The AC/DC is a single axis servo drive designed to interface with Centroid's MPU11 control
system. AC/DC has improved fault tolerance and increased power handling when compared to
previous Centroid drives. AC Brushless or DC brush servomotors can be driven by AC/DC in any
combination up to 8 axes.
AC/DC Features
Function: Servo Drive
Differential incremental (A, B, Z, U, V, W channels) Encoder Input:
BiSS B or C (select models)
Drive Protocol Support DriveBus Protocol
Drive Application: AC Brushless or DC Brush Motors
Current rating per axis (AC/DC-30): 5 to 30 Amps
Current rating per axis (AC/DC-60): 10 to 60 Amps
Motor Voltage: 50 to 340 Volts
Dimensions (W*D*H): 9.75 * 6 * 4 inches
AC/DC Connection Overview
Up to eight AC/DC units can be connected to a MPU11 motion control card. The AC/DCs will
negotiate their axis numbers based on the order they are connected. The last AC/DC in the
communication chain will initiate communication and start numbering axes at 1. LED1 will display a
rotating flash pattern at a startup while each AC/DC determines its location in the communication
chain. After about 10 seconds negotiation completes, LED1 shows the axis number, and normal
operation begins. If the decimal point is lit and a number is flashing on LED1, this indicates an error
condition that can be found in the “LED1 Error Codes” section.
Fiber optic communication connects the AC/DC communication chain to the MPU11 motion
control card. AC/DCs are connected to each other through the “Drive Communication In” and Drive
Communication Out” wire connections. The “Wired Input” jumper must be set on drives that do not
use fiber communication.
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 1 of 17
Typical AC/DC Communication Connections
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 2 of 17
Typical AC/DC Connections
TOP
Airflow
Estop
Contactor
MPU11
ACDC
Logic
Power
Supply
Encoder
LED1
I/O Connector
Limit Defeaters
Fiber 5
Fiber 4
Wired Input Jumper
Communication In
Communication Out
Logic Power
AC/DC
Drive
Drive
FAN
VM+
VM+
VM-
VM-
U
V
W
BRAKE+
BRAKE-
GND
GND
Motor
Power
Supply
Encoder
Motor
Brake
Resistor
System
Ground
Strip
AC/DC Power Connections
Connector Terminal Function Notes
VM+ Motor voltage + Motor voltage negative terminals are duplicated to assist repeating power wires to multiple
VM- Motor voltage - Motor voltage positive terminals are duplicated to assist repeating power wires to multiple
U Motor Phase U or black wire for AC motor. Not used for DC motor.
V Motor Phase V or red wire for AC motor. Black wire for DC motor.
W Motor Phase W or white wire for AC motor. Red wire for DC motor.
BRAKE+ Brake Resistor
BRAKE- Brake Resistor
Chassis Ground Ground and shield Connect the blue and/or green motor wire (drain) to one ground terminal. Connect the other to
drives.
drives.
Brake resistor wires. Use 15 ohm resistor for AC/DC-30 and 7.5 ohm resistor for AC/DC-60.
the system ground point.
Minimum Wire Gauge (AWG)
Motor Power Cable Vm+, Vm- Brake+, Brake- Logic Power
AC/DC-30 16 14 16 16
AC/DC-60 12 10 12 16
Recommendations for typical applications - cable lengths, drive current setting, and motor loads may change requirements.
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 3 of 17
Logic power wires may be smaller if voltage at supply is adjusted to offset voltage drop.
AC/DC-30 Accessory Components
AC/DC-60 Accessory Components
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 4 of 17
Encoder Connection
+W
+U
+Z
-Z
+B
-B
+A
-A
P1
5
10
4
9
3
8
2
7
1
6
CASE
16
-W
15
-V+V
14
-U
13
12
11
+5V
0V
P1 Encoder Type
Pin AC Incremental DC Incremental BiSS Protocol
Motor Encoder Count Direction (while turning shaft clockwise, looking at mounting flange)
Brushless PID screen Abs Pos increases
Brush PID screen Abs Pos decreases
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 5 of 17
AC/DC Inputs and Outputs
The 7 pin I/O connector provides a fault output and limit inputs. Limit switches are normally
wired to the PLC and not the AC/DC. The drive fault relay output should be wired in series with the
Estop power circuit.
AC/DC I/O
Typical I/O Wiring Example
+5 VDC
H7
Normally Closed Limit
Normally Closed Limit
24ACH
Estop PLC Output
Estop Contactor
Pin 1
24ACN
Parameter Setup
Parameter Setting Description
300-307 1 through 8 Drive axis mapping
308-315 7 through 14 Encoder assignments
357-364 Motor Dependent Maximum RPM, may also be set from drive PID screen
340-347 1.75 Precision mode delay
256 2 Drive mode
21-24 Motor dependent Motor heating coefficients axes 1-4
132-135 Motor dependent Motor heating coefficients axes 5-8
25-28 Motor dependent Motor cooling coefficients axes 1-4
236-239 Motor dependent Motor cooling coefficients axes 5-8
29 Motor dependent Motor temperature warning level
30 Motor dependent Motor temperature error level
374 255 Debug log axis inclusion (bitwise)
375 4000 Debug log size (samples) 0 to 32768
376 1 Debug log collection type 1 = current data, 2 = position data
+ LIMIT INP UT
INP UT GROUND
+ LIMIT INP UT
INP UT GROUND
CN1
CN2
+5 VDC
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 6 of 17
Heating and Cooling Parameter Values
(Machine Units: Inches)
Provider Model Alias Heating Parameter
Centroid HDM82E8-76S SEM 750W 156.5817 6.4103
Centroid APM-SE15AXK1-CT2 Mecapion 1kW 2.5671 4.5045
Centroid HJ130C8-64S 1kW 7.9778 3.3333
Centroid HJ130G8-88S 2kW 3.0612 2.7778
Centroid HJT155D8-110S 4kW 1.3287 2.7778
Centroid HJT155B8-110S 3kW 3.4830 2.7778
Centroid APM-SE22A Mecapion 2kW 1.3291 4.0650
Centroid APM-SF30G Mecapion 2.9kW 1.0248 5.3763
Centroid APM-SF44G Mecapion 4.4kW 0.4429 4.7619
Fanuc A06B-0631-B0xx Fanuc Black Cap 00 60.4690 11.1111
Fanuc A06B-0613-B0xx Fanuc Black Cap 0 4.0135 3.3333
Fanuc A06B-0614-B025 Fanuc Black Cap 5 3.6486 3.0303
Fanuc A06B-0601-Bxxx Fanuc Black Cap 10 0.5017 1.6667
Fanuc A06B-0602-Bxxx Fanuc Black Cap 20 0.2527 1.5873
Fanuc A06B-0632-Bxxx Fanuc Yellow Cap 00M 120.4052 11.1111
Fanuc A06B-0641-Bxxx Fanuc Yellow Cap 0M 12.3874 3.7037
Fanuc A06B-0642-Bxxx Fanuc Yellow Cap 5M 7.1351 3.3333
Fanuc A06B-0651-B012 Fanuc Yellow Cap 10M 2.8668 2.3810
Fanuc A06B-0652-Bxxx Fanuc Yellow Cap 20M 1.1149 2.0833
Fanuc A06B-0653-Bxxx Fanuc Yellow Cap 30M 0.5902 1.9608
Fanuc A06B-0374-Bxxx Fanuc Red Cap 0-0SP 16.6116 8.3333
Fanuc A06B-0313-Bxxx Fanuc Red Cap 0S 26.4090 3.7037
Fanuc A06B-0314-Bxxx Fanuc Red Cap 5S 14.9505 3.3333
Fanuc A06B-0514-Bxxx Fanuc Red Cap 5S/3000 4.8340 3.3333
Fanuc A06B-0316-Bxxx Fanuc Red Cap 6S 6.3282 3.0303
Fanuc A06B-0320-Bxxx Fanuc Red Cap 6S/3000 4.0692 3.0303
Fanuc A06B-0315-Bxxx Fanuc Red Cap 10S 7.2561 2.7778
Fanuc A06B-0317-Bxxx Fanuc Red Cap 10S/3000 1.7904 2.7778
Fanuc A06B-0505-Bxxx Fanuc Red Cap 20S/1500 1.4384 2.5641
Fanuc A06B-0502-B065#7000 Fanuc Red Cap 20S 0.9969 2.5641
Fanuc A06B-0590-Bxxx Fanuc Red Cap 30S 1.5897 2.5641
Fanuc A06B-0506-Bxxx Fanuc Red Cap 30/2000 0.4730 2.5641
Fanuc A06B-0581-Bxxx Fanuc Red Cap 40 0.2965 1.8519
Fanuc A06B-0123-Bxxx Fanuc Red Cap Alpha 3/3000 26.4090 3.7037
Fanuc A06B-0127-Bxxx Fanuc Red Cap Alpha 6/2000 16.0374 3.3333
Fanuc A06B-0128-Bx77 #70xx Fanuc Red Cap Alpha 6/3000 5.0293 3.3333
Fanuc A06B-0142-Bxxx Fanuc Red Cap Alpha 12/2000 5.4121 2.7778
Fanuc A06B-0143-Bx75 #70xx Fanuc Red Cap Alpha 12/3000 1.7445 2.7778
Fanuc A06B-0146-Bxxx Fanuc Red Cap Alpha 22/1500 2.4760 2.5641
Fanuc A06B-0147-Bx75 #70xx Fanuc Red Cap Alpha 22/2000 1.1063 2.5641
Fanuc A06B-0151-Bxxx Fanuc Red Cap Alpha 30/1200 2.2628 2.3810
Fanuc A06B-0152-Bxxx Fanuc Red Cap Alpha 30/2000 0.8804 2.3810
Fanuc A06B-0034-Bxxx #000x Fanuc Red Cap Beta 6/2000 20.0468 4.1667
Fanuc A06B-0141-Bx75#7008 Fanuc Red Cap Alpha C12/2000 12.0400 2.7778
Fanuc A06B-0145-Bxxx Fanuc Red Cap Alpha C22/1500 2.4760 2.5641
Fanuc A06B-0063-Bx0x Fanuc Red Cap Beta 4/4000is 56.9187 8.3333
Cooling
Parameter
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 7 of 17
Fanuc A06B-0075-B203 Fanuc Red Cap Beta 8/3000is 34.9260 8.3333
Fanuc A06B-0078-Bx0x Fanuc Red Cap Beta 12/3000is 9.6681 6.6667
Fanuc A06B-0085-Bx0x Fanuc Red Cap Beta 22/2000is 6.5645 5.5556
Fanuc A06B-0511-Bxxx Fanuc Red Cap Early 0 11.7374 3.7037
Fanuc A06B-0512-Bxxx Fanuc Red Cap Early 5 10.8766 3.3333
Fanuc A06B-0501-Bxxx Fanuc Red Cap Early 10 3.4637 2.7778
Fanuc A06B-0505-Bxxx Fanuc Red Cap Early 20M 1.7194 2.5641
Fanuc A06B-0502-Bxxx Fanuc Red Cap Early 20 0.9672 2.5641
Fanuc A06B-0503-Bxxx Fanuc Red Cap Early 30 0.7993 2.5641
Fanuc A06B-0506-Bxxx Fanuc Red Cap Early 30R 0.4600 2.5641
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 8 of 17
AC/DC Motor Setup
Provider Model Alias P I D Enc CPR Poles Current Angle P I D Inertia Kt Max
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 9 of 17
Fanuc A06B-0502-B065#7000 Fanuc Red Cap 20S 10.0 0.020 12.0 40000 8 60 0.003 2.5 0.08 0 0.1800 7.13 2000
Fanuc A06B-0590-Bxxx Fanuc Red Cap 30S 10.0 0.020 12.0 40000 8 45 0 2.5 0.08 0 0.2083 14.96 1200
Fanuc A06B-0506-Bxxx Fanuc Red Cap 30/2000 10.0 0.020 12.0 40000 8 60 0 2.5 0.08 0 0.2083 6.45 2000
Fanuc A06B-0581-Bxxx Fanuc Red Cap 40 10.0 0.020 12.0 40000 8 60 0 2.5 0.08 0 0.2691 11.39 1200
Fanuc A06B-0123-Bxxx Fanuc Red Cap Alpha 3/3000 1.0 0.020 1.0 40000 8 12 0 1.5 0.05 0 0.0122 4.07 3000
Fanuc A06B-0127-Bxxx Fanuc Red Cap Alpha 6/2000 2.0 0.020 3.0 40000 8 16.8 0 1.5 0.05 0 0.0234 6.76 2000
Fanuc A06B-0128-Bx77 #70xx Fanuc Red Cap Alpha 6/3000 3.0 0.020 5.0 40000 8 30 0.003 1.5 0.05 0 0.0234 3.75 4000
Fanuc A06B-0142-Bxxx Fanuc Red Cap Alpha 12/2000 3.0 0.020 5.0 40000 8 26.4 0 2 0.1 0 0.0555 8.51 2000
Fanuc A06B-0143-Bx75 #70xx Fanuc Red Cap Alpha 12/3000 5.0 0.020 7.0 40000 8 45 0 2 0.1 0 0.0555 4.82 3000
Fanuc A06B-0146-Bxxx Fanuc Red Cap Alpha 22/1500 10.0 0.020 12.0 40000 8 37.2 0 2.5 0.1 0 0.1042 11.01 1500
Fanuc A06B-0147-Bx75 #70xx Fanuc Red Cap Alpha 22/2000 10.0 0.020 12.0 40000 8 54 0 2.5 0.1 0 0.1042 7.32 2000
Fanuc A06B-0151-Bxxx Fanuc Red Cap Alpha 30/1200 10.0 0.020 12.0 40000 8 37.8 0 2.5 0.1 0 0.1476 14.83 1200
Fanuc A06B-0152-Bxxx Fanuc Red Cap Alpha 30/2000 10.0 0.020 12.0 40000 8 60 0 2.5 0.1 0 0.1476 9.26 2000
Fanuc A06B-0157-Bx75 #700x Fanuc Red Cap Alpha 40/2000 10.0 0.020 12.0 40000 8 60 0 2.5 0.1 0 0.1996 8.76 2000
Fanuc A06B-0033-Bxxx #000x Fanuc Red Cap Beta 3/3000 1.0 0.020 1.0 40000 8 15 0 2 0.1 0 0.0174 3.50 3000
Fanuc A06B-0034-Bxxx #000x Fanuc Red Cap Beta 6/2000 2.0 0.020 1.8 40000 8 15 0 2 0.1 0 0.0347 6.57 3000
Fanuc A06B-0141-Bx75#7008 Fanuc Red Cap Alpha C12/2000 7.0 0.020 9.0 40000 8 18 0.01 4 0.08 0 0.0555 12.77 2000
Fanuc A06B-0145-Bxxx Fanuc Red Cap Alpha C22/1500 10.0 0.020 12.0 40000 8 37.2 0 4 0.08 0 0.1042 11.01 1500
Fanuc A06B-0063-Bx0x Fanuc Red Cap Beta 4/4000is 1.0 0.020 1.0 40000 8 12 0 2.5 0.1 0 0.0046 4.69 4000
Fanuc A06B-0075-B203 Fanuc Red Cap Beta 8/3000is 2.0 0.020 1.8 40000 8 18 0.001 2.5 0.1 0 0.0103 7.26 3000
Fanuc A06B-0078-Bx0x Fanuc Red Cap Beta 12/3000is 5.0 0.020 7.0 40000 8 30 0 2.5 0.1 0 0.0208 6.76 3000
Fanuc A06B-0085-Bx0x Fanuc Red Cap Beta 22/2000is 10.0 0.020 12.0 40000 8 30 0 2.5 0.1 0 0.0520 11.08 2000
Fanuc A06B-0511-Bxxx Fanuc Red Cap Early 0 2.0 0.020 3.0 40000 8 21 0 2 0.1 0 0.0174 2.64 2000
Fanuc A06B-0512-Bxxx Fanuc Red Cap Early 5 2.0 0.020 5.0 40000 8 21 0.006 2 0.1 0 0.0330 5.40 2000
Fanuc A06B-0501-Bxxx Fanuc Red Cap Early 10 5.0 0.020 7.0 40000 8 33 0 2.2 0.1 0 0.0868 6.75 2000
Fanuc A06B-0505-Bxxx Fanuc Red Cap Early 20M 10.0 0.020 12.0 40000 8 45 0 2.5 0.08 0 0.1476 9.51 1500
Fanuc A06B-0502-Bxxx Fanuc Red Cap Early 20 10.0 0.020 12.0 40000 8 60 0 2.5 0.08 0 0.1476 7.36 2000
Fanuc A06B-0503-Bxxx Fanuc Red Cap Early 30 10.0 0.020 12.0 40000 8 60 0 2.5 0.08 0 0.2083 10.43 1200
Fanuc A06B-0506-Bxxx Fanuc Red Cap Early 30R 10.0 0.020 12.0 40000 8 60 0 2.5 0.08 0 0.2083 6.44 2000
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 10 of 17
Motor Tuning
AC/DC tuning is performed from two menus in the CNC11 software. The drive menu (<F1>,
<F3>, <F4>, <F8>) is used to set the current control parameters for the motor. The parameters in this
menu, with the exception of inertia, do not change based on machine type, and can therefore be set
once from the provided charts. Inertia is set to the motor inertia as a starting point. Once the motor is
mounted to a machine, the inertia value will need to be increased to compensate for the additional
inertia of the mechanical drive components.
The following plots demonstrate the effect of the inertia setting. The green line is the motor
velocity and the blue line is the error from expected velocity. In the first example, inertia is set to the
motor inertia, but a load has been added, so the setting is too low. The error plot shows that the motor
is behind the expected position on acceleration. In the second example, the inertia value has been
increased too much. The motor moves ahead of its expected position during acceleration. In the third
example, inertia has been set to a reasonably accurate value. The motor follows closely at the
beginning of the move. Some lag occurs later in the move, but this may be minimized by tuning the
position Kp and Kd gains.
Inertia Set too Low Inertia Set too High
Inertia Set Correctly
The PID Config menu (<F1>, <F3>, <F4>, <F1>) is used to tune the remainder of the motor
control parameters. Start by entering the Position PID parameters given in the motor setup charts.
Increase Kp until some oscillation is heard or seen on the PID tuning graph. Reduce the setting below
the oscillation point to give some headroom for stability.
The following examples show the effect of Kp. In the first example, Kp is set too low. Large
error peaks show where the motor is not following the requested path. Increasing Kp leads to the
second example, where error is low throughout the move. However, there is an increasing oscillation
in the error plot, indicating that the motor will soon become unstable. The third example demonstrates
a Kp reduction to improve stability. The error plot has close to the minimum error achieved during
tuning and does not have signs of instability.
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 11 of 17
Kp Set too Low Kp Set too High
Kp Set Correctly
After Kp has been adjusted, continue to tuning Kd. The Kd term adds stability to the to the
effects of Kp. If Kp or Kd have been adjusted far from the default values, a second iteration of the
tuning procedure is recommended. Because the two terms are dependent on each other, a better Kd
setting may allow Kp to adjusted for higher performance.
Incorrect Kd settings create oscillations. A low Kd setting creates low frequency oscillations.
As Kd is increased, a high frequency oscillation will become noticeable. Often the high frequency
oscillation will be audible before it is noticeable on the error plot. The example shows an extreme case
of oscillation due to Kd set too high. When Kd is set properly, it will dampen the Kp contribution,
giving a smooth error plot.
Kd Set too Low Kd Set too High
Kd Set Correctly
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 12 of 17
LED1 Error Codes
Error Number Meaning Cause Corrective Action
1
2
3
4 Limit Tripped any limit switch is tripped Use the limit defeat switches to disable
5 Drive Error A serious fault has caused the drive to shut down Check HSC Screen for error cause <F7>,
6
7
8
9
Troubleshooting
Symptom Possible Cause Corrective Action
Brake resistor missing message
Motor overheating message
appears after short run time
Brake resistor not connected Connect appropriate braking resistor
Brake resistor burned out Replace resistor
Too much line voltage ripple
Parameters not correct Check parameters 20-30, 132-135, and 236-
Software and firmware mismatch Update CNC11 to v3.11 Rev 13 or newer,
Check line voltage, check for one or two 3
phase fuses blown
239
then update AC/DC from HSC screen
hardware limits
<F9>, <F5>
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 13 of 17
HSC Screen
The HSC screen (<F7>,<F9>,<F5>) shows the state of many of the AC/DC status bits. This
screen is organized by DriveBus channels, therefore the channel number at the top of a column matches
LED1 on the AC/DC. The columns are not reorganized by axis according to the drive mapping
parameters.
If an AC/DC fault occurs that is not explained in the message window, the user can refer to the
HSC screen for further information on the cause of the fault. Some of the status bits are only useful for
Centroid technicians, and are subject to change.
AC/DC firmware may be updated by pressing <Alt-F5> to enter the HSC screen (that is
<F7>,<F9>,<Alt-F5> from the main CNC11 screen). The AC/DC firmware program is stored as
ac1.hex in the CNC11 software’s directory. The “Debug counter” in the HSC screen will count up
while the new program is sent. After the program is sent, the AC/DC and software must be restarted
for changes to take effect
HSC Screen Bit Definitions
Name Description Notes
BissReceptionErrors BiSS Encoder Sensor Mode Reception Errors Counter from 0 to 65535, count of errors during normal
BissModeErrors BiSS Encoder Register Mode Reception Errors Counter from 0 to 65535, count of errors during setup
CycloneShutdowns FPGA shutdown counter The FPGA will shut down under the following conditions:
running
two interrupts missed, DSP not started, reprogram enabled, or
memory test in progress. Shutdowns should be 0 during
normal operation.
EstimatedBrakeWattage Minimum wattage rating for brake resistor This value is updated from the time the drive is turned on
LoadMeter The greater of Total current or Current Request Current reading shown by the load meters. Typically 0 to
FatalError Fatal error A serious error has occurred and stopped operation. See
Warning Warning bit A condition exists which may become serious, but does not
ErrorUVWInvalid Commutation invalid state Commutation tracks are all on or all off
ErrorUVWBadTransition Commutation invalid state transistion Commutation tracks have changed by more than one zone
ErrorUVWBadSize Incorrect number of encoder counts per zone Counts per zone is incorrect by more than 6.25%. This may
EncoderOK Encoder is ready. For BiSS, good data has been received in the last 0.2 seconds.
QuadratureError Encoder invalid state transistion For quadrature encoder, A and B have changed at the same
EncoderMismatch Requested encoder type does not match detected
type
LineVoltageOn Vm voltage is over 30V DC motor voltage is applied
OvercurrentHighSide High side overcurrent Current over 187.5A (AC/DC-60) or 150A (AC/DC-30) for
until it is powered off.
65535, which corresponds to 0-30A for AC/DC-30 and 060A for AC/DC-60.
other bits for cause of error. SV_MASTER_ENABLE rising
edge will clear the fatal error.
warrant stopping the AC/DC immediately.
also be caused by incorrect encoder counts per revolution
setting.
For quadrature, A and B channels are differential.
time. Encoder count is incorrect by at least one count.
Not implemented
500ns. Phase to phase, phase to Vm-, or phase to shield short.
