AGERE 1345TNPD, 1345TNPC, 1345TMPD, 1345TMPC, 1345TBPD Datasheet

...
0 (0)

Data Sheet

January 2000

1345-Type Receiver with

Clock Recovery and Data Retiming

Operating at 1.3 μm or 1.55 μm wavelengths and at

155 Mbits/s or 622 Mbits/s, the versatile 1345-Type Receiver is manufactured in a 20-pin, plastic DIP with a multimode fiber pigtail.

Features

Backward compatible with 1330 family

Space-saving, self-contained, 20-pin plastic DIP

Silicon based ICs

Single 5 V power supply operation including photocurrent monitor capability

Exceeds all SONET (GR-253-CORE) and ITU-T G.958 jitter requirements

Clocked decision circuit

Regenerated differential clock signal

Wide dynamic range

Qualified to meet the intent of Telcordia Technologies ™ reliability practices

Operates at data rates of 155 Mbits/s or 622 Mbits/s

Positive ECL (PECL) data outputs

CMOS (TTL) link-status flag output

Operation at 1.3 μm or 1.55 μm wavelengths

Operating temperature range of –40 °C to +85 °C

Applications

Telecommunications:

Interand intraoffice SONET/ITU-T SDH

Subscriber loop

Metropolitan area networks

High-speed data communications

Description

The 1345-Type fiber-optic receiver is designed for use in transmission systems or mediumto highspeed data communication applications. Used in intermediateand long-reach applications, the receiver operates at the SONET OC-3 or OC-12 data rate as well as the ITU-T synchronous digital hierarchy (SDH) rate of STM-1 or STM-4, depending on the receiver model chosen. The receiver meets all present Telcordia Technologies GR-253-CORE requirements, the current ANSI T1X1.5 intraoffice specifications, and the ITU-T G.957 and G.958 recommendations. Compact packaging, a high level of integration, and a wide dynamic range make these receivers ideal for data communications.

Manufactured in a 20-pin DIP, the receiver consists of a planar InGaAs PIN photodetector, a silicon preamplifier, a silicon bipolar limiting amplifier that converts the small signal to ECL levels, a timing recovery unit to recover the clock, and a silicon bipolar decision circuit.

AGERE 1345TNPD, 1345TNPC, 1345TMPD, 1345TMPC, 1345TBPD Datasheet

1345-Type Receiver with

Data Sheet

Clock Recovery and Data Retiming

January 2000

 

 

Description (continued)

Flag Output

The receiver converts optical signals in the range of 1.1 μm to 1.6 μm into retimed clock and data signals. The clock and data outputs are raised-ECL (PECL) logic levels. A CMOS-level flag output indicates when there is a loss of optical signal.

When the optical input falls below the link status flag switching threshold, the link status flag is deactivated and its output logic level changes from a CMOS logic HIGH to a CMOS logic LOW.

The receiver requires a 5 V power supply for the amplifier, logic, and PLL CRC circuits. The operating case temperature range is –40 °C to +85 °C.

Pin 10

Pin 10 on the 1345-Type receiver is not an internally connected (NIC) pin. This definition allows the 1345 to be used in most customer 20-pin receiver module applications. Customer’s printed-wiring boards that are designed with ground, +5 V, –5 V, or no connection to this pin are all acceptable options. For those applications that require monitoring the photocurrent of the PIN photodetector for power monitoring purposes, there are versions of the 1345 that require +5 V or –5 V applied to Pin 10. Check Tables 3 and 4 for ordering information.

Squelched Data and Clock Outputs

In some versions of the 1345 receiver (see Table 4), when the link status flag is deactivated, the data and clock outputs are squelched (stop outputting a signal). When this occurs, the DATA, DATA, CLOCK, and CLOCK outputs switch to a constant dc output voltage level of 1.3 V.

Nonsquelched Data and Clock Outputs

Agere Systems also manufactures nonsquelching versions of the 1345 receiver for those applications that require the data and clock outputs to continue to function after the link status flag is deactivated. In those versions of the receiver, when the link status flag is deactivated, a signal will continue to appear at the DATA, DATA, CLOCK, and CLOCK outputs. See Table 4 for nonsquelching codes.

OPTIONAL VPIN

 

 

 

 

 

 

5 V

FLAG FLAG

DATA DATA

 

FILTER

 

 

 

SILICON BIPOLAR

InGaAs

Si

DECISION CIRCUIT

SILICON BIPOLAR

PIN

PREAMPLIFIER

LIMITING AMPLIFIER

 

 

PLL TIMING

 

 

RECOVERY UNIT

 

 

CLOCK CLOCK

1-724(C)

Figure 1. Block Diagram

2

Agere Systems Inc.

Data Sheet

1345-Type Receiver with

January 2000

Clock Recovery and Data Retiming

 

 

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter

Symbol

Min

Max

Unit

 

 

 

 

 

Supply Voltage

VCC

0

5.5

V

 

 

 

 

 

Operating Case Temperature Range

TC

–40

85

°C

 

 

 

 

 

Storage Case Temperature Range

Tstg

–40

85

°C

 

 

 

 

 

Lead Soldering Temperature/Time

250/10

°C/s

 

 

 

 

 

Operating Wavelength Range

λ

1.1

1.6

µm

 

 

 

 

 

Minimum Fiber Bend Radius

1.0 (25.4)

in. (mm)

 

 

 

 

 

Pin Information

Pin

 

Name

 

Pin

 

 

Name

 

 

 

 

 

 

1

 

Ground

 

20

No User Connection*

 

 

 

 

 

 

2

 

Ground

 

19

No User Connection*

 

 

 

 

 

 

3

 

Ground

 

18

No User Connection*

 

 

 

 

 

4

CLOCK

 

17

No User Connection*

 

 

 

 

 

 

 

 

5

 

 

 

 

 

16

Ground

 

CLOCK

 

 

 

 

 

 

6

 

Ground

 

15

Ground

 

 

 

 

 

 

 

 

7

 

DATA

 

14

 

 

 

 

FLAG

8

 

Ground

 

13

Ground

 

 

 

 

 

 

 

 

9

 

 

 

 

12

 

FLAG

 

DATA

 

10

 

No Internal

 

11

VCC

 

 

Connection or

 

 

 

 

 

 

 

Optional VPIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Pins designated as no user connection are not connected internally. However, to allow for future functional upgrades, it is recommended that the user not make any connections to these pins.

The link status flag is a logic flag that indicates the presence or absence of a minimum acceptable level of optical input. A logic high on the FLAG output indicates the presence of a valid optical signal.

Mounting and Connections

The pigtail consists of a 39 in. ± 4 in. (1 m ± 10 cm), 62.5 μm core/125 μm cladding multimode fiber. The standard fiber has a 0.036 in. (914 µm) diameter tightbuffered outer-jacket. The minimum fiber bending radius during operation is 1.0 in. (25.4 mm).

Electrostatic Discharge

CAUTION: This device is susceptible to damage as a result of electrostatic discharge (ESD). Take proper precautions during

both handling and testing. Follow guidelines such as EIA ® Standard EIA-625.

Although protection circuitry is designed into the device, take proper precautions to avoid exposure to ESD.

Agere Systems Inc. employs a human-body model (HBM) for ESD susceptibility testing and protectiondesign evaluation. ESD voltage thresholds are dependent on the critical parameters used to define the model. A standard HBM (resistance = 1.5 kΩ capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes. The HBM ESD threshold established for the 1345 receiver is ±1000 V.

Receiver Processing

The 1345-Type receiver devices can withstand normal wave-soldering processes. The complete receiver module is not hermetically sealed; therefore, it should not be immersed in or sprayed with any cleaning solution or solvents. The process cap and fiber pigtail jacket can deform at temperatures greater than 85 °C. The receiver pins can be wave-soldered at maximum temperature of 250 °C for 10 seconds.

Agere Systems Inc.

3

1345-Type Receiver with

Data Sheet

Clock Recovery and Data Retiming

January 2000

 

 

Application Information

The 1345 receiver is a highly sensitive fiber-optic receiver. Although the data outputs are digital logic levels (PECL), the device should be thought of as an analog component. When laying out the printed-wiring board (PWB), the 1345 receiver should be given the same type of consideration one would give to a sensitive analog component.

At a minimum, a double-sided printed-wiring board with a large component-side ground plane beneath the receiver must be used. In applications that include many other high-speed devices, a multilayer PWB is highly recommended. This permits the placement of power and ground connections on separate layers, which helps minimize the coupling of unwanted signal noise into the power supplies of the receiver.

Layout Considerations

A fiber-optic receiver employs a very high-gain, widebandwidth transimpedance amplifier. The amplifier detects and amplifies signals that are only tens of nA in amplitude. Any unwanted signal currents that couple into the receiver circuitry cause a decrease in the receiver's sensitivity and can also degrade the performance of the receiver's loss of signal (FLAG) circuit. To minimize the coupling of unwanted noise into the receiver, route high-level, high-speed signals such as transmitter inputs and clock lines as far away as possible from the receiver pins. If this is not possible, then the PWB layout engineer should consider interleaving the receiver signal and flag traces with ground traces in order to provide the required isolation.

Noise that couples into the receiver through the power supply pins can also degrade device performance. The application schematics, Figures 2—3, show recommended power supply filtering that helps minimize noise coupling into the receiver. The bypass capacitors should be high-quality ceramic devices rated for RF applications. They should be surface-mount components placed as close as possible to the receiver power supply pins. The ferrite bead should have as high an impedance as possible in the frequency range that is most likely to cause problems. This will vary for each application and is dependent on the signaling frequencies present on the application circuit card. Surfacemount, high-impedance beads are available from several manufacturers.

4

Data and Flag Outputs

The data and clock outputs of the 1345 receiver are driven by open-emitter NPN transistors which have an output impedance of approximately 7 Ω. Each output can provide approximately 50 mA maximum output current. Due to the high switching speeds of ECL outputs, transmission line design must be used to interconnect components. To ensure optimum signal fidelity, both data outputs (DATA and DATA) and clock outputs (CLOCK and CLOCK) should be terminated identically. The signal lines connecting the data and clock outputs to the next device should be equal in length and should have matched impedances.

Controlled impedance stripline or microstrip construction must be used in order not to degrade the quality of the signal into the next component and to minimize reflections back into the receiver. Excessive ringing due to reflections caused by improperly terminated signal lines makes it difficult for the component receiving these signals to decipher the proper logic levels and may cause transitions to occur where none were intended. Also, by minimizing high frequency ringing due to reflections caused by improperly designed and terminated signal lines, possible EMI problems can be avoided. The applications sections in the Signetics™

ECL 10K/100K Data Manual or the National Semiconductor ®ECL Logic Databