, t
Repeated Start Condition Setup Time, t
BUF
SU; STA
Repeated Hold Time Start Condition, t
Stop Condition Setup Time, t Low Period of the SCL Clock, t High Period of the SCL Clock, t
SCL/SDA Rise Time, t SCL/SDA Fall Time, t Data Setup Time, t Data Hold Time, t
R
20 + 0.1 C
F
100 ns
SU; DAT
100 ns
HD; DAT
Capacitive Load for Each Bus Line, C
1
Cb is the capacitance (pF) of a single bus line.
SU; STO
LOW
HIGH
1
b
−10 +10 µA For VIN = 10% to 90% of VDD3
0.015 × VDD3 50 ns
0.4 V IO = 3 mA
1
2F
250 ns 10 pF ≤ Cb ≤ 400 pF
b
400 kHz
1.3 µs
0.6 µs
0.6 µs After this period, the first clock pulse is
HD ; STA
generated
0.6 µs
1.3 µs
0.6 µs 20 + 0.1 C
1
300 ns
b
1
300 ns
b
400 pF
LOGIC INPUTS (RESET, M5 TO M0)
Table 16.
Parameter Min Typ Max Unit Test Conditions/Comments
E
RESET
A
A
PINA Input High Voltage (V Input Low Voltage (V Input Current (I Input Capacitance (C
) 2.1 V
IH
) 0.8 V
IL
, I
) ±85 ±125 µA
INH
INL
) 3 pF
IN
LOGIC INPUTS (M5 to M0)
Input High Voltage (VIH) 2.5 V Input Low Voltage (V Input Current (I Input Capacitance (C
) 0.6 V
IL
, I
) ±1 ±5 µA
INH
INL
) 3 pF
IN
The M4 and M5 pins are dual function pins; the
values in this table apply when M4/SDO and
E
CS
A
A
are used as M pins; see Table 14 in the
M5/ Serial Port Specifications—SPI Mode for the specifications when these pins are used as serial port pins (SDO,
CS
A
E
A
)

LOGIC OUTPUTS (M5 TO M0)

Table 17.
Parameter Min Typ Max Unit Test Conditions/Comments
LOGIC OUTPUTS (M5 to M0)
Output High Voltage (V Output Low Voltage (V
) VDD3 − 0.4 V IOH = 1 mA
OH
) 0.4 V IOL = 1 mA
OL
section
Rev. 0 | Page 12 of 120
Data Sheet AD9559
Parameter
Min
Typ
Max
Unit
Test Conditions/Comments
Bandwidth: 12 kHz to 20 MHz
310 fs rms
Bandwidth: 20 kHz to 80 MHz
308 fs rms
Bandwidth: 12 kHz to 20 MHz
335 fs rms

JITTER GENERATION

Jitter Generation (Random Jitter)—49.152 MHz Crystal for System Clock Input
Table 18.
JITTER GENERATION System clock doubler enabled.
High phase margin mode enabled. Both PLLs are running with same output frequency. In cases where the two PLLs have different jitter, the higher jitter is listed. When two driver types are listed, both were tested at those conditions; the driver type with higher jitter is quoted, although there is usually not a significant jitter difference between driver types.
= 19.44 MHz; f
f
REF
= 622.08 MHz; f
OUT
= 50 Hz;
LOOP
HSTL Driver
Bandwidth: 5 kHz to 20 MHz
307 fs rms
Bandwidth: 20 kHz to 80 MHz 313 fs rms Bandwidth: 50 kHz to 80 MHz Bandwidth: 16 MHz to 320 MHz
= 19.44 MHz; f
f
REF
= 644.53 MHz; f
OUT
= 50 Hz;
LOOP
292 fs rms 149 fs rms
HSTL Driver, LVDS Driver
Bandwidth: 5 kHz to 20 MHz Bandwidth: 12 kHz to 20 MHz
313 fs rms 306 fs rms
Bandwidth: 50 kHz to 80 MHz 286 fs rms Bandwidth: 16 MHz to 320 MHz
f
= 19.44 MHz; f
REF
= 693.48 MHz; f
OUT
= 50 Hz;
LOOP
154 fs rms
HSTL Driver
Bandwidth: 5 kHz to 20 MHz Bandwidth: 12 kHz to 20 MHz Bandwidth: 20 kHz to 80 MHz Bandwidth: 50 kHz to 80 MHz Bandwidth: 16 MHz to 320 MHz
f
= 19.44 MHz; f
REF
= 174.703 MHz; f
OUT
LOOP
= 1 kHz;
335 fs rms 328 fs rms 328 fs rms 298 fs rms 150 fs rms
HSTL Driver
Bandwidth: 5 kHz to 20 MHz
396 fs rms
Bandwidth: 20 kHz to 80 MHz 369 fs rms Bandwidth: 50 kHz to 80 MHz Bandwidth: 4 MHz to 80 MHz
f
= 19.44 MHz; f
REF
LVDS Driver,
3.3 V CMOS Driver Bandwidth: 5 kHz to 20 MHz Bandwidth: 12 kHz to 20 MHz Bandwidth: 20 kHz to 80 MHz Bandwidth: 50 kHz to 80 MHz Bandwidth: 4 MHz to 80 MHz
f
= 25 MHz; f
REF
HSTL Driver
Bandwidth: 5 kHz to 20 MHz Bandwidth: 12 kHz to 20 MHz Bandwidth: 20 kHz to 80 MHz Bandwidth: 50 kHz to 80 MHz Bandwidth: 4 MHz to 80 MHz
= 174.703 MHz; f
OUT
= 161.1328 MHz; f
OUT
LOOP
= 100 Hz;
LOOP
= 100 Hz;
347 fs rms 230 fs rms
337 fs rms 330 fs rms 354 fs rms 339 fs rms 220 fs rms
318 fs rms 310 fs rms 384 fs rms 361 fs rms 267 fs rms
Rev. 0 | Page 13 of 120
AD9559 Data Sheet
Bandwidth: 100 kHz to 10 MHz
256 fs rms
Bandwidth: 20 kHz to 80 MHz
373
Bandwidth: 50 kHz to 80 MHz
396
fs rms
Parameter Min Typ Max Unit Test Conditions/Comments
= 2 kHz; f
f
REF
HSTL Driver,
3.3 V CMOS Driver Bandwidth: 10Hz to 30 MHz Bandwidth: 5 kHz to 20 MHz Bandwidth: 12 kHz to 20 MHz Bandwidth: 10 kHz to 400 kHz
f
= 25 MHz; f
REF
HSTL Driver
Bandwidth: 100 Hz to 500 MHz (Broadband) Bandwidth: 12 kHz to 20 MHz Bandwidth: 20 kHz to 80 MHz
Jitter Generation (Random Jitter)—19.2 MHz TCXO for System Clock Input
Table 19.
Parameter Min Typ Max Unit Test Conditions/Comments
JITTER GENERATION
f
= 19.44 MHz; f
REF
HSTL Driver
Bandwidth: 5 kHz to 20 MHz Bandwidth: 12 kHz to 20 MHz
Bandwidth: 50 kHz to 80 MHz 348 Bandwidth: 16 MHz to 320 MHz
f
= 19.44 MHz; f
REF
HSTL Driver
Bandwidth: 5 kHz to 20 MHz Bandwidth: 12 kHz to 20 MHz Bandwidth: 20 kHz to 80 MHz Bandwidth: 50 kHz to 80 MHz Bandwidth: 16 MHz to 320 MHz
f
= 19.44 MHz; f
REF
HSTL Driver
Bandwidth: 5 kHz to 20 MHz Bandwidth: 12 kHz to 20 MHz Bandwidth: 20 kHz to 80 MHz Bandwidth: 50 kHz to 80 MHz Bandwidth: 4 MHz to 80 MHz
f
= 25 MHz; f
REF
HSTL Driver
Bandwidth: 5 kHz to 20 MHz 384 Bandwidth: 12 kHz to 20 MHz Bandwidth: 20 kHz to 80 MHz
= 70.656 MHz; f
OUT
= 1 GHz; f
OUT
= 644.53 MHz; f
OUT
= 693.48 MHz; f
OUT
= 312.5 MHz; f
OUT
= 161.1328 MHz; f
OUT
LOOP
= 500 Hz;
LOOP
= 100 Hz;
= 10 Hz;
LOOP
= 10 Hz;
LOOP
= 10 Hz;
LOOP
= 10 Hz;
LOOP
6.5 ps rms 343 fs rms 335 fs rms 243 fs rms
881 fs rms 331 fs rms 330 fs rms
380 373
fs rms fs rms fs rms fs rms
148
fs rms
390 383 382 350 144
fs rms fs rms fs rms fs rms fs rms
398 392 400 379 172
fs rms fs rms fs rms fs rms fs rms
fs rms
378 416
fs rms fs rms
System clock doubler enabled. High phase margin mode enabled. Both PLLs are running with same output frequency. In cases where the two PLLs have different jitter, the higher jitter is listed. Where two driver types are listed, both were tested at those conditions; the driver type with higher jitter is quoted, although there is usually not a significant jitter difference between driver types.
Bandwidth: 4 MHz to 80 MHz 223
Rev. 0 | Page 14 of 120
fs rms
Data Sheet AD9559
Parameter Min Typ Max Unit Test Conditions/Comments
f
= 2 kHz; f
REF
= 70.656 MHz; f
OUT
HSTL Driver,
3.3 V CMOS Driver Bandwidth: 10 Hz to 30 MHz Bandwidth: 12 kHz to 20 MHz Bandwidth: 10 kHz to 400 kHz Bandwidth: 100 kHz to 10 MHz
= 10 Hz;
LOOP
3.19 418 339 348
ps rms fs rms fs rms fs rms
Rev. 0 | Page 15 of 120
AD9559 Data Sheet
3.3 V Supply Voltage ( VDD3)
3.6 V
Junction Temperature
150°C