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 14 of 17
OvercurrentLowSide Low side overcurrent Current over 187.5A (AC/DC-60) or 150A (AC/DC-30) for
OvervoltageMotor Motor regeneration too high Voltage at motor has exceeded 430V
OvervoltageLine Vm supply is too high Voltage has exceeded 370V
BrakeResistorMissing Brake resistor not attached or burned out Line voltage is on, brake IGBT is off, and collector voltage is
BrakeIGBTOpen Brake IGBT blown Brake IGBT is on and collector voltage is high
MotorTemperatureSwitch Motor internal over temperature detector Not implemented
HeatsinkTemperatureSwitch Drive heatsink over temperature detector Not implemented, uses temperature sensor instead
PlusLimit Plus limit input to drive
MinusLimit Minus limit input to drive
DriveShutdown Drive shutdown due to serious error OvercurrentHighSide, OvercurrentLowSide,
BrakeOnTooMuch Brake resistor on too much Brake on 100% for a 10 interrupt interval. The brake resistor
OvercurrentSensor Current exceeded sensor range Current on any phase has exceeded sensor range for 0.5ms
WarningDriveHot Drive temperature exceeded warning temperature Parameter 29 warning temperature
ErrorDriveTooHot Drive temperature exceeded error temperature Parameter 30 error temperature
WarningMotorHot Motor temperature estimate exceeded warning
temperature
AccelTooGreat Requested acceleration greater than physically
possible
ADCOffsetOK ADC offsets adjusted to 0 successfully More than about 1% error will cause offset adjust to fail
ErrorMotorTooHot Motor temperature estimate exceeded error
temperature
MoveSyncRunning Move sync procedure active Used by alignment routines
StepRunning Current step running Not implemented
TuneRunning Auto tune running Not implemented
ErrorParameterChange Critical motor parameters have been changed with
power on
CommutationZone Current commutation zone
DrivePower Drive maximum power indicator 1 for AC/DC-60, 0 for AC/DC-30
EncoderType Active encoder type 0 for none, 1 for quadrature, 2 for BiSS *not reported at this
EstimatedDriveTemperature Drive temperature Temperature reported by heatsink temperature sensor
EstimatedMotorTemperature Estimated motor temperature Temperature estimated by AC/DC software routine
PositionErrorSum Sum of error Sum of errors
PidAverage Average of position PID Average of 64 load meter values
Debug counter Subject to change Upper nibble is drive number, remaining bits are the number
500ns. Phase to phase, phase to Vm+, or phase to shield
short.
low
OvervoltageMotor, or OvervoltageLine may cause a
shutdown
resistance (ohms) is too high for the application.
Parameter 29 warning temperature
Requested acceleration is compared to calculated maximum
from motor parameters
Parameter 30 error temperature
The drive must be allowed to release power before changing
some parameters
time*
of status packets received, switches to number of bytes
received during firmware update
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 15 of 17
Specifications
Characteristic Min. Typ. Max. Unit
5 Volt Supply Current 1.9 - - A
12 Volt Supply Current 0.45 - - A
Input Pullup Voltage (Vinp) - 5 - VDC
Input On Voltage 3.75 - - VDC
Input Off Voltage - - 1.25 VDC
Input Operating current 9 11 15 mA
Relay Output Current 0.1 - 10 A @ 125VAC
Relay Output Current 0.1 - 5 A @ 30VDC
Motor Output Current (Low Power Model) - 20* 30 A
Motor Output Current (High Power Model) - 30* 60 A
Brake resistor resistance (Low Power Model) 14 15 16 ohms
Brake resistor resistance (High Power Model) 6.5 7.5 8.5 ohms
Motor Supply Voltage 50 300 340 VDC
Fiber Optic Length - - 100 feet
Drive Communication Cable Length - - 30 feet
Size: 9.75 * 6 * 4 (W*D*H) Inches
*Typ. column is continuous rating for output current
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 16 of 17
Mounting Dimensions
4.68 [118.9]
5.80 [147.3]
3.90 [99.1]
10.58 [268.8]
3.90 [99.1]
9.43 [239.6]
1.75 [44.4]
5.80 [147.3]
4.68 [118.8]
10.58 [268.8]
9.89 [251.3]
6-32TPI OR
M4x.7
(3) PLACES
svn://software/hardware/AC1/docs/ACDC_man.doc MRR Page 17 of 17
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.