ANALOG DEVICES AD10200 Service Manual

查询5962-9961001HXA供应商查询5962-9961001HXA供应商
Dual Channel, 12-Bit 105 MSPS IF Sampling
A/D Converter with Analog Input
a
FEATURES Dual, 105 MSPS Minimum Sample Rate Channel-Channel Isolation, >80 dB AC-Coupled Signal Conditioning Included Gain Flatness up to Nyquist: < 0.2 dB Input VSWR 1.1:1 to Nyquist 80 dB Spurious-Free Dynamic Range Two’s Complement Output Format
3.3 V or 5 V CMOS-Compatible Output Levels
0.850 W per Channel Industrial and Military Grade
APPLICATIONS Radar IF Receivers Phased Array Receivers Communications Receivers Secure Communications GPS Antijamming Receivers Multichannel, Multimode Receivers
PRODUCT DESCRIPTION
The AD10200 is a full channel ADC solution with on-module signal conditioning for improved dynamic performance and fully matched channel-to-channel performance. The module
Signal Conditioning
AD10200
includes two wide-dynamic range ADCs. Each ADC has a transformer coupled front-end optimized for Direct-IF sampling. The AD10200 has on-chip track-and-hold circuitry, and utilizes an innovative architecture to achieve 12-bit, 105 MSPS perfor­mance. The AD10200 uses innovative high-density circuit design to achieve exceptional matching and performance while still maintaining excellent isolation, and providing for significant board area savings.
The AD10200 operates with 5.0 V supply for the analog-to­digital conversion. Each channel is completely independent allowing operation with independent encode and analog inputs. The AD10200 is packaged in a 68-lead ceramic chip carrier package. Manufacturing is done on Analog Devices, Inc. MIL­38534 Qualified Manufacturers Line (QML) and components are available up to Class-H (–55°C to +125°C).
PRODUCT HIGHLIGHTS
1. Guaranteed sample rate of 105 MSPS.
2. Input signal conditioning with full power bandwidth to 250 MHz.
3. Fully tested/characterized performance at 121 MHz A
4. Optimized for IF sampling.
.
IN
FUNCTIONAL BLOCK DIAGRAM
AINA2
7
34
D00A (LSB)
D01A
D02A
D03A
D04A
D05A
D06A
D07A
D08A
D09A
D10A
D11A
(MSB)
33
32
31
30
29
28
25
24
23
22
OUTPUT RESISTORS
21
18 17
12 12
TIMING
ENCODEAENCODEA
T1A
50
T/H T/H
ADC
REF
3
REF_A_OUT
REV. A
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
AINB2
63
50
D00B (LSB)
49
T1B
50
AD10200
ADC
12 12
OUTPUT RESISTORS
REF
56
REF_B_OUT
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2001
TIMING
53 54
ENCODEBENCODEB
48
47
46
45
42
41
40
39
38
37
D01B
D02B
D03B
D04B
D05B
D06B
D07B
D08B
D09B
D10B
D11B (MSB)
1
(V
AD10200–SPECIFICATIONS
= 3.3 V, VCC = 5.0 V; ENCODE = 105 MSPS, unless otherwise noted)
DD
Test MIL
Parameter Temp Level Subgroup Min Typ Max Unit
RESOLUTION 12 Bits
DC ACCURACY
Differential Nonlinearity Full IV 12 –0.99 ±0.5 +0.99 LSB Integral Nonlinearity Full IV 12 –3 ± 0.75 +3 LSB No Missing Codes Full I 1, 2, 3 Guaranteed Gain Error
2
Full I 1, 2, 3 –9 ± 1+9% FS
Output Offset Full I 1, 2, 3 –12 +12 LSB
ANALOG INPUT
Input Voltage Range 25°C V 2.048 V p-p Input Impedance 25°CV 50 Input VSWR
3
Full IV 12 1.1:1 1.25:1 Ratio Analog Input Bandwidth, High Full IV 12 200 250 MHz Analog Input Bandwidth, Low Full IV 12 1 MHz
ANALOG REFERENCE
Output Voltage Full I 1, 2, 3 2.4 2.5 2.6 V Load Current 25°CV 5 mA Tempco Full V 50 ppm/°C
SWITCHING PERFORMANCE
Maximum Conversion Rate Full I 4, 5, 6 105 MSPS Minimum Conversion Rate Full IV 12 10 MSPS Duty Cycle Full IV 12 45 50 55 % Aperture Delay (t Aperture Uncertainty (Jitter) 25°C V 0.25 ps rms Output Valid Time (t Output Propagation Delay ( Output Rise Time (t
)25°C V 1.0 ns
A
4
)
V
)25°C V 12 3.5 ns
R
PD
4
)
Full IV 12 3.0 5.3 ns
Full IV 12 4.5 5.5 8.0 ns
Output Fall Time (tF)25°C V 12 3.3 ns
DIGITAL INPUTS
Encode Input Common Mode Full IV 12 1.2 1.6 2.0 V Differential Input (Enc, Enc) Full IV 12 0.4 5.0 V Logic “1” Voltage Full IV 12 2.0 V Logic “0” Voltage Full IV 12 0.8 V Input Resistance Full IV 12 358k Input Capacitance 25°C V 4.5 pF
DIGITAL OUTPUTS
Logic “1” Voltage Logic “0” Voltage
4
4
Full VI 1, 2, 3 3.1 3.3 V
Full VI 1, 2, 3 0 0.2 V Output Coding Two’s Complement
POWER SUPPLY
Power Dissipation
5
6
Full I 1, 2, 3 1800 2200 mW Power Supply Rejection Ratio Full IV 12 ± 0.5 ± 5 mV/V I (DV
) Current Full I 1, 2, 3 25 40 mA
DD
I (AVCC) Current Full I 1, 2, 3 340 410 mA
DYNAMIC PERFORMANCE
Signal-to-Noise Ratio (SNR)
7
(Without Harmonics)
= 10 MHz 25°C V 67 dBFS
f
IN
Full V 66 dBFS
f
= 41 MHz 25°C I 4 64 66.5 dBFS
IN
Full II 5, 6 62 65 dBFS
= 71 MHz 25°C I 4 62.5 66.4 dBFS
f
IN
Full II 5, 6 61.5 64 dBFS
= 121 MHz 25°C I 4 61 65 dBFS
f
IN
Full II 5, 6 61 64 dBFS
–2–
REV. A
AD10200
Test MIL
Parameter Temp Level Subgroup Min Typ Max Unit
DYNAMIC PERFORMANCE (Continued)
Signal-to-Noise Ratio (SINAD) (With Harmonics)
f
= 10 MHz 25°C V 66 dBFS
IN
= 41 MHz 25°C I 4 63 65.5 dBFS
f
IN
f
= 71 MHz 25°C I 4 61 63.5 dBFS
IN
= 121 MHz 25°C I 4 56 58.5 dBFS
f
IN
Spurious Free Dynamic Range
fIN = 10 MHz 25°C V 81 dBFS
= 41 MHz 25°C I 4 73 81 dBFS
f
IN
f
= 71 MHz 25°C I 4 67 74 dBFS
IN
= 121 MHz 25°C I 4 61 65 dBFS
f
IN
Two-Tone Intermodulation Distortion
f
f
f
10
(IMD)
= 10 MHz; fIN = 12 MHz 25°C V 86 dBc
IN
= 71 MHz; fIN = 72 MHz 25°C V 70 dBc
IN
= 121 MHz; fIN = 122 MHz 25°C I 4 55.5 62 dBc
IN
Channel-to-Channel Isolation
fIN = 121 MHz Full IV 12 80 85 dB
NOTES
1
All ac specifications tested by driving ENCODE and ENCODE differentially.
2
Gain Error measured at 2.5 MHz.
3
Input VSWR guaranteed 10 MHz to 200 MHz.
4
tV and tPD are measured from the transition points of the ENCODE input to the 50%/50% levels of the digital outputs swing. The digital output load during test is not to exceed an ac load of 10 pF or a dc current of ± 40 mA.
5
Supply voltages should remain stable within ± 5% for normal operation.
6
Power dissipation measured with encode at rated speed and 0 dBm analog input.
7
Analog Input signal power at –1 dBFS; signal-to-noise ratio (SNR) is the ratio of signal level to total noise (first 5 harmonic removed). Encode = 105 MSPS. SNR is reported in dBFS, related back to converter full scale.
8
Analog Input signal power at –1 dBFS; signal-to-noise and distortion (SINAD) is the ratio of signal level to total noise + harmonics. Encode = 105 MSPS. SINAD is reported in dBFS, related back to converter full scale.
9
Analog Input signal equal –1 dBFS; SFDR is ratio of converter full scale to worst spur.
10
Both input tones at –7 dBFS; two tone intermodulation distortion (IMD) rejection is the ratio of either tone to the worst third order intermod product. f1 = x MHz ± 100 kHz, f2 = x MHz ± 100 kHz.
11
Channel-to-Channel isolation tested with A Channel/50 terminated (AINA2) grounded and a full-scale signal applied to B Channel (AINB2).
Specifications subject to change without notice.
8
Full V 63 dBFS
Full II 5, 6 60.5 63 dBFS
Full II 5, 6 57 60 dBFS
9
Full II 5, 6 53 55 dBFS
Full V 70 dBFS
Full II 5, 6 67.5 dBFS
Full II 5, 6 60 dBFS
Full II 5, 6 55.5 58 dBFS
Full V 81 dBc
Full V 65 dBc
11
Full II 5, 6 53 57 dBc
REV. A
–3–
AD10200
ABSOLUTE MAXIMUM RATINGS
1, 2
VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
CC
Analog Inputs . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Digital Inputs . . . . . . . . . . . . . . . . . . . –0.5 V to V
p-p(18 dBm)
+ 0.5 V
DD
Digital Output Current . . . . . . . . . . . . . . . . . . . . . . . . 20 mA
Operating Temperature . . . . . . . . . . . . . . . . –55°C to +125°C
Storage Temperature . . . . . . . . . . . . . . . . . . –65°C to +150°C
Maximum Junction Temperature . . . . . . . . . . . . . . . . . 175°C
Maximum Case Temperature . . . . . . . . . . . . . . . . . . . . 150°C
NOTES
1
Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.
2
Typical thermal impedances for “Z” package:
θJC = 2.22°C/W; θJA = 24.3°C/W.
EXPLANATION OF TEST LEVELS Test Level
I. 100% production tested. II. 100% production tested at 25°C and sample tested at
specific temperatures. III. Sample tested only. IV. Parameter is guaranteed by design and characterization
testing. V. Parameter is a typical value only. VI. 100% production tested at 25°C; guaranteed by design and
characterization testing for industrial temperature range.
Table I. Output Coding (VREF = 2.5 V) (Two’s Complement)
Code AIN (V) Digital Output
+2047 +1.024 0111 1111 1111
••
•• • 0 0 0000 0000 0000 –1 –0.00049 1111 1111 1111
••
•• • –2048 –1.024 1000 0000 0000
ORDERING GUIDE
Model Temperature Range Package Description Package Option
AD10200BZ –40°C to +85°C (Case) 68-Lead Ceramic Leaded Chip Carrier Z-68B 5962-9961002HXA –40°C to +85°C (Case) 68-Lead Ceramic Leaded Chip Carrier Z-68B 5962-9961001HXA –55°C to +125°C (Case) 68-Lead Ceramic Leaded Chip Carrier Z-68B AD10200/PCB Evaluation Board with AD10200BZ
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although
WARNING!
the AD10200 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.
ESD SENSITIVE DEVICE
–4–
REV. A
PIN CONFIGURATION
AD10200
CC
AV
D10B
DNC
AGNDB
D9B
D8B
B2
IN
A
D7B
NC
D6B
AGNDB
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
DGNDB
AGNDB
AGNDB
DNC
DNC
REF_B_OUT
AGNDB
ENCODEB
ENCODEB
AGNDB
DV
CC
D0B (LSB)
D1B
D2B
D3B
D4B
D5B
DGNDB
AGNDA
AGNDA
DNC
AGNDA
AV
DNC
AGNDA
ENCODEA
ENCODEA
AGNDA
DV
(MSB) D11A
D10A
D9A
D8A
D7A
DGNDA
A2
IN
NC
DNC
AGNDA
A
AGNDA
9618 7 6 5 68 67 66 65 64 63 624321
10
11
12
13
14
CC
15
16
17
18
19
20
CC
21
22
23
24
25
26
27 4328 29 30 31 32 33 34 35 36 37 38 39 40 41 42
D6A
D5A
D4A
DGNDA
NC = NO CONNECT
D3A
VREF_A_OUT
AGNDA
DNC
AD10200
TOP VIEW
(Not to Scale)
D2A
D1A
(LSB) D0A
SHIELD
PIN 1 IDENTIFIER
AGNDA
DNC
AGNDB
AGNDB
(MSB) D11B
PIN FUNCTION DESCRIPTIONS
Pin No. Mnemonic Function
1 SHIELD Internal Ground Shield between Channels 2, 5, 9–11, 13, 16, 19, 35 AGNDA A Channel Analog Ground. A and B grounds should be connected as close to
the device as possible. 3 VREF_A_OUT A Channel Internal Voltage Reference 6, 62 NC No Connection 7A
A2 Analog Input for A Side ADC
IN
4, 8, 12, 15, 57, 58, 64, 67 DNC Do Not Connect 14, 66 AV
CC
Analog Positive Supply Voltage (Nominally 5.0 V) 17 ENCODEA Complement of Encode 18 ENCODEA Data conversion initiated on the rising edge of ENCODE input. 20 DV
CC
Digital Positive Supply Voltage (Nominally 3.3 V) 21–25, 28–34 D11A–D7A, Digital Outputs for ADC A. D0 (LSB)
D6A–D0A 26, 27 DGNDA A Channel Digital Ground 36, 52, 55, 59–61, 65, 68 AGNDB B Channel Analog Ground. A and B grounds should be connected as close to
the device as possible.
37–42, 45–50 D11B–D6B, Digital Outputs for ADC B. D0 (LSB)
D5B–D0B 43, 44 DGNDB B Channel Digital Ground 51 DV
CC
Digital Positive Supply Voltage (Nominally 3.3 V)
53 ENCODEB Data conversion initiated on rising edge of ENCODE input. 54 ENCODEB Complement of Encode 56 VREF_B_OUT B Channel Internal Voltage Reference 63 AINB2 Analog Input for B Side ADC
REV. A
–5–
AD10200
DEFINITION OF SPECIFICATIONS Analog Bandwidth
The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB.
Aperture Delay
The delay between the 50% point on the rising edge of the ENCODE command and the instant at which the analog input is sampled.
Aperture Uncertainty (Jitter)
The sample-to-sample variation in aperture delay.
Differential Nonlinearity
The deviation of any code from an ideal 1 LSB step.
Encode Pulsewidth/Duty Cycle
Pulsewidth high is the minimum amount of time that the ENCODE pulse should be left in Logic “1” state to achieve rated performance; pulsewidth low is the minimum time ENCODE pulse should be left in low state. At a given clock rate, these specs define an acceptable Encode duty cycle.
Harmonic Distortion
The ratio of the rms signal amplitude to the rms value of the worst harmonic component.
Integral Nonlinearity
The deviation of the transfer function from a reference line measured in fractions of 1 LSB using a “best straight line” determined by a least square curve fit.
Minimum Conversion Rate
The encode rate at which the SNR of the lowest analog signal frequency drops by no more that 3 dB below the guaranteed limit.
Maximum Conversion Rate
The encode rate at which parametric testing is performed.
Output Propagation Delay
The delay between the 50% point of the rising edge of ENCODE command and the time when all output data bits are within valid logic levels.
Overvoltage Recovery Time
The amount of time required for the converter to recover to
0.02% accuracy after an analog input signal of the specified percentage of full scale is reduced to midscale.
Power Supply Rejection Ratio
The ratio of a change in output offset voltage to a change in power supply voltage.
Signal-to-Noise-and-Distortion (SINAD)
The ratio of the rms signal amplitude (set a 1 dB below full scale) to the rms value of the sum of all other spectral components, excluding the first five harmonics and dc. [May be reported in dBc (i.e., degrades as signal levels is lowered) or in dBFS (always related back to converter full scale)].
Signal-to-Noise Ratio (without Harmonics)
The ratio of the rms signal amplitude (set a I dB below full scale) to the rms value of the sum of all other spectral compo­nents, excluding the first five harmonics and dc. [May be reported in dBc (i.e., degrades as signal levels is lowered) or in dBFS (always related back to converter full scale).]
Spurious-Free Dynamic Range
The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious compo­nent may or may not be a harmonic. [May be reported in dBc (i.e., degrades as signal levels is lowered) or in dBFS (always related back to converter full scale).]
Transient Response
The time required for the converter to achieve 0.02% accu­racy when a one-half full-scale step function is applied to the analog input.
Two-Tone Intermodulation Distortion Rejection
The ratio of the rms value of either input tone to the rms value of the worst third order intermodulation product; reported in dBc.
Voltage Standing-Wave Ratio (VSWR)
The ratio of the amplitude of the elective field at a voltage maxi­mum to that at an adjacent voltage minimum.
–6–
REV. A
AD10200Typical Performance Characteristics–
0
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
0
0
ENCODE = 105 MSPS
10
A SNR = 66.04dBFS
20
SFDR = 79.71dBc
30
40
50
60
dB
70
80
90
100
110
120
130
0
ENCODE = 105 MSPS
= 10MHz (–1dBFS)
A
IN
SNR = 66.84dBFS SFDR = 82.28dBc
5 101520253035404550
FREQUENCY – MHz
TPC 1. Single Tone @ 10 MHz
= 71MHz (–1dBFS)
IN
5 101520253035404550
FREQUENCY – MHz
0
ENCODE = 105 MSPS
10
A
IN
SNR = 66.06dBFS
20
SFDR = 80.59dBc
30
40
50
60
dB
70
80
90
100
110
120
130
0
0
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
0
= 41MHz (–1dBFS)
5 101520253035404550
FREQUENCY – MHz
TPC 4. Single Tone @ 41 MHz
ENCODE = 105 MSPS A
= 121MHz (–1dBFS)
IN
SNR = 64.92dBFS SFDR = 64.73dBc
5 101520253035404550
FREQUENCY – MHz
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
TPC 2. Single Tone @ 71 MHz
0
0
5 101520253035404550
FREQUENCY – MHz
ENCODE = 105 MSPS
= 121MHz (–6dBFS)
A
IN
SNR = 66.9dBFS SFDR = 65.57dBc
TPC 3. Single Tone @ 121 MHz
10
20
30
40
50
60
dB
70
80
90
100
110
120
130
TPC 5. Single Tone @ 121 MHz
0
0
5 101520253035404550
FREQUENCY – MHz
ENCODE = 105 MSPS
= 201MHz (–10dBFS)
A
IN
SNR = 66.84dBFS SFDR = 64.57dBc
TPC 6. Single Tone @ 201 MHz
REV. A
–7–
AD10200
0
ENCODE = 105 MSPS
10
A
= 37MHz & 38MHz (–10dBFS)
IN
20
SFDR = 79.84dBc
30
40
50
60
dBc
70
80
90
100
110
120
130
0
5 1015202530 35404550
FREQUENCY – MHz
TPC 7. Two-Tone @ 37 MHz/38 MHz
10
20
30
40
50
60
dBc
70
80
90
100
110
120
130
0
0
5 101520253035404550
ENCODE = 105 MSPS A
= 120MHz & 121MHz (–7dBFS)
IN
SFDR = 63.8dBc
FREQUENCY – MHz
TPC 8. Two-Tone @ 120 MHz/121 MHz
0
ENCODE = 105 MSPS
10
A
= 71MHz & 72MHz (–7dBFS)
IN
SFDR = 74.8dBc
20
30
40
50
60
dBc
70
80
90
100
110
120
130
0
5 101520253035404550
FREQUENCY – MHz
TPC 10. Two-Tone @ 71 MHz/72 MHz
3.0
ENCODE = 105 MSPS DNL MAX = 0.486 Codes
2.5
DNL MIN = 0.431 Codes
2.0
1.5
1.0
LSB
0.5
0.0
0.5
1.0
0
512 1024 1536 2048 2560 3072 3584 4096
TPC 11. Differential Nonlinearity
3
ENCODE = 105 MSPS INL MAX = 0.874 Codes INL MIN = 0.895 Codes
2
1
0
LSB
1
2
3
512 1024 1536 2048 2560 3072 3584 4096
0
TPC 9. Integral Nonlinearity
–8–
0
1
2
3
4
5
dBFS
6
7
8
9
10
3.0
32.7 62.4 92.1 121.8 151.5 181.2 210.9 240.6 MHz
TPC 12. Gain Flatness
ENCODE = 105 MSPS 3dB = 261MHz
270.3 300.0
REV. A
10MHz = 50.22 + j.173
V
CC
Q1 NPN
V
REF
OUTPUT
V
CC
50MHz = 48.79 – j4.2 100MHz = 46.95 – j5.9 150MHz = 48.55 – j4.66
TPC 13. Input Impedance S11
AD10200
11
10MHz = 1.0149 50MHz = 1.085
10
100MHz = 1.130 150MHz = 1.092
9
8
7
6
5
4
3
2
1
3.0 32.7 62.4 92.1 121.8 151.5 181.2 210.9 240.6 MHz
TPC 14. Voltage Standing Wave Ratio (VSWR)
270.3 300.0
SAMPLE N–1
AIN
ENCODE
ENCODE
D11D0
SAMPLE N
SAMPLE N+1
DATA N11 DATA N⬇ 10 N⬇9 DATA N1 DATA N DATA N + 1
Figure 1. Timing Diagram
V
CC
17k
ENCODE ENCODE
100
8k
17k
100
8k
Figure 2. Equivalent Encode Input Circuit
SAMPLE N+10 SAMPLE N+11
SAMPLE N+9
1/f
S
t
PD
N2
t
V
Figure 4. Equivalent Voltage Reference Output Circuit
V
CC
V
CC
A
IN
100
DIGITAL OUTPUT
REV. A
Figure 3. Equivalent Digital Output Circuit
Figure 5. Equivalent Analog Input Circuit
–9–
50
5k
7k
5k
7k
AD10200
APPLICATION NOTES
Theory of Operation
The AD10200 is a high-dynamic range dual 12-bit, 105 MHz subrange pipeline converter that uses switched capacitor architecture. The analog input section uses A
A2/AINB2 at
IN
2.048 V p-p with an input impedance of 50 . The analog input includes an ac-coupled wide-band 1:1 transformer, which provides high-dynamic range and SNR while maintaining VSWR and gain flatness. The ADC includes a high-bandwidth linear track/ hold that gives excellent spurious performance up to and beyond the Nyquist rate. The high-bandwidth track/hold has a low jitter of 0.25 ps rms, leading to excellent SNR and SFDR performance. AC-coupled differential PECL/ECL encode inputs are recom­mended for optimum performance.
USING THE AD10200 ENCODE Input
Any high speed A/D converter is extremely sensitive to the quality of the sampling clock provided by the user. A track/hold circuit is essentially a mixer, and any noise, distortion, or timing jitter on the clock will be combined with the desired signal at the A/D output. For that reason, considerable care has been taken in the design of the ENCODE input of the AD10200, and the user is advised to give commensurate thought to the clock source. The ENCODE input are fully TTL/CMOS compatible. For opti­mum performance, the AD10200 must be clocked differentially.
Note that the ENCODE inputs cannot be driven directly from PECL level signals (V
is 3.5 V max). PECL level signals can
IHD
easily be accommodated by ac coupling as shown in Figure 6. Good performance is obtained using an MC10EL16 in the circuit to drive the encode inputs.
PECL GATE
510
GND
510
0.1␮F
0.1␮F
AD10200
ENCODE
ENCODE
Figure 6. AC Coupling to ENCODE Inputs
ENCODE Voltage Level Definition
The voltage level definitions for driving ENCODE and ENCODE in differential mode are shown in Figure 7.
ENCODE Inputs
Differential Signal Amplitude (VID) 500 mV min,
750 mV nom High Differential Input Voltage (V Low Differential Input Voltage (V Common-Mode Input (V
ENCODE
ENCODE
ENCODE
) 1.25 V min, 1.6 V nom
ICN
V
IHD
V
ICM
V
ILD
V
IHS
) 5.0 V max
IHD
) 0 V min
ILD
V
ID
Often, the cleanest clock source is a crystal oscillator producing a pure sine wave. In this configuration, or with any roughly symmetrical clock input, the input can be ac-coupled and biased to a reference voltage that also provides the ENCODE. This ensures that the reference voltage is centered on the encode signal.
Digital Outputs
The digital outputs are TTL/CMOS-compatible and a separate output power supply pin supports interfacing with 3.3 V logic.
Analog Input
The analog input is a single ended ac-coupled high performance 1:1 transformer with an input impedance of 50 to 105 MHz. The nominal full scale input is 2.048 V p-p.
Special care was taken in the design of the analog input section of the AD10200 to prevent damage and corruption of data when the input is overdriven.
Voltage Reference
A stable and accurate 2.5 V voltage reference is designed into the AD10200 (VREFOUT). An external voltage reference is not required.
Timing
The AD10200 provides latched data outputs, with 10 pipeline delays. Data outputs are available one propagation delay (t
PD
) after the rising edge of the encode command (see Figure 1). The length of the output data lines and loads placed on them should be minimized to reduce transients within the AD10200; these transients can detract from the converter's dynamic performance.
The minimum guaranteed conversion rate of the AD10200 is 10 MSPS. At internal clock rates below 10 MSPS, dynamic performance may degrade. Therefore, input clock rates below 10 MHz should be avoided.
GROUNDING AND DECOUPLING Analog and Digital Grounding
Proper grounding is essential in any high speed, high resolution system. Multilayer printed circuit boards (PCBs) are recom­mended to provide optimal grounding and power schemes. The use of ground and power planes offers distinct advantages:
1. The minimization of the loop area encompassed by a signal
and its return path.
2. The minimization of the impedance associated with ground
and power paths.
3. The inherent distributed capacitor formed by the power
plane, PCB insulation and ground plane.
These characteristics result in both a reduction of electromagnetic interference (EMI) and an overall improvement in performance.
It is important to design a layout that prevents noise from cou­pling to the input signal. Digital signals should not be run in parallel with input signal traces and should be routed away from the input circuitry. The PCB should have a ground plane covering all unused portions of the component side of the board to pro­vide a low impedance path and manage the power and ground currents. The ground plane should be removed from the area near the input pins to reduce stray capacitance.
0.1␮F V
ILS
Figure 7. Differential Input Levels
–10–
REV. A
AD10200
LAYOUT INFORMATION
The schematic of the evaluation board (Figure 8) represents a typical implementation of the AD10200. The pinout of the AD10200 is very straightforward and facilitates ease of use and the implementation of high frequency/high resolution design practices. It is recommended that high quality ceramic chip capacitors be used to decouple each supply pin to ground directly at the device. All capacitors can be standard high quality ceramic chip capacitors.
Care should be taken when placing the digital output runs. Because the digital outputs have such a high-slew rate, the capacitive loading on the digital outputs should be minimized. Circuit traces for the digital outputs should be kept short and connect directly to the receiving gate. Internal circuitry buffers the outputs of the ADC through a resistor network to eliminate the need to externally isolate the device from the receiving gate.
EVALUATION BOARD
The AD10200 evaluation board (Figure 9) is designed to provide optimal performance for evaluation of the AD10200 analog-to-digital converter. The board encompasses everything needed to ensure the highest level of performance for evaluating the AD10200. The board requires an analog input signal, encode clock and power supply inputs. The clock is buffered on-board to provide clocks for the latches. The digital outputs and out clocks are available at the standard 40-pin connectors J1 and J2.
Power to the analog supply pins is connected via banana jacks. The analog supply powers the associated components and the analog section of the AD10200. The digital outputs of the AD10200 are powered via banana jacks with 3.3 V. Contact the factory if additional layout or applications assistance is required.
REV. A
Figure 8. Evaluation Board Mechanical Layout
–11–
AD10200
40393837363534333231302928272625242322
J1
H40DM
123456789
B9A
B8A
B10A
(MSB) B11A
C15
10␮F
3.3VDA
B11A (MSB)
B9A
R18
R16
100
B10A
R17
100
DGNDA
DGNDA
242322212019181716151413121110
O15
O14
I15
D11A
I14
D10A
GND
GND
DGNDA
O13
I13
D9A
OE2
U16
LE2
2526272829303132333435363738394041424344454647
B7A
100
R40
B6A
DGNDA
B8A
100
O12
I12
D8A
10111213141516
B5A
B4A
50
R71
BUFLATA
B6A
DUT_3.3VDA
R45
100
B7A
R44
100
O11
O10
VCC
VCC
I11
I10
D6A
D7A
DUT_3.3VDA
B3A
B2A
B1A
(LSB) B0A
B5A
R46
R14
100
B4A
R15
100
DGNDA
O9O8O7
GND
GNDI9I8I7I6
D4A
D5A
DGNDA
21
DGNDA
17
181920
F3A
F2A
F1A
F0A
DGNDA
B3A
B1A (LSB)
R24
100
100
B2A
B0A
R13
R23
100
100
DGNDA
987654321
O6
O5
O4
GND
GNDI5I4
D1A
D2A
D3A
DGNDA
(LSB) D0A
F3A
R22
DNS
R21
DUT_3.3VDA
O3
VCC
VCCI3I2
DUT_3.3VDA
0
R52
R51
F2A
DNS
O2
0
F1A
R20
DNS
DGNDA
O1
GND
GNDI1I0
DGNDA
0
R47
R19
R48
F0A
O0
DNS
0
DGNDA
OE1
LE1
48
40393837363534333231302928272625242322
J2
H40DM
123456789
B9B
B8B
B10B
(MSB) B11B
C14
10␮F
3.3VDB
B11B (MSB)
R18
R16
100
B10B
R17
100
DGNDB
DGNDB
242322212019181716151413121110
O15
O14
OE2
GND
LE2
I15
I14
GND
2526272829303132333435363738394041424344454647
D10A
D11A
DGNDB
74LCX16374
R7
50
LATCHA
DGNDA
U17
B9B
O13
I13
D9A
B7B
DGNDB
100
B8B
R40
O12
I12
D8A
10111213141516
B6B
B5B
B4B
R72
BUFLATB
DUT_3.3VDB
R45
B7B
R44
100
100
O11
VCC
VCC
I11
D7A
DUT_3.3VDB
B3B
B2B
50
B6B
B5B
R46
100
100
R15
DGNDB
O9O8O7
O10
GND
I10
GNDI9I8I7I6
D5A
D6A
DGNDB
B1B
(LSB) B0B
R14
B4B
100
D4A
21
17
181920
F3B
F2B
F1B
F0B
DGNDB
B3B
B1B (LSB)
R24
100
100
B2B
R13
100
DGNDB
987654321
O6
O5
GND
GNDI5I4
D1A
D2A
D3A
DGNDB
DGNDB
B0B
R23
100
O4
(LSB) D0A
F3B
R22
DNS
F2B
R21
DUT_3.3VDB
O3
O2
VCC
VCCI3I2
DUT_3.3VDB
0
R53
R54
DNS
DGNDB
GND
GNDI1I0
DGNDB
0
R20
R49
F1B
O1
DNS
R19
0
R50
F0B
O0
DNS
0
DGNDB
OE1
LE1
48
74LCX16374
R8
50
LATCHB
DGNDB
E50
C36
DNS
AGNDB
AGNDB AGNDB
6059585756555453525150494847464544
AGNDB
J6
SMA
DNS
AGNDA
J7
SMA
E49
AGNDB
(NC) AGNDA
5VAB_
(NC) AGNDB
LID
AGNDA
C37
DNS
AGNDA
AGNDA
AGNDA
(NC) AGNDA
AGNDA
AGNDA
C33
0.1␮F
J4
SMA
J3
DNS
SMA
AGNDB
AGNDB
AGNDB
61
IN
A
B1
62
IN
B2
A
63
SDIN_B
64
AGNDB
65
5VAB
66
SCLK_B
67
AGNDB
68
SHIELD
1
AGNDA
2
REF_A
3
SDIN_A
4
AGNDA
5
IN
A1
A
6
IN
A2
A
7
VFU_A
5
AGNDA
9
AGNDA
AGNDA
SDOUT_A
1011121314151617181920212223242526
AGNDA
AGNDA
VFU_B
AGNDA
NC
AGNDA
NC
REF_B
SDOUT_B
5VAA
SCLK_A
NC
5VAA_
C35
0.1␮F
AGNDB
ENCBB
ENCBB
AGNDB
AGNDA
AGNDA
C34
0.1␮F
AGNDB
ENCB
AGNDB
ENCB
AGNDB
U1
AD10200
ENCAB
ENCA
ENCA
ENCAB
AGNDA
DUT_3.3VDB
C18
0.1␮F
D0B
D1B
D1B
3.3VDB
D0B (LSB)
AGNDA
3.3VDA
D11A (MSBA)
D11A
AGNDA
C10
DUT_3.3VDA
U17
D2B
D2B
D10A
D10A
0.1␮F
D9A
D9A
U1
DGNDB
D3B
D3B
D4B
D5B
D4B
D5B
D8A
D7A
D8A
D7A
DGNDA
DGNDB
DGNDB
DGNDA
DGNDA
DGNDB
43
D6B
42
D7B
41
D8B
40
D9B
39
D10B
38
D11B (MSBB)
37
AGNDB
36
AGNDA
35
D0A (LSBA)
34
D1A
33
D2A
32
D3A
31
D4A
30
D5A
29
D6A
28
DGNDA
27
NC = NO CONNECT
D6B D7B
D8B
D9B
D0A
D1A D2A
D3A D4A
D5A
D6A
D10B
D11B
DGNDB
AGNDB
AGNDA
DGNDA
L1
3.3VDA
5AA_
L3
47
E6
5AA
DUT_3.3VDA
47
20%
@100MHz
U1
C12
0.1␮F
C29
10␮F
E25
U1
C20
20%
@100MHz
C3
10␮F
0.1␮F
AGNDA
AGNDA
DGNDA
3.3VDB
5AB
DUT_3.3VDB
L2
47
U8
E26
5AB_
L4
E5
20%
@100MHz
C16
0.1␮F
C30
10␮F
U1
47
C4
C21
0.1␮F
20%
@100MHz
10␮F
AGNDB
AGNDB
DGNDB
Figure 9a. Evaluation Board
–12–
REV. A
AD10200
ENCODE
SMA
AGNDA
J10
ENCODE
SMA
AGNDB
U14
3
C2
0.1␮F
C23
0.1␮F
E3 E4
E33
E34
2
DGNDA
3
2
DGNDB
DGNDA
R58
33k
U15
DGNDB
R39
33k
AGNDB AGNDA
DGNDB
DGNDA
+5VAA_
C1
R1
50
AGNDA
R60
50
AGNDB
0.1␮F
J12
SMA
R41
50
AGNDA
+5VAB_
C22
0.1␮F
J11
SMA
R61
50
AGNDB
BANANA JACKS FOR GNDS AND PWRS
DGNDB
DGNDA
J5
ERR
ADP3330
IN
SD
6
ERR
ADP3330
IN
SD
6
NR OUT
SD
C6
0.1␮F
1 2 3 4
NR OUT
SD
C25
0.1␮F
1 2 3 4
5
4
1 2 3 4
5
4
1 2 3 4
1
AGNDA
NC D DB VBB
MC10EL16
U3
NC
VCC D DB VBB
VEE
MC10EL16
1
AGNDB
U11
NC D DB VBB
MC10EL16
U9
VCC
NC D DB
VEE
VBB
MC10EL16
U2
33k
QB
33k
QB
R56
Q
R38
Q
VCC
QB
VEE
VCC
QB
VEE
0.47␮F
Q
8 7 6 5
DGNDA
0.47␮F
Q
8 7 6 5
DGNDB
C13
8 7 6 5
AGNDA
DGNDA
+3.3VA
C27
8 7 6 5
AGNDB
DGNDA
+3.3VDB
DGNDA
DGNDB
AGNDA
+3.3VA
R3 100
R4
100
1
DGNDA
AGNDB
+3.3VB
2
R3 100
R66
100
DGNDB
E42
E41 E43
E44 E48
E47
E67
E68
E70
E69
E72
E71
E73
E74
E76
E75
E81
E82
AGNDA
E29 E30
E35
E36
E37
E38
E39
E40
E80
E79
E83
E84
AGNDB
R43
100
R64
100
R42 100
AGNDA
1 2 3 4
MC100EPT23
R63 100
AGNDB
1 2 3 4
MC100EPT23
C7
0.1␮F ENCAB ENCAB
C8
0.1␮F
DGNDA
U4
D0
VCC
D0B
Q0
D1B
Q1
D1
VEE
NC = NO CONNECT
C24
0.1␮F ENCBB ENCB
C28
0.1␮F
DGNDB
U10
D0
VCC
D0B
Q0
D1B
Q1
D1
VEE
NC = NO CONNECT
E65E66
E46E45
C5
0.1␮F
8
+3.3VA
7 6 5
DGNDA
C26
0.1␮F
8
+3.3VB
7 6 5
DGNDB
LATCHA
E23
E19
BUFLATA
LATCHB
E24
E22
BUFLATB
REV. A
STAND OFFS ON THE BOARD
Figure 9b. Evaluation Board
–13–
SO4
SO1 SO2 SO5 SO3 SO6
AD10200
BILL OF MATERIALS LIST FOR AD10200 EVAL BOARD
Qty. Component Name Ref Des Value Description M/S P/Ns
2 74LCX16373MTD U16, U17 74LCX16374MTD (Fairchild) 1 AD10200BZ U1 AD10200BZ 2 ADP3330 U14, U15 SM 3.3 V Regulator ADP3330ART-3.3-RL7 (Analog) 4 BRES0805 R38, R39, R56, R58 33 k SM 0805 Resistor ERJ6GEYJ333V (Panasonic) 4 BRES0805 R1, R41, R60, 50 SM 0805 Resistor ERJ6GEYJ510V (Panasonic)
R61
8 BRES0805 R3, R4, R42, R43, 100 SM 0805 Resistor ERJ6GEYJ101V (Panasonic)
R63, R64, R65, R66
23 CAP2 C1, C2, C5, C6, 0.1 µF SM 0805 Capacitor GRM40X7R104K025BL
C7, C8, C9, C10, (MENA) C12, C16, C17, C18, C20, C21, C22, C23, C24, C25, C26, C28, C33, C34, C35
4 CAP2 C13, C27, C38, C39 0.47 µF SM 1206 Capacitor VJ1206U474MFXMB
(VITRAMON) 2 N49DM J1, J2 2×20×100 Male Connector TSW-120-08G-D (Samtec) 4 IND2 L1, L2, L3, L4 47 Inductor 2743019447 (Fair Ride) 4 MC10EL16 U2, U3 U9, U11 MC1016EP16D (Motorola) 10 BJACK BJ1 – BJ10 POWER JACK 108-0740-001 (Johnson Comp.) 2 MC100ELT23 U4, U10 SY100ELT23L (Micrel-Synergy) 6 POLCAP2 C3, C4, C14, C15, 10 µF SM 1812 Polar Capacitor T491C106M016A57280
C29, C30 (KEMET)
8 RES2 R47, R48, R49, 0 SM 0805 Resistor ERJ-6GEY0R00V (Panasonic)
R50, R51, R52,
R53, R54 4 RES4 R7, R8, R71, R72 50 SM 0805 Resistor ERJ-6GEYJ510V (Panasonic) 24 RES2 R9, R10, R11, R12,
R13, R14, R15, R16,
R17, R18, R23, R24,
R25, R26, R27, R28,
R29, R30, R35, R36,
R40, R44, R45, R46 1 SMA J4 A 1 SMA J7 A 2 SMA J11, J12 ENCODE 142-0701-201 (Johnson Comp.) 2 SMA J5, J10 ENCODE 142-0701-201 (Johnson Comp.) 4 Stand-Off S01–S04 Stand-Off 313-2477-016 (Johnson Comp.) 4 Screws Screws (Stand-Off) MPMS 0040005PH (Building
1 PCB AD10200 Eval Board GS03363 Rev. A
A2 142-0701-201 (Johnson Comp.)
IN
B2 142-0701-201 (Johnson Comp.)
IN
Fasteners)
–14–
REV. A
AD10200
GND TIE
GND TIE
Figure 10a. Bottom View
C4
GND TIES
R61
C23
R60
C22
U11
C27
R38
R63
U15
C35
C24
C36
C21
C33
C20
C37
C7
C34
U14
C13 R56
C1 R1
C2
R41
C3
U10
R39
R66
R50 R49 R54
U9
R53
R65
R64
C25
C28
E40
C18
GND TIE
R51
R52
R48
R47
GND TIE
C10
E48
C8
R42
R43
U3
R4
U2
R7
R3
U4
C6
R58
GND TIES
C14
C30
R72
R8
C17
U17
GND TIE
U16
C9
GND TIE
C15
R71
C29
REV. A
Figure 10b. Bottom Assembly
–15–
AD10200
Figure 10c. Ground 1
AGNDA
DGNDBAGNDB
DGNDA
Figure 10d. Ground 2
–16–
REV. A
AD10200
GND TIE
GND TIE
C4
GND TIES
R61
C23
R60
C22
C27
R38
R63
U15
C35
C24
C36
C21
C33
C20
C37
C7
C34
U14
C13 R56
C1 R1
C2
R41
C3
U10
R39
R66
R50
U11
U2
R49 R54
U9
R53
R65
R64
C25
C28
E40
C18
GND TIE
R51
R52
R48
R47
GND TIE
C10
E48
C8
R42
R43
U3
R4
R7
R3
U4
C6
R58
GND TIES
Figure 10e. Bottom Silk
C14
C30
R72
R8
C17
U17
GND TIE
U16
C9
GND TIE
C15
R71
C29
REV. A
Figure 10f. Top View
–17–
AD10200
E11
GND TIE
E11
GND TIE
E5
+5VAB
BJ1 EXTRA
E27
E63
E39
GND TIE
E47
E8
E64
BJ2 EXTRA
E28
E3
AGNDB
L4
ENCB
J10 J11
AINB1
J6
J3
AINA1
L3
E6
REF_B
AINB2
J7
E49
REF_A
J4
AINA2
ENCA
J5
E4
E50
ENCBBAR
U1
ENCABAR
E37
E30
E35
E80
E46
E83
PIN 1
J12
E65
E41
E43
E68
E74
E71
E69
E75
E9 E10
GND TIES
E38
E29
E1E2
E36
E79
E45
E84
E81E82
E66
E42
E44
E67
GND TIES
E73
E72
E70
E76
E33
E26
3.3VDB
R30
R29
R28
R27
R26
R12
R9
R25
R36
R35
R34
ANALOG
DEVICES COPYRIGHT
2/10 00
AD10200 EVALUATION BOARD
GS03363 (A)
BEL
R18
R17
R16
R40
R44
R45
R46
R15
R14
R13
3.3VDA
E25
J2
R33
R32
R31
E12
GND TIE
E7
J1
C16
DGNDB
L2
U6
C39
E58
E59
E62
E55
E60
R11
R10
E61
BUFLATB
E22
C26
E24
LATCHB
E77
GND TIE
E78
R24
BUFLATA
R23
E19
R22
LATCHA
E23
R21
C5
R20
E57
R19
E52U5E53
E56
E51
E54
C38
L1
DGNDAAGNDA+5VAA
C12
E34
Figure 10g. Top Assembly
E5
+5VAB
BJ1 EXTRA
E27
E8
E28
L4
E63
E39
GND TIE
E47
E64
BJ2 EXTRA
E6
E3
AGNDB
ENCB
J10 J11
AINB1
J6
J3
AINA1
L3
REF_B
AINB2
J7
E49
REF_A
J4
AINA2
ENCA
J5
E4
ENCBBAR
E50
U1
ENCABAR
E37
E30
E35
E80
E46
E83
PIN 1
J12
E65
E9 E10
E41
E43
E68
E74
E71
E69
E75
E38
E29
E36
GND TIES
E79
E45
E84
GND TIES
E33
DGNDB
E1E2
E60
BUFLATB
E22
C26
E24
LATCHB
E19
E23
C5
E81E82
E52
E66
E56
E54
E42
U5
E44
E67
E73
E72
E70
DGNDAAGNDA+5VAA
E76
E34
U6
C39
E59
E61
E77
GND TIE
E78
BUFLATA
LATCHA
E58
E62
E55
R20
E57
R19
E53
E51
C38
E26
C16
L2
R11
R10
R30
R29
R28
R27
AD10200 EVALUATION BOARD
GS03363 (A)
R15
R14
R13
R24
R23
R22
R21
L1
C12
E25
J2
3.3VDB
R26
R12
R9
R25
R36
R35
R34
R33
R32
R31
ANALOG DEVICES
COPYRIGHT
E12
2/10 00
GND TIE
E7
BEL
R18
R17
J1
R16
R40
R44
R45
R46
3.3VDA
Figure 10h. Top Silk
–18–
REV. A
OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).
68-Lead Ceramic Leaded Chip Carrier
(Z-68B)
AD10200
0.010 (0.25)
0.008 (0.20)
0.007 (0.18)
DETAIL A
TOE DOWN
ANGLE
0–8 DEGREES
0.060 (1.52)
0.050 (1.27)
0.040 (1.02)
1.070
(27.18)
MIN
0.290 (7.37) MAX
0.230 (5.84) MAX
0.800
(20.32)
BSC
DETAIL A
10
26
9
0.055 (1.40)
0.050 (1.27)
0.045 (1.14)
0.960 (24.38)
0.950 (24.13) SQ
0.940 (23.88)
PIN 1
TOP VIEW
(PINS DOWN)
0.021 (0.533)
0.017 (0.432)
0.014 (0.357)
61
60
44
4327
1.190 (30.23)
1.180 (29.97) SQ
1.170 (29.72)
Revision History
Location Page
Data Sheet changed from REV. 0 to REV. A.
Edit to ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Edit to Figure 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Edit to ENCODE Inputs section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Edit to Figure 9a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
REV. A
–19–
C01634–0-8/01(A)
–20–
PRINTED IN U.S.A.
Loading...