ABSOLUTE MAXIMUM RATINGS

Table 20.
Parameter Rating
1.8 V Supply Voltage ( VDD)
Maximum Digital Input Voltage −0.5 V to VDD3 + 0.5 V Storage Temperature Range Operating Temperature Range Lead Temperature
(Soldering 10 sec)
2 V
−65°C to +150°C
−40°C to +85°C 300°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. 0 | Page 16 of 120
Data Sheet AD9559
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
VDD3 REFA REFA
VDD VDD GND VDD VDD VDD
LDO_0
LF_0
VDD3
VDD
VDD OUT0A OUT0A
17VDD 18VDD3
192021222324252627282930313233
34
OUT0B
OUT0B
VDD
GND
RESET
SCLK/SCL
SDIO/SDA
M5/CS
M4/SDO
VDD3
M3M2M1
M0
GND
VDD
35OUT1B
36OUT1B
54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37
VDD3 REFC REFC VDD VDD GND VDD VDD VDD LDO_1 LF_1 VDD3 VDD VDD OUT1A OUT1A VDD VDD3
7271706968676665646362616059585756
55
VDD3
REFB
REFB
VDD
VDD
VDD
VDD
VDD
XOA
XOB
VDD
VDD
VDD
VDD
VDD
REFD
REFD
VDD3
PIN 1 INDICATOR
AD9559
TOP VIEW
(Not to Scale)
NOTES
1. THE EXPO S E D P AD IS THE GRO UND CONNECTION ON THE CHIP. IT MUST BE SOLDERED TO THE ANALOG GROUND OF THE PCB TO ENSURE PROPER FUNCTI ONALITY AND HE AT DISSIPATION, NOISE, AND M E CHANICAL STRENG TH BENEFIT S .
10644-002

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 21. Pin Function Descriptions
Input/
Pin No. Mnemonic
1, 12, 18, 28,
VDD3 I Power
Output
37, 43, 54, 55, 72
2 REFA I
3
4, 5, 7, 8, 9, 13,
E
AREFA
VDD I Power
I
14, 17, 21, 34, 38, 41, 42, 46, 47, 48, 50, 51,
O
58, 59, 60, 61, 62, 65, 66, 67, 68, 69
6, 22, 33, 49 GND O Ground Connect these pins (along with the exposed die pad) to ground. 10
11
15
16
LDO_0 I LDO bypass
LF_0 I/O
AOUT0A
E
OUT0A O
Figure 2. Pin Configuration
Pi n Typ e Description
Differential input
Differential input
Loop filter for APLL_0
HSTL, LVDS,
1.8 V CMOS HSTL, LVDS,
1.8 V CMOS
3.3 V Power Supply. See the Power Supply Partitions section for information about the recommended grouping of the power supply pins.
Reference A Input. This internally biased input is typically ac-coupled; when configured in this manner, it can accept any differential signal with single-ended swing up to 3.3 V. If dc-coupled, input can be LVPECL, LVDS, or single-ended CMOS.
Complementary Reference A Input. Complementary signal to the input provided on Pin 2.
1.8 V Power Supply. See the Power Supply Partitions section for information about the recommended grouping of the power supply pins. Note that, for Pin 34 and Pin 21, it is recommended that a Size 0201, 0.1 µF bypass capacitor be placed between Pin 33 and Pin 34, as well as between Pin 21 and Pin 22, as close as possible to the AD9559.
Output PLL0 Loop Filter Voltage Regulator. Connect a 0.47 μF capacitor from this pin to ground. This pin is also the ac ground reference for the integrated output PLL external loop filter.
Loop Filter Node for the Output PLL0. Connect an external 6.8 nF capacitor from this pin to Pin 10 (LDO_0).
PLL0 Complementary Output 0A. This output can be configured as HSTL, LVDS, or single-ended 1.8 V CMOS.
PLL0 Output 0A. This output can be configured as HSTL, LVDS, or single-ended
1.8 V CMOS. LVPECL levels can be achieved by ac-coupling and using the Thevenin-equivalent termination as described in the Input/Output Termination Recommendations section.
Rev. 0 | Page 17 of 120
AD9559 Data Sheet
Input/
Pin No. Mnemonic
19
20
23
24
25
26
27
29, 30, 31, 32
E
AOUT0B
OUT0B O
E
ARESET
SCLK/SCL I 3.3 V CMOS
SDIO/SDA I/O 3.3 V CMOS
M5/ACSE
M4/SDO I/O 3.3 V CMOS Configurable I/O Pin (M4). Used for status and control of the AD9559.
M3, M2, M1, M0
35
36
39
40
44
45
52
53
56
57
OUT1B O
E
AOUT1B
OUT1A O
E
AOUT1A
LF_1 I/O
LDO_1 I LDO bypass
E
AREFC
REFC I
E
AREFD
REFD I
Output Pi n Typ e Description
O
HSTL, LVDS,
1.8 V CMOS,
PLL0 Complementary Output 0B. This output can be configured as HSTL, LVDS, or single-ended 1.8 V or 3.3 V CMOS.
3.3 V CMOS HSTL, LVDS,
1.8 V CMOS,
3.3 V CMOS
PLL0 Output 0B. This output can be configured as HSTL, LVDS, or single-ended 1.8 V or 3.3 V CMOS. LVPECL levels can be achieved by ac-coupling and using the Thevenin-equivalent termination as described in the Input/Output Termination Recommendations section.
I
3.3 V CMOS Logic
Chip Reset. When this active low pin is asserted, the chip goes into reset. This pin has an internal 50 kΩ pull-up resistor.
Serial Programming Clock in SPI Mode (SCLK). Data clock for serial programming. Serial Clock Pin in I
2
C Mode (SCL).
Serial Data Input/Output (SDIO). When the device is in 4-wire SPI mode, data is written via this pin. In 3-wire SPI mode, data reads and writes both occur on this pin. There is no internal pull-up/pull-down resistor on this pin. Serial Data Pin in I2C Mode (SDA).
I/O 3.3 V CMOS Configurable I/O Pin (M5). Used for status and control of the AD9559.
Chip Select in SPI Mode (ACS
E
A
). Active low input. When programming a device in
SPI, this pin must be held low. In systems where more than one AD9559 is present, this pin enables individual programming of each AD9559. This pin has an internal 10 kΩ pull-up resistor.
Serial Data Output (SDO). In 4-wire SPI mode, this pin is used for reading serial data.
I/O 3.3 V CMOS
Configurable I/O Pins. These pins are used for status and control of the AD9559. These pins are also used at power-up and reset to control the serial port configuration and EEPROM loading. See Table 23 and Table 25 for more information. These pins do NOT have internal pull-down resistors.
HSTL, LVDS,
1.8 V CMOS,
3.3 V CMOS
PLL1 Output 1B. This output can be configured as HSTL, LVDS, or single-ended 1.8 V or 3.3 V CMOS. LVPECL levels can be achieved by ac-coupling and using the Thevenin-equivalent termination as described in the Input/Output Termination Recommendations section.
O
HSTL, LVDS,
1.8 V CMOS,
PLL1 Complementary Output 1B. This output can be configured as HSTL, LVDS, or single-ended 1.8 V or 3.3 V CMOS.
3.3 V CMOS HSTL, LVDS,
1.8 V CMOS
PLL1 Output 1A. This output can be configured as HSTL, LVDS, or single-ended
1.8 V CMOS. LVPECL levels can be achieved by ac-coupling and using the Thevenin-equivalent termination as described in the Input/Output Termination Recommendations section.
O
HSTL, LVDS,
1.8 V CMOS Loop filter for
APLL_1
PLL1 Complementary Output 1A. This output can be configured as HSTL, LVDS, or single-ended 1.8 V CMOS.
Loop Filter Node for the Output PLL1. Connect an external 6.8 nF capacitor from this pin to Pin 45 (LDO_1).
Output PLL1 Loop Filter Voltage Regulator. Connect a 0.47 μF capacitor from this pin to ground. This pin is also the ac ground reference for the integrated output PLL external loop filter.
I
Differential input
Differential input
Complementary Reference C Input. Complementary signal to the input provided on Pin 53.
Reference C Input. This internally biased input is typically ac-coupled; when configured in that manner, it can accept any differential signal with single-ended swing up to 3.3 V. If dc-coupled, input can be LVPECL, LVDS, or single-ended CMOS.
I
Differential input
Differential input
Complementary Reference D Input. Complementary signal to the input provided on Pin 57.
Reference D Input. This internally biased input is typically ac-coupled; when configured in this manner, it can accept any differential signal with single-ended swing up to 3.3 V. If dc-coupled, input can be LVPECL, LVDS, or single-ended CMOS.
Rev. 0 | Page 18 of 120
Data Sheet AD9559
70
REFB
I
Differential
Reference B Input. This internally biased input is typically ac-coupled; when
Input/
Pin No. Mnemonic
63
64
XOB I
XOA I
Output Pi n Typ e Description
Differential input
Complementary System Clock Input. Complementary signal to XOA. XOB contains internal dc biasing and should be ac-coupled with a 0.1 μF capacitor except when using a crystal. When a crystal is used, connect the crystal across XOA and XOB.
Differential input
System Clock Input. XOA contains internal dc biasing and should be ac-coupled with a 0.01 μF capacitor except when using a crystal. When a crystal is used, connect the crystal across XOA and XOB. Single-ended 1.8 V CMOS is also an option, but a spur may be introduced if the duty cycle is not 50%. When using XOA as a single-ended input, connect a 0.1 μF capacitor from XOB to ground.
71
EP
input
AREFB
E
I
Differential input
GND O Exposed pad
configured in this manner, it can accept any differential signal with single-ended swing up to 3.3 V. If dc-coupled, input can be LVPECL, LVDS, or single-ended CMOS.
Complementary Reference B Input. Complementary signal to the input provided on Pin 70.
The exposed pad is the ground connection on the chip. It must be soldered to the analog ground of the PCB to ensure proper functionality and heat dissipation, noise, and mechanical strength benefits.
Rev. 0 | Page 19 of 120
AD9559 Data Sheet
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
1k10 100 10k 100k 1M 10M 100M
PHASE NOISE (dBc/Hz)
FREQUENCY OF F SET (Hz)
INTEGRATED RMS JITTER (12kHz TO 20MHz): 331fs
PHASE NOISE ( d Bc/Hz): OFFSET LEVEL 10Hz –75 100Hz –92 1kHz –116 10kHz –126 100kHz –130 1MHz –143 10MHz –152 FLOOR –158
10644-300
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
1k10 100 10k 100k 1M 10M 100M
PHASE NOISE (dBc/Hz)
FREQUENCY OF F SET (Hz)
INTEGRATED RMS JITTER (12kHz TO 20MHz): 310fs
PHASE NOISE ( d Bc/Hz): OFFSET LEVEL 10Hz –71 100Hz –82 1kHz –105 10kHz –114 100kHz –117 1MHz –133 10MHz –142 FLOOR –153
10644-003
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
PHASE NOISE (dBc/Hz)
FREQUENCY OF F SET (Hz)
1k10 100 10k 100k 1M 10M 100M
INTEGRATED RMS JITTER (12kHz TO 20MHz): 306fs
PHASE NOISE ( d Bc/Hz): 10Hz –70 100Hz –86 1kHz –105 10kHz –114 100kHz –117 1MHz –134 10M
Hz –141
FLOOR –153
10644-004
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
PHASE NOISE (dBc/Hz)
FREQUENCY OF F SET (Hz)
1k10 100 10k 100k 1M 10M 100M
INTEGRATED RMS JITTER (12kHz TO 20MHz): 328fs
PHASE NOISE ( d Bc/Hz): OFFSET LEVEL 10Hz –70 100Hz –85 1kHz –105 10kHz –112 100kHz –115 1MHz –133 10MHz –142
10644-005

TYPICAL PERFORMANCE CHARACTERISTICS

fR = input reference clock frequency; f
= output clock frequency; f
OUT
= SYSCLK input frequency; VDD3 and VDD at nominal supply voltage.
SYS
Absolute Phase Noise (Output Driver = HSTL),
= 19.44 MHz, f
f
R
DPLL Loop BW = 50 Hz, f
= 156.25 MHz,
OUT
= 49.152 MHz Crystal
SYS
Figure 3. Absolute Phase Noise (Output Driver = HSTL),
= 19.44 MHz, f
f
R
DPLL Loop BW = 50 Hz, f
= 622.08 MHz,
OUT
= 49.152 MHz Crystal
SYS
Figure 4. Absolute Phase Noise (Output Driver = HSTL),
= 19.44 MHz, f
f
R
DPLL Loop BW = 50 Hz, f
= 644.53125 MHz,
OUT
= 49.152 MHz Crystal
SYS
Figure 5. Absolute Phase Noise (Output Driver = HSTL),
= 19.44 MHz, f
f
R
DPLL Loop BW = 50 Hz, f
= 693.482991 MHz,
OUT
= 49.152 MHz Crystal
SYS
Rev. 0 | Page 20 of 120
Data Sheet AD9559
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
PHASE NOISE (dBc/Hz)
FREQUENCY OFFSET (Hz)
1k10 100 10k 100k 1M 10M 100M
INTEGRATED RMS JITTER (12kHz TO 20MHz): 335fs
PHASE NOISE ( d Bc/Hz): OFFSET LEVEL 10Hz –82 100Hz –90 1kHz –96 10kHz –119 100kHz –128 1MHz –143 10MHz –152 FLOOR –158
10644-006
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
PHASE NOISE (dBc/Hz)
FREQUENCY OFFSET (Hz)
1k10 100 10k 100k 1M 10M 100M
INTEGRATED RMS JITTER (12kHz TO 20MHz): 309fs
PHASE NOISE ( d Bc/Hz): OFFSET LEVEL 10Hz –84 100Hz –93 1kHz –116 10kHz –125 100kHz –130 1MHz –144 10MHz –152 FLOOR –158
10644-007
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
PHASE NOISE (dBc/Hz)
FREQUENCY OFFSET (Hz)
1k10 100 10k 100k 1M 10M 100M
INTEGRATED RMS JITTER (12kHz TO 20MHz): 321fs
PHASE NOISE ( d Bc/Hz): OFFSET LEVEL 10Hz –61 100Hz –69 1kHz –108 10kHz –127 100kHz –132 1MHz –146 10MHz –153
10644-008
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
PHASE NOISE (dBc/Hz)
FREQUENCY OFFSET (Hz)
1k10 100 10k 100k 1M 10M 100M
INTEGRATED RMS JITTER (12kHz TO 20MHz): 331fs
PHASE NOISE ( d Bc/Hz): OFFSET LEVEL 10Hz –70 100Hz –75 1kHz –86 10kHz –108 100kHz –112 1MHz –129 10MHz –142 FLOOR –152
10644-009
Figure 6. Absolute Phase Noise (Output Driver = HSTL),
= 19.44 MHz, f
f
R
DPLL Loop BW = 1 kHz, f
= 174.703 MHz,
OUT
= 49.152 MHz Crystal
SYS
Figure 8. Absolute Phase Noise (Output Driver = HSTL),
= 2 kHz, f
f
R
DPLL Loop BW = 100 Hz, f
= 125 MHz,
OUT
= 49.152 MHz Crystal
SYS
Figure 7. Absolute Phase Noise (Output Driver = 3.3.V CMOS),
f
= 19.44 MHz, f
R
DPLL Loop BW = 100 Hz, f
= 161.1328125 MHz,
OUT
= 49.152 MHz Crystal
SYS
Rev. 0 | Page 21 of 120
Figure 9. Absolute Phase Noise (Output Driver = HSTL),
f
= 25 MHz, f
R
DPLL Loop BW = 500 Hz, f
= 1 GHz,
OUT
= 49.152 MHz Crystal
SYS
AD9559 Data Sheet
–60
PHASE NOISE (dBc/Hz)
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
PHASE NOISE (dBc/Hz)
FREQUENCY OFFSET (Hz)
1k10 100 10k 100k 1M 10M 100M
INTEGRATED RMS JITTER (12kHz TO 20MHz): 383fs
PHASE NOISE ( d Bc /Hz): 10Hz –60 100Hz –85 1kHz –104 10kHz –112 100kHz –114 1MHz –132 10MHz –141 FLOOR –153
10644-011
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
PHASE NOISE (dBc/Hz)
FREQUENCY OFFSET (Hz)
1k10 100 10k 100k 1M 10M 100M
10644-012
INTEGRATED RMS JITTER (12kHz TO 20MHz): 392fs
PHASE NOISE ( d Bc /Hz): OFFSET LEVEL 10Hz –66 100Hz –91 1kHz –110 10kHz –119 100kHz –121 1MHz –136 10MHz –146 FLOOR –156
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
PHASE NOISE (dBc/Hz)
FREQUENCY OFFSET (Hz)
1k10 100 10k 100k 1M 10M 100M
10644-013
INTEGRATED RMS JITTER (12kHz TO 20MHz): 378fs
PHASE NOISE ( d Bc /Hz): OFFSET LEVEL 10Hz –74 100Hz –97 1kHz –116 10kHz –125 100kHz –127 1MHz –143 10MHz –153 FLOOR –158
–160
–150
–140
–130
–120
–110
–100
–90
–80
–70
–60
PHASE NOISE (dBc/Hz)
FREQUENCY OFFSET (Hz)
1k10 100 10k 100k 1M 10M 100M
10644-014
INTEGRATED RMS JITTER (12kHz TO 20MHz): 418fs
PHASE NOISE ( d Bc/Hz): OFFSET LEVEL 10Hz –71 100Hz –96 1kHz –122 10kHz –132 100kHz –134 1MHz –149 10MHz –157 FLOOR –161
INTEGRATED RMS JITTER
–70
–80
–90
–100
–110
–120
–130
–140
–150
–160
1k10 100 10k 100k 1M 10M 100M
FREQUENCY OF F SET (Hz)
Figure 10. Absolute Phase Noise (Output Driver = HSTL),
= 19.44 MHz, f
f
R
DPLL Loop BW = 10 Hz, f
(12kHz TO 20MHz): 373fs PHASE NOISE ( d Bc /Hz):
10Hz –60 100Hz –85 1kHz –104 10kHz –113 100kHz –114 1MHz –132 10MHz –142 FLOOR –153
= 644.53 MHz,
OUT
= 19.2 MHz TCXO
SYS
10644-010
Figure 13. Absolute Phase Noise (Output Driver = 3.3 V CMOS),
= 19.44 MHz, f
f
R
DPLL Loop BW = 10 Hz, f
=161.1328125 MHz,
OUT
= 19.2 MHz TCXO
SYS
Figure 11. Absolute Phase Noise (Output Driver = HSTL),
= 19.44 MHz, f
f
R
DPLL Loop BW = 10 Hz, f
Figure 12. Absolute Phase Noise (Output Driver = HSTL),
f
= 19.44 MHz, f
R
DPLL Loop BW = 0.1 Hz, f
= 693.482991 MHz,
OUT
= 19.2 MHz TCXO
SYS
= 312.5 MHz,
OUT
= 19.2 MHz TCXO
SYS
Rev. 0 | Page 22 of 120
Figure 14. Absolute Phase Noise (Output Driver = 1.8V CMOS),
= 2 kHz, f
f
R
DPLL Loop BW = 10 Hz, f
= 70.656 MHz,
OUT
= 19.2 MHz TCXO
SYS
Data Sheet AD9559
DIFFERENTIAL PEAK-TO-PEAK AMPLITUDE (mV)
0 100 200 300 400 600 800 1000 1200500 700 900 1100
FREQUENCY (MHz)
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.
95
2.00
10644-116
0
1200
1000
800
600
400
200
DIFFERENTIAL PEAK-TO-PEAK AMPLITUDE (mV)
0 100 200 300 400 500 600 700 800
FREQUENCY (MHz)
LVDS (DEFAULT)
LVDS (BOOST)
10644-117
3.5
3.0
1.0
1.5
2.0
2.5
0 30025020015010050
PEAK-TO-PEAK AMPLITUDE (V)
FREQUENCY (MHz)
1.8 V MODE
3.3V STRONG MODE
10644-118
3.5
0
0.5
1.0
1.5
2.0
2.5
3.0
0 10080604020
PEAK-TO-PEAK AMPLITUDE (V)
FREQUENCY (MHz)
3.3V WEAK MO DE
10644-119
0
10
20
30
40
50
60
70
0 140012001000800600400200
POWER (mW)
FREQUENCY (MHz)
10644-120
0
5
10
15
20
25
30
35
40
45
50
0 100 200 300 400 500 600 700 900800
POWER (mW)
FREQUENCY (MHz)
10644-121
Figure 15. Amplitude vs. Toggle Rate,
HSTL Mode (LVPECL-Compatible Mode)
Figure 16. Amplitude vs. Toggle Rate, LVDS
Figure 18. Amplitude vs. Toggle Rate with 10 pF Load,
3.3 V (Weak Mode) CMOS
Figure 19. Power Consumption vs. Frequency,
HSTL Mode on Output Driver Power Supply Only
(Pin 17, Pin 21, Pin 34, and Pin 38)
Figure 17. Amplitude vs. Toggle Rate with 10 pF Load,
3.3 V (Strong Mode) and 1.8 V CMOS
Figure 20. Power Consumption vs. Frequency,
LVDS Mode on Output Driver Power Supply Only
(Pin 17, Pin 21, Pin 34, and Pin 38)
Rev. 0 | Page 23 of 120
AD9559 Data Sheet
0
10
20
30
40
50
60
80
70
0 20018016014012010080604020
POWER (mW)
FREQUENCY (MHz)
10644-122
1.8V CMOS
3.3V CMOS W E AK
3.3V CMOS STRONG
–1.0
–0.8
–0.6
–0.4
–0.2
0
0.2
0.4
0.6
0.8
1.0
–1 0 1 2 3 4 5
DIFFERENTIAL AMPLITUDE (V)
TIME (ns)
10644-123
–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
0.3
0.4
–1 0 1 2 3 4
DIFFERENTIAL AMPLITUDE (V)
TIME (ns)
10644-124
–0.2
0.2
0.6
1.0
1.4
1.8
2.2
2.6
3.0
3.4
–1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AMPLITUDE (V)
TIME (ns)
10pF LOAD
2pF LOAD
10644-126
–1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AMPLITUDE (V)
TIME (ns)
–0.1
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
10pF LOAD
2pF LOAD
10644-127
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
–5 5 15 25 35 45 55 65 75 85 95
AMPLITUDE (V)
TIME (ns)
10pF LOAD
2pF LOAD
10644-128
Figure 21. Power Consumption vs. Frequency for Two CMOS Drivers;
Power Is Measured on Output Driver Power Supply Only
(Pin 17, Pin 21, Pin 34, and Pin 38 for 1.8 V CMOS Mode or
on Pin 18 and Pin 37 for 3.3 V CMOS Mode); C
LOAD
= 80 pF
Figure 22. Output Waveform, HSTL (400 MHz)
Figure 24. Output Waveform,
3.3 V CMOS (100 MHz, Strong Mode)
Figure 25. Output Waveform, 1.8 V CMOS (100 MHz)
Figure 23. Output Waveform, LVDS (400 MHz)
Figure 26. Output Waveform, 3.3 V CMOS (20 MHz, Weak Mode)
Rev. 0 | Page 24 of 120
Data Sheet AD9559
–30
–27
–24
–21
–18
–15
–12
–9
–6
–3
0
3
10 100 1k 10k 100k
FREQUENCY OFFSET (Hz)
LOOP GAIN (dB)
10644-129
LOOP BW = 100Hz; HIGH PHASE M ARGIN; PEAKING: 0.06dB; –3dB: 69Hz
LOOP BW = 2kHz; HIGH PHASE M ARGIN; PEAKING: 0.097dB; –3dB: 1.23kHz
LOOP BW = 5kHz; HIGH PHASE M ARGIN; PEAKING: 0.14dB; –3dB: 4.27kHz
–30
–27
–24
–21
–18
–15
–12
–9
–6
–3
0
3
10 100 1k
FREQUENCY OFFSET (Hz)
LOOP GAIN (dB)
10k 100k
10644-230
LOOP BW = 100Hz; NORMAL PHASE M ARGIN; PEAKING: 0.09dB; –3dB: 117Hz
LOOP BW = 2kHz; NORMAL PHASE M ARGIN; PEAKING: 1.6dB; –3dB: 2.69kHz
Figure 27. Closed-Loop Transfer Function for 100 Hz, 2 kHz, and 5 kHz Loop
Bandwidth Settings; High Phase Margin Loop Filter Setting
(This figure is compliant with Telcordia GR-253
jitter transfer test for loop bandwidths < 2 kHz.)
Note that bandwidth is defined as the point where t he open loop gain = 0 dB.
Figure 28. Closed-Loop Transfer Function for 100 Hz and 2 kHz Loop
Bandwidth Settings; Normal Phase Margin Loop Filter Setting
Note that bandwidth is defined as the point where t he open loop gain = 0 dB.
Rev. 0 | Page 25 of 120
AD9559 Data Sheet
AD9559
HSTL OR LVDS
DOWNSTREAM
DEVICE
WITH HIGH
IMPEDANCE
INPUT AND
INTERNAL
DC BIAS
0.1µF
0.1µF
100Ω
10644-130
Z0 = 50Ω
Z
0
= 50Ω
SINGLE-ENDED
(NOT COUPLED)
AD9559
HSTL OR LVDS
Z
0
= 50Ω
Z
0
= 50Ω
SINGLE-ENDED
(NOT COUPLED)
LVDS OR 1.8V HS TL
HIGH IMPE DANCE
DIFFERENTIAL
RECEIVER
100Ω
10644-131
SINGLE-ENDED
(NOT COUPLED)
VS = 3.3V
3.3V
LVPECL
82Ω82Ω
127Ω127Ω
0.1µF
0.1µF
AD9559
1.8V
HSTL
Z0 = 50Ω
Z
0
= 50Ω
10644-132
XOA
XOB
AD9559
10MHz TO 50MHz FUNDAMENTAL
AT-CUT CRYST AL WITH
10pF LOAD CAP ACITANCE
10pF
10pF
10644-133
XOA
300Ω
150Ω
0.1µF
XOB
AD9559
3.3V CMOS TCXO
0.1µF
10644-134

INPUT/OUTPUT TERMINATION RECOMMENDATIONS

Figure 29. AC-Coupled LVDS or HSTL Output Driver
(100 Ω resistor can be placed on either side of decoupling capacitors
and should be as close to the destination receiver as possible.)
Figure 30. DC-Coupled LVDS or HSTL Output Driver
Figure 31. Interfacing the HSTL Driver to a 3.3 V LVPECL Input
(This method incorporates impedance matching and dc-biasing for bipolar
LVPECL receivers. If the receiver is self-biased, the termination scheme shown in
Figure 29 is recommended.)
(The recommended C
Figure 32. System Clock Input (XOA/XOB) in Crystal Mode
shown here should equal the C
When Using a TCXO/OCXO with 3.3 V CMOS Output
= 10 pF is shown. The values of 10 pF shunt capacitors
LOAD
of the crystal.)
LOAD
Figure 33. System Clock Input (XOA, XOB)
Rev. 0 | Page 26 of 120
Data Sheet AD9559

GETTING STARTED

CHIP POWER MONITOR AND STARTUP

The AD9559 monitors the voltage on the power supplies at power-up. When VDD3 is greater than 2.35 V ± 0.1 V and VDD is greater than 1.4 V ± 0.05 V, the device generates a 20 ms reset pulse. The power-up reset pulse is internal and independent of the
E
RESET
A
A
pin. This internal power-up reset sequence eliminates the need for the user to provide external power supply sequencing. Within 45 ns after the internal reset pulse, the M5 to M0 multifunction pins behave as high impedance digital inputs and continue to do so until programmed otherwise.
During a device reset (either via the power-up reset pulse or the
E
RESET
A
A
pin), the M3 to M0 multifunction pins behave as high impedance inputs; and at the point where the reset condition is cleared, level-sensitive latches capture the logic pattern that is present on the multifunction pins.

MULTIFUNCTION PINS AT RESET/POWER-UP

At start-up, the M0 and M1 pins allow the user to either bypass EEPROM loading or load one of three EEPROM profiles. See Table 23 for information on setting the M0 and M1 pins.
Pin M3 selects SPI or I²C mode: SPI mode is set by pulling M3 low at startup. If M3 is high, I²C mode is set, and the M4 and M5 pins determine the I²C address. See Ta ble 25 for information on SPI/I²C configuration.
If 4-wire SPI mode is selected, by setting Bit 7 of Register 0x0000, the M4/SDO pin functions as SDO and is not available for other functions as an M pin. However, in I²C mode and in 3-wire SPI mode, M4 is available as the fifth M pin.
A sixth M pin, M5, is available if the serial port is in I²C mode or 2-wire SPI mode. In 2-wire SPI mode, there is no available, and it is assumed that the
AD9559 is the only device
on the SPI bus.
CS
A
E
A
pin

DEVICE REGISTER PROGRAMMING USING A REGISTER SETUP FILE

The evaluation software contains a programming wizard and a convenient graphical user interface that assists the user in determining the optimal configuration for the DPLLs, APLLs, and SYSCLK based on the desired input and output frequencies. It generates a register setup file with a .STP extension that is easily readable using a text editor.
The user can configure PLL_0 and PLL_1 independently. To do so, the user should program the common registers (such as the system clock and reference inputs) first. Next, the registers that are unique to PLL_0 or PLL_1 can be configured independently.
After using the evaluation software to create the setup file, use the following sequence to program the AD9559:
1. Set user free run mode.
DPLL_0: Register 0x0A22 = 0x01. DPLL_1: Register 0x0A42 = 0x01.
2. Update all registers (also referred to as IO_UPDATE).
Register 0x0005 = 0x01.
3. Write the register values in the STP file from Address 0x0000
to Address 0x0207.
4. IO_UPDATE. Register 0x0005 = 0x01.
5. Ve r if y that SYSCLK is stable. Register 0x0D01[1] = 1.
The user must issue an IO_UPDATE each time before polling Register 0x0D01.
6. For the outputs to toggle prior to DPLL phase or frequency
lock, set the following: APLL_0: Register 0x0A20 = 0x40 (soft sync). APLL_1: Register 0x0A40 = 0x40 (soft sync).
7. Write the rest of the registers in the STP file starting at
Address 0x0300.
8. Calibrate APLL on next IO_UPDATE.
APLL_0: Register 0x0A20 = 0x20. APLL_1: Register 0x0A40 = 0x20.
9. IO_UPDATE. Register 0x0005 = 0x01.
10. Clear user free run mode.
DPLL_0: Register 0x0A22[0] = 0b. DPLL_1: Register 0x0A42[0] = 0b.
11. IO_UPDATE. Register 0x0005 = 0x01.
Rev. 0 | Page 27 of 120
AD9559 Data Sheet

REGISTER PROGRAMMING OVERVIEW

This section provides a programming overview of the register blocks in the AD9559, describing what they do and why they are important. This is supplemental information only, needed only if the user wishes to load the registers without using the STP file.
The AD9559 evaluation software contains a wizard that determines the register settings based on the user’s input and output frequencies. It is strongly recommended that the evaluation software be used to determine these settings.

Multifunction Pins (Optional)

This step is required only if the user intends to use any of the multifunction pins for status or control. The multifunction pin parameters are at Register 0x0100 to Register 0x0107.
Table 196 has a list of M pin output functions, and Tab l e 197 has a list of M pin input functions.

IRQ Functions (Optional)

This step is required only if the user intends to use the IRQ feature. The IRQ functions are divided into three groups: common, PLL_0, and PLL_1.
The user must first choose the events that trigger an IRQ and then set them in Register 0x010A to Register 0x0112. Next, an M pin must be assigned to the IRQ function. The user can choose to dedicate one M pin to each of the three IRQ groups, or one M pin can be assigned for all IRQs.
The IRQ monitor registers are located at Register 0x0D08 to Register 0x0D10. If the desired bits in the IRQ mask registers at Register 0x010A to Register 0x0112 are set high, the appropriate IRQ monitor bit at Register 0x0D08 to Register 0x0D10 is set high when the indicated event occurs.
Individual IRQ events are cleared by using the IRQ clearing registers at Register 0x0A05 to Register 0x0A0E or by setting the clear all IRQs bit (Register 0x0A05[0]) to 1b.
The default values of the IRQ mask registers are such that interrupts are not generated. The default IRQ pin mode is open­drain NMOS.

Watchdog Timer (Optional)

This step is required only if the user intends to use the watchdog timer. The watchdog timer control is at Register 0x0108 and Register 0x0109. The watchdog timer is disabled by default.
The watchdog timer is useful for generating an IRQ after a fixed amount of time. The timer is reset by setting the clear watchdog timer bit in Register 0x0A05[7] to 1.
The user can also program an M pin for the watchdog timer output. In this mode, the M pin generates a 40 ns pulse every time the watchdog timer expires.

