ANALOG DEVICES AD9551 Service Manual

R
Multiservice Clock Generator

FEATURES

Translation between any two standard network rates Dual reference inputs and dual clock outputs Pin programmable for standard network rate translation SPI programmable for arbitrary rational rate translation Output frequencies from 10 MHz to 900 MHz Input frequencies from 19.44 MHz to 806 MHz On-chip VCO Meets OC-192 high band jitter generation requirement Supports standard forward error correction (FEC) rates Supports holdover operation Supports hitless switchover and phase build-out (even with
unequal reference frequencies) SPI-compatible 3-wire programming interface Single supply (3.3 V)

APPLICATIONS

Multiservice switches Multiservice routers Exact network clock frequency translation General-purpose frequency translation

GENERAL DESCRIPTION

The AD9551 accepts one or two reference input signals to synthe­size one or two output signals. The AD9551 uses a fractional-N PLL that precisely translates the reference frequency to the desired output frequency. The input receivers and output drivers provide both single-ended and differential operation.
AD9551
Reference conditioning and switchover circuitry internally synchronizes the two references so that if one reference fails, there is virtually no phase perturbation at the output.
The AD9551 uses an external crystal and an internal DCXO to provide for holdover operation. If both references fail, the device maintains a steady output signal.
The AD9551 provides pin-selectable, preset divider values for standard (and FEC adjusted) network frequencies. The pin­selectable frequencies include any combination of 15 possible input frequencies and 16 possible output frequencies. A SPI interface provides further flexibility by making it possible to program almost any rational input/output frequency ratio.
The AD9551 is a clock generator that employs fractional-N-based phase-locked loops (PLL) using sigma-delta (Σ-) modulators (SDMs). The fractional frequency synthesis capability enables the device to meet the frequency and feature requirements for multiservice switch applications. The AD9551 precisely generates a wide range of standard frequencies when using any one of those same standard frequencies as a timing base (reference). The primary challenge of this function is the precise generation of the desired output frequency because even a slight output frequency error can cause problems for downstream clocking circuits in the form of bit or cycle slips. The requirement for exact frequency translation in such applications necessitates the use of a frac­tional-N-based PLL architecture with variable modulus.

BASIC BLOCK DIAGRAM

C
YSTAL
(26MHz)
REFA
REFB
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks ar
e the property of their respective owners.
REFERENCE
CONDITIONING
AND SWITCH-
OVER
HOLDOVER
LOOP
PIN-DEFINED AND SERIAL
PROGRAMMING
Figure 1.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2009 Analog De
PLL
OUTPUT
CIRCUITRY
AD9551
OUT1
OUT2
07805-001
vices, Inc. All rights reserved.
AD9551

TABLE OF CONTENTS

Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Basic Block Diagram ........................................................................ 1
Revision History ............................................................................... 2
Functional Block Diagram .............................................................. 3
Specifications ..................................................................................... 4
Reference Clock Input Characteristics ...................................... 4
Output Characteristics ................................................................. 4
Jitter Characteristics (180 Hz Loop Bandwidth) ...................... 5
Crystal Oscillator Characteristics............................................... 5
Power Consumption .................................................................... 5
Logic Input Pins ............................................................................ 6
RESET Pin ..................................................................................... 6
Logic Output Pins ......................................................................... 6
Serial Control Port ....................................................................... 6
Serial Control Port Timing ......................................................... 7
Absolute Maximum Ratings ............................................................ 8
ESD Caution .................................................................................. 8
Pin Configuration and Function Descriptions ............................. 9
Typical Performance Characteristics ........................................... 11
Preset Frequency Ratios ................................................................. 14
Theory of Operation ...................................................................... 16
Operating Modes ........................................................................ 16
Component Blocks ..................................................................... 16
Holdover Mode ........................................................................... 21
Jitter Tolerance ............................................................................ 21
External Loop Filter Capacitor ................................................. 21
Output/Input Frequency Relationship .................................... 21
Calculating Divider Values ....................................................... 22
Low Dropout (LDO) Regulators .............................................. 24
Applications Information .............................................................. 25
Thermal Performance ................................................................ 25
Serial Control Port ......................................................................... 26
Serial Control Port Pin Descriptions ....................................... 26
Operation of the Serial Control Port ....................................... 26
Instruction Word (16 Bits) ........................................................ 27
MSB/LSB First Transfers ........................................................... 27
Register Map ................................................................................... 29
Register Map Descriptions ........................................................ 32
Outline Dimensions ....................................................................... 40
Ordering Guide .......................................................................... 40

REVISION HISTORY

9/09—Rev. A to Rev. B
Changes to Table 25 ........................................................................ 33
6/09—Rev. 0 to Rev. A
Changes to Figure 23 ...................................................................... 23
4/09—Revision 0: Initial Version
Rev. B | Page 2 of 40
AD9551
L
A
The AD9551 is easily configured using the external control pins (A[3:0], B[3:0], and Y[3:0]). The logic state of these pins sets pre­defined divider values that establish a specific input-to-output frequency ratio. For applications requiring other frequency ratios, the user can override any of the preconfigured divider settings via the serial port, which enables a very wide range of applications.
The AD9551 architecture consists of two cascaded PLL stages. The first stage consists of fractional division (via SDM), followed by a digital PLL that uses a crystal resonator-based DCXO. The DCXO relies on an external crystal with a resonant frequency in the range of 19.44 MHz to 52 MHz. The DCXO constitutes the first PLL, which operates within a narrow frequency range (±50 ppm) around the crystal resonant frequency. This PLL has a loop bandwidth of approximately 180 Hz, providing initial jitter cleanup of the input reference signal. The second stage is a fre­quency multiplying PLL that translates the first stage output frequency (in the range of 19.44 MHz to 104 MHz) up to ~3.7 GHz. This PLL incorporates an SDM-based fractional feedback divider that enables fractional frequency multiplication. Programmable integer dividers at the output of this second PLL establish a final output frequency of up to 900 MHz.
It is important to understand that the architecture of the AD9551 produces an output frequency that is most likely not coherent with the input reference frequency. The reason is that the input and crystal frequencies typically are not harmonically related and neither are the output and crystal frequencies. As a result, there is generally no relationship between the phase of the input and output signals.

FUNCTIONAL BLOCK DIAGRAM

INPUT PL
LOCKED
XTAL1 XTAL0 LF
The AD9551 includes reference signal processing blocks that enable a smooth switching transition between two reference inputs. This circuitry automatically detects the presence of the reference input signals. If only one input is present, the device uses it as the active reference. If both inputs are present, one becomes the active reference and the other becomes the alter­nate reference. The circuitry edge-aligns the backup reference with the active reference. If the active reference fails, the circuitry automatically switches to the backup reference (if available), making it the new active reference. Meanwhile, if the failed reference is once again available, it becomes the new backup reference and is edge-aligned with the new active reference (a precaution against failure of the new active reference).
If neither reference can be used, the AD9551 supports a holdover mode. Note that the external crystal is necessary to provide the switchover and holdover functionality. It is also the clock source for the reference synchronization and monitoring functions.
The AD9551 relies on a single external capacitor for the output PLL loop filter. With proper termination, the output is compatible with LVPECL, LVDS, or CMOS logic levels, although the AD9551 is implemented in a strictly CMOS process.
The AD9551 operates over the extended industrial temperature range of −40°C to +85°C.
OUTPUT PLL
LOCKED
REFA, REF
REFB, REFB
SCLK, SDIO,
A[3:0]
B[3:0]
Y[3:0]
TEST
MUX
f
2
REFA
N
A
SDM
A
f
2
REFB
N
B
SDM
B
3
4
4
4
REGISTER BANK
PRECONFIGURED
DIVIDER V ALUES
CS
SYNCHRONI ZATIO N AND
SWITCH OVER CONTRO L
REFERENCE
MONITOR
SAMPLE RATE CONTROL
DIG.
P
LOOP
F D
FILTER
19.44MHz MODE
19.44MHz MODE
DCXO
NA, MODA, FRAC
NB, MODB, FRAC
N, MOD, FRAC, P0, P1, P
LOOP
CONFIGURATION
A
B
2
LOCK
DETECT
f
IF
P F D
CHARGE
PUMP
N = 4N
N1 4/5
SDM
+ N
1
FRAC, MOD
3350MHz TO
4050MHz
VCO
0
N
P2, P1, P
AD9551
4 TO111 TO
P
0P1
0
63
1 TO
63
P
f
2
OUT1
f
OUT2
2
2
OUT1, OUT1
OUT2, OUT2
07805-002
Figure 2.
Rev. B | Page 3 of 40
AD9551

SPECIFICATIONS

Minimum and maximum values apply for full range of supply voltage and operating temperature variation. Typical values apply for VDD = 3.3 V, T
= 25°C, unless otherwise noted.
A

REFERENCE CLOCK INPUT CHARACTERISTICS

Table 1.
Parameter Min Typ Max Unit Test Conditions/Comments
FREQUENCY RANGE 19 INPUT CAPACITANCE 3 pF INPUT RESISTANCE 6 kΩ Measured single-ended DUTY CYCLE 40 60 % REFERENCE CLOCK INPUT VOLTAGE SWING
Differential 250 mV Maximum magnitude across pin pair Single-Ended 250 mV Peak-to-peak
1
The 19 MHz lower limit applies only to the 19.44 MHz operating mode.

OUTPUT CHARACTERISTICS

Table 2.
Parameter Min Typ Max Unit Test Conditions/Comments
LVPECL MODE
Differential Output Voltage Swing Common-Mode Output Voltage VDD − 1.77 VDD − 1.66 VDD − 1.20 V Output driver static Frequency Range 0 900 MHz Duty Cycle 40 60 % Up to 805 MHz output frequency Rise/Fall Time1 (20% to 80%) 255 305 ps
LVDS MODE
Differential Output Voltage Swing
Balanced, VOD 247 454 mV
Unbalanced, ∆VOD 25 mV
Offset Voltage
Common Mode, VOS 1.125 1.375 V Output driver static Common-Mode Difference, ∆VOS 25 mV
Short-Circuit Output Current 17 24 mA Frequency Range 0 900 MHz Duty Cycle 40 60 % Up to 805 MHz output frequency Rise/Fall Time1 (20% to 80%) 285 355 ps
CMOS MODE
Output Voltage High, VOH
IOH = 10 mA 2.8 V IOH = 1 mA 2.8 V
Output Voltage Low, VOL
IOL = 10 mA 0.5 V IOL = 1 mA 0.3 V
Frequency Range 0 200 MHz
1
806 MHz
Measured with a differential probe across the input pins
690 765 889 mV Output driver static
100 Ω termination between both pins of the output driver
Voltage swing between output pins; output driver static
Absolute difference between voltage swing of normal pin and inverted pin; output driver static
Voltage difference between output pins; output driver static
100 Ω termination between both pins of the output driver
Output driver static; standard drive strength setting
Output driver static; standard drive strength setting
3.3 V CMOS; standard drive strength setting
Rev. B | Page 4 of 40
AD9551
Parameter Min Typ Max Unit Test Conditions/Comments
Duty Cycle 45 55 % At maximum output frequency Rise/Fall Time1 (20% to 80%) 500 745 ps
1
The listed values are for the slower edge (rise or fall).

JITTER CHARACTERISTICS (180 HZ LOOP BANDWIDTH)

Table 3.
Parameter Min Typ Max Unit Test Conditions/Comments
JITTER GENERATION
12 kHz to 20 MHz 1.3 ps rms fIN = 19.44 MHz, f
0.8 ps rms fIN = 622.08 MHz, f
50 kHz to 80 MHz 0.5 ps rms fIN = 19.44 MHz, f
0.6 ps rms fIN = 622.08 MHz, f
4 MHz to 80 MHz 0.1 ps rms fIN = 622.08 MHz, f
JITTER TRANSFER BANDWIDTH 180 Hz
JITTER TRANSFER PEAKING 0.1 dB

CRYSTAL OSCILLATOR CHARACTERISTICS

3.3 V CMOS; standard drive strength setting; 10 pF load
= 622.08 MHz
OUT
= 622.08 MHz
OUT
= 622.08 MHz
OUT
= 622.08 MHz
OUT
= 622.08 MHz
OUT
See the Typical Performance Characteristics section
See the Typical Performance Characteristics section
Table 4.
Parameter Min Typ Max Unit Test Conditions/Comments
CRYSTAL FREQUENCY
Range 19 26 52 MHz
Tolerance 20 ppm CRYSTAL MOTIONAL RESISTANCE 100 DCXO LOAD CAPACITANCE CONTROL
RANGE
3 to 21 pF
Requires a crystal with a 10 pF load specification

POWER CONSUMPTION

Table 5.
Parameter Min Typ Max Unit Test Conditions/Comments
TOTAL CURRENT 169 195 mA
VDD CURRENT BY PIN
Pin 9 24 27 mA
Pin 23 78 84 mA
Pin 27 36 42 mA
Pin 34 36 42 mA LVPECL OUTPUT DRIVER 38 mA
At maximum output frequency with both output channels active
900 MHz with 100 Ω termination between both pins of the output driver
Rev. B | Page 5 of 40
AD9551

LOGIC INPUT PINS

Table 6.
Parameter Min Typ Max Unit Test Conditions/Comments
INPUT CHARACTERISTICS
Logic 1 Voltage, VIH 1.0 V
Logic 0 Voltage, VIL 0.8 V Logic 1 Current, IIH 3 µA Logic 0 Current, IIL 17 µA
1
The A[3:0], B[3:0], Y[3:0], and OUTSEL pins have 100 kΩ internal pull-up resistors.

RESET PIN

Table 7.
Parameter Min Typ Max Unit
INPUT CHARACTERISTICS
Input Voltage High, VIH 1.8 V Input Voltage Low, VIL 1.3 V Input Current High, I Input Current Low, I
MINIMUM PULSE WIDTH HIGH 2 ns
1
The RESET pin has a 100 kΩ internal pull-up resistor, so the default state of the device is reset.
1
For the CMOS inputs, a static Logic 1 results from either a pull-up resistor or no connection
1
0.3 12.5 µA
INH
31 43 µA
INL

LOGIC OUTPUT PINS

Table 8.
Parameter Min Typ Max Unit
OUTPUT CHARACTERISTICS
Output Voltage High, VOH 2.7 V Output Voltage Low, VOL 0.4 V

SERIAL CONTROL PORT

Table 9.
Parameter Min Typ Max Unit Test Conditions/Comments
CS
Input Logic 1 Voltage 1.6 V Input Logic 0 Voltage 0.5 V Input Logic 1 Current 0.03 µA Input Logic 0 Current 2 µA Input Capacitance 2 pF
SCLK
Input Logic 1 Voltage 1.6 V Input Logic 0 Voltage 0.5 V Input Logic 1 Current 2 µA Input Logic 0 Current 0.03 µA Input Capacitance 2 pF
SDIO
Input
Input Logic 1 Voltage 1.6 V Input Logic 0 Voltage 0.5 V
Rev. B | Page 6 of 40
AD9551
Parameter Min Typ Max Unit Test Conditions/Comments
Input Logic 1 Current 1 µA Input Logic 0 Current 1 µA Input Capacitance 2 pF
Output
Output Logic 1 Voltage 2.8 V 1 mA load current Output Logic 0 Voltage 0.3 V 1 mA load current

SERIAL CONTROL PORT TIMING

Table 10.
Parameter Limit Unit
SCLK
Clock Rate, 1/t
Pulse Width High, t
Pulse Width Low, t SDIO to SCLK Setup, tDS 4 ns min SCLK to SDIO Hold, tDH 0 ns min SCLK to Valid SDIO, tDV 13 ns max CS to SCLK Setup (tS) and Hold (tH)
CS Minimum Pulse Width High
50 MHz max
CLK
3 ns min
HIGH
3 ns min
LOW
0 ns min
6.4 ns min
Rev. B | Page 7 of 40
AD9551

ABSOLUTE MAXIMUM RATINGS

Table 11.
Parameter Rating
Supply Voltage (VDD) 3.6 V Maximum Digital Input Voltage −0.5 V to VDD + 0.5 V Storage Temperature −65°C to +150°C Operating Temperature Range −40°C to +85°C Lead Temperature (Soldering, 10 sec) 300°C Junction Temperature 150°C
Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

Rev. B | Page 8 of 40
AD9551

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

A2
A3
B0
B1
37
38
39
40
PIN 1
1B2
INDICATOR
2B3 3
REFA
4REFA 5REFB 6
REFB
7RESET 8LDO_IPDIG 9VDD
10LDO_XTAL
NOTES
1. EXPOSED DI E PAD MUST BE CONNECTED TO GND.
AD9551
TOP VIEW
(Not to Scale)
11
12
13
CS
XTAL0
XTAL1
14
SCLK
Figure 3. Pin Configuration
Table 12. Pin Function Descriptions
Pin No.
9, 23,
Mnemonic Type
VDD P Power Supply Connection (3.3 V Analog Supply).
1
Description
27, 34 30, 31 GND P Analog Ground. 4 REFA I Analog Input (Active High)—Reference Clock Input A. 3
REFA
I Analog Input (Active High)—Complementary Reference Clock Input A.
5 REFB I Analog Input (Active High)—Reference Clock Input B. 6 13
REFB CS
I Analog Input (Active High)—Complementary Reference Clock Input B. I Digital Input Chip Select (Active Low).
14 SCLK I Serial Data Clock. 15 SDIO I/O Digital Serial Data Input/Output. 7 RESET I
Digital Input (Active High). Resets internal logic to default states. This pin has an internal 100 kΩ
pull-up resistor, so the default state of the device is reset. 11 XTL0 I Pin for Connecting an External Crystal (20 MHz to 30 MHz). 12 XTL1 I Pin for Connecting an External Crystal (20 MHz to 30 MHz). 33 OUT1 O Square Wave Clocking Output 1. 32
OUT1
O Complementary Square Wave Clocking Output 1.
29 OUT2 O Square Wave Clocking Output 2. 28
OUT2
17 LF I/O
O Complementary Square Wave Clocking Output 2.
Loop Filter Node for the Output PLL. Connect an external 12 nF capacitor (100 nF in 19.44 MHz
mode) from this pin to Pin 22 ( LDO_VCO). 26 OUTPUT PLL LOCKED O Active High Locked Status Indicator for the Output PLL. 25 INPUT PLL LOCKED O Active High Locked Status Indicator for the Input PLL. 16 OUTSEL I
Logic 0 selects LVDS, and Logic 1 selects LVPECL-compatible levels for both OUT1 and OUT2
when the outputs are not under SPI port control. Can be overridden via the programming registers. 8 LDO_IPDIG P/O LDO Decoupling Pin. Connect a 0.47 F decoupling capacitor from this pin to ground. 10 LDO_XTAL P/O LDO Decoupling Pin. Connect a 0.47 F decoupling capacitor from this pin to ground. 22 LDO_VCO P/O LDO Decoupling Pin. Connect a 0.47 F decoupling capacitor from this pin to ground. 24 LDO_1.8 P/O LDO Decoupling Pin. Connect a 0.47 F decoupling capacitor from this pin to ground. 35 A0 I Control Pin. Selects preset values for the REFA dividers. 36 A1 I Control Pin. Selects preset values for the REFA dividers. 37 A2 I Control Pin. Selects preset values for the REFA dividers. 38 A3 I Control Pin. Selects preset values for the REFA dividers.
1
ND
OUT1
VDD
A0
A1
OUT
G
32
31
33
34
35
36
30 GND 29 OUT2 28
OUT2 27 VDD 26 OUT PUT PLL LOCKED 25 INPUT PLL LOCKED 24 LDO _1.8 23 VDD 22 LDO_VCO 21 Y0
15
17
16
18
19
20
LF
Y3
Y2
SDIO
Y1
UTSEL O
07805-003
Rev. B | Page 9 of 40
AD9551
Pin No. Mnemonic Type
39 B0 I Control Pin. Selects preset values for the REFB dividers. 40 B1 I Control Pin. Selects preset values for the REFB dividers. 1 B2 I Control Pin. Selects preset values for the REFB dividers. 2 B3 I Control Pin. Selects preset values for the REFB dividers. 21 Y0 I Control Pin. Selects preset values for the output PLL feedback dividers and OUT1 dividers. 20 Y1 I Control Pin. Selects preset values for the output PLL feedback dividers and OUT1 dividers. 19 Y2 I Control Pin. Selects preset values for the output PLL feedback dividers and OUT1 dividers. 18 Y3 I Control Pin. Selects preset values for the output PLL feedback dividers and OUT1 dividers. EP Exposed Die Pad The exposed die pad must be connected to GND.
1
P = power, I = input, O = output, I/O = input/output, P/O = power/output.
1
Description
Rev. B | Page 10 of 40
AD9551
m
m
m
m

TYPICAL PERFORMANCE CHARACTERISTICS

–20 –30
–40
–50 –60
–70
–80
–90
–100 –110
–120
–130
PHASE NOISE (dBc/Hz)
–140
–150
–160
–170 –180
100 1k 10k 100k 1M 10M 100M
FREQUENCY OF FSET F ROM CARRIER (Hz)
CARRIER 622.080005MHz 0.8813dB
RMS JITTER:
0.827ps (12kHz TO 20MHz)
0.618ps (50kHz TO 80MHz)
Figure 4. Phase Noise, Fractional-N
= 622.08 MHz, f
(f
IN
= 622.08 MHz, f
OUT1
= 26 MHz)
XTAL
–20 –30
–40
–50 –60
–70
–80
–90
–100 –110
–120
–130
PHASE NOISE (dBc/Hz)
–140
–150
–160
4
07805-00
–170 –180
100 1k 10k 100k 1M 10M 100M
FREQUENCY OF FSET F ROM CARRIER (Hz)
Figure 7. Phase Noise, Integer-N
= 622.08 MHz, f
(f
IN
CARRIER 619.666689MHz 0.8705dB
RMS JITTER:
0.773ps (12kHz TO 20MHz)
0.559ps (50kHz TO 80MHz)
= 619.67 MHz, f
OUT1
= 26 MHz)
XTAL
07805-005
–20 –30
–40
–50 –60
–70
–80
–90
–100 –110
–120
–130
PHASE NOISE (dBc/Hz)
–140
–150
–160
–170 –180
100 1k 10k 100k 1M 10M 100M
FREQUENCY OF FSET F ROM CARRIER (Hz)
CARRIER 622.080027MHz 0.5414dB
RMS JITTER:
1.336ps (12kHz TO 20MHz)
0.463ps (50kHz TO 80MHz)
Figure 5. Phase Noise, 19.44 MHz Mode, Fractional-N
= 19.44 MHz, f
(f
IN
5
0
–5
–10
–15
–20
1.0
–25
0.5
JITTER TRANSFER (dB)
0
–30
–0.5
–1.0
–35
–40
10 100
10 100 1k 10k 100k
= 622.08 MHz, f
OUT1
FREQUENCY OFFSET (Hz)
= 52 MHz)
XTAL
Figure 6. Jitter Transfer (Minimal Peaking)
(Register 0x33[7] = 0)
–20 –30
–40
–50 –60
–70
–80
–90
–100 –110
–120
–130
PHASE NOISE (dBc/Hz)
–140
–150
–160
6
07805-00
–170 –180
100 1k 10k 100k 1M 10M 100M
FREQUENCY OF FSET F ROM CARRIER (Hz)
CARRIER 619.666712MHz 0.6233dB
RMS JITTER:
1.327ps (12kHz TO 20MHz)
0.438ps (50kHz TO 80MHz)
07805-007
Figure 8. Phase Noise, 19.44 MHz Mode, Integer-N
= 19.44 MHz, f
(f
IN
5
0
–5
–10
–15
–20
1.0
–25
0.5
JITTER TRANSFER (dB)
–30
0
–0.5
–35
–1.0
10 100
8
07805-00
–40
10 100 1k 10k 100k
= 619.67 MHz, f
OUT1
FREQUENCY OFFSET (Hz)
= 52 MHz)
XTAL
07805-009
Figure 9. Jitter Transfer (Nominal Peaking)
(Register 0x33[7] = 1)
Rev. B | Page 11 of
40
AD9551
35
25
30
25
20
15
SUPPLY CURRENT (mA)
10
5 100 1k
FREQUENCY (MHz)
LVPECL
LVDS (STRONG)
LVDS (WEAK)
Figure 10. Supply Current vs. Output Frequency— LVPECL and LVDS
(10 pF Load)
1.6
1.4
1.2
1.0
0.8
AMPLITUDE (V p-p)
0.6
LVPECL
LVDS (STRONG)
LVDS (WEAK)
20
15
10
SUPPLY CURRENT (mA)
5
024
07805-
0
0 50 100 150 200 250
FREQUENCY (MHz )
07805-025
Figure 13 Supply Current vs. Output Frequency—CMOS
(10 pF Load)
4.0
3.5
3.0
2.5
2.0
1.5
AMPLITUDE (V p-p)
1.0
0.5
20pF
5pF
10pF
0.4 0 200 400 600 800 1000
FREQUENCY (MHz )
028
07805-
Figure 11. Peak-to-Peak Output Voltage vs. Frequency—LVPECL and LVDS
(10 pF Load)
60
55
DUTY CYCLE (%)
LVDS (WEAK) LVDS (STRONG) LVPECL
50
100 200 300 400 500 600 700 800 900 1000
FREQUENCY (MHz)
07805-026
Figure 12. Duty Cycle vs. Output Frequency—LVPECL and LVDS
(10 pF Load)
0
0 100 200 300 400 500
FREQUENCY (MHz)
Figure 14. Peak-to-Peak Output Voltage vs. Frequency—CMOS
55
54
53
52
DUTY CYCL E (%)
51
50
0 100 200 300
FREQUENCY (MHz )
5pF 10pF 20pF
Figure 15. Duty Cycle vs. Output Frequency—CMOS
07805-029
027
07805-
Rev. B | Page 12 of 40
Loading...
+ 28 hidden pages