System Clock Configuration

The system clock multiplier (SYSCLK) parameters are at Register 0x0200 to Register 0x0207. For optimal performance, use the following steps:
1. Set the system clock PLL input type and divider values.
2. Set the system clock period.
It is essential to program the system clock period because many of the AD9559 subsystems rely on this value.
3. Set the system clock stability timer.
It is highly recommended that the system clock stability timer be programmed. This is especially important when using the system clock multiplier and also applies when using an external system clock source, especially if the external source is not expected to be completely stable when power is applied to the AD9559. The system clock stability timer specifies the amount of time that the system clock PLL must be locked before the part declares that the system clock is stable. The default value is 50 ms.
4. Update all registers (Register 0x0005 = 0x01).
Important Note
The system clock must be stable for the digital PLL blocks to function correctly and read back the registers updated on the system clock domain. These registers include the status registers, as well as the free running tuning word. Therefore, when debug­ging the stable by checking Bit 1 in Register 0x0D01.
AD9559, the user mus
t first ensure that the system clock is

Reference Inputs

The reference input parameters and reference dividers are common to both PLLs; there is only one reference divider (R divider) for each reference input. The register address for each reference input is as follows:
REFA: Register 0x0300 to Register 0x031A
REFB: Register 0x0320 to Register 0x033A
REFC: Register 0x0340 to Register 0x035A
REFD: Register 0x0360 to Register 0x037A
These registers include the following settings:
Reference logic family
Reference divider (R divider value)
Reference input period and tolerance
Reference validation timer
Phase and frequency lock detector settings
Rev. 0 | Page 28 of 120
Data Sheet AD9559
Other reference input settings can be found at the following register addresses:
Note that the APLL calibration and synchronization bits can be found in the following registers:
Reference input enable information is found in the DPLL
Feedback Dividers section.
Reference power-down is found in Register 0x0A01. Reference priority settings are found in the DPLL profiles.
DPLL_0: Registers 0x0440 through 0x0473 DPLL_1: Registers 0x0540 through 0x0573
Reference switching mode settings are found in
DPLL_0: Register 0x0A22 DPLL_1: Register 0x0A42

DPLL Controls and Settings

The DPLL control parameters are separate for DPLL_0 and DPLL_1. They reside in the following locations:
DPLL_0: Register 0x0400 to Register 0x0415 DPLL_1: Register 0x0500 to Register 0x0515
These registers include the following settings:
30-bit free running frequency DPLL pull-in range limits DPLL closed-loop phase offset Tuning word history control (for holdover operation) Phase slew control (for controlling the phase slew rate
during a closed-loop phase adjustment)
With the exception of the free running tuning word, the default values of these registers are fine for normal operation. The free running frequency of the DPLL determines the frequency that appears at the APLL input when user free run mode is selected. The correct free running frequency is required for the APLL to calibrate and lock correctly.
Note that the user free run bits, which enable user free run mode, can be found in the following registers:
DPLL_0: Register 0x0A22 = 0x01 DPLL_1: Register 0x0A42 = 0x01

Output PLLs (APLLs) and Output Drivers

The registers controlling the APLLs and output drivers reside at the following locations:
APLL_0: Register 0x0420 to Register 0x042E APLL_1: Register 0x0520 to Register 0x052E
The following functions are controlled in these registers:
APLL settings (feedback divider, charge pump current) Output synchronization mode Output divider values Output enable/disable (disabled by default) Output logic type
APLL_0: Register 0x0A20 APLL_1: Register 0x0A40

DPLL Feedback Dividers

Each digital PLL has separate feedback divider settings for each reference input. This allows the user to have each digital PLL perform a different frequency translation. However, there is only one reference divider (R divider) for each reference input.
The feedback divider register settings reside in the following locations:
DPLL_0, REFA: Register 0x0440 to Register 0x044C DPLL_0, REFB: Register 0x044D to Register 0x0459 DPLL_0, REFC: Register 0x045A to Register 0x0466 DPLL_0, REFD: Register 0x0467 to Register 0x0473 DPLL_1, REFC: Register 0x0540 to Register 0x054C DPLL_1, REFD: Register 0x054D to Register 0x0559 DPLL_1, REFA: Register 0x055A to Register 0x0566 DPLL_1, REFB: Register 0x0567 to Register 0x0573
These registers include the following settings:
Reference priority Reference input enable (separate for each DPLL) DPLL loop bandwidth DPLL loop filter DPLL feedback divider (integer portion) DPLL feedback divider (fractional portion)

Common Operational Controls

The common operational controls reside at Register 0x0A00 to Register 0x0A0E and include the following:
Simultaneous calibration and synchronization of both PLLs Global power-down Reference power-down Reference validation override IRQ clearing (for all IRQs)

PLL_0 and PLL_1 Operational Controls

The PLL_0 and PLL_1 operational controls are located at Register 0x0A20 to Register 0x0A44 and include the following:
APLL calibration and synchronization Output driver enable and power-down DPLL reference input switching modes DPLL phase offset control
Rev. 0 | Page 29 of 120
AD9559 Data Sheet

APLL VCO Calibration

VCO calibration ensures that, at the time of calibration, the dc control voltage of the APLL VCO is centered in the middle of its operating range. The user can calibrate VCO_0 independently of VCO_1, and vice versa. It is important to remember the following conditions when calibrating the APLL VCO:
The system clock must be stable.
The APLL VCO must have the correct frequency from the
30-bit DCO (digitally controlled oscillator) during calibration. The free running tuning word is found in DPLL_0: Registers 0x0400 to 0x0403 DPLL_1: Registers 0x0500 to 0x0503
The APLL VCO must be recalibrated any time the APLL
frequency changes.
APLL VCO calibration occurs on the low-to-high
transition of the APLL VCO calibration bit. APLL_0: Register 0x0A20[1] APLL_1: Register 0x0A40[1]
The VCO calibration bit is not an autoclearing bit.
Therefore, this bit must be cleared (and an IO_UPDATE issued) before the APLL is recalibrated.
The best way to monitor successful APLL calibration is
by monitoring the APLL locked bit, in the following registers: APLL_0: Register 0x0D20[3] APLL_1: Register 0x0D40[3]

Generate the Output Clock

If Register 0x0425 (for PLL_0) and/or Register 0x0525 (for PLL_1) is programmed for automatic clock distribution synchronization via the DPLL phase or frequency lock, the synthesized output signal appears at the clock distribution outputs. Otherwise, set and then clear the soft sync bit (Bit 2 in Register 0x0A20 for APLL_0 and Register 0x0A40 for APPL_1) or use a multifunction pin input (if programmed accordingly) to generate a clock distribution sync pulse, which causes the synthesized output signal to appear at the clock distribution outputs.

Generate the Reference Acquisition

After the registers are programmed, clear the user free run bit (Bit 0 in Register 0x0A22 for DPLL_0 and Register 0x0A42 for DPPL_1) and issue an IO_UPDATE using Register 0x0005[0] to invoke all of the register settings programmed up to this point.
The DPLLs lock to the first available reference that has the highest priority.
Rev. 0 | Page 30 of 120
Loading...
+ 90 hidden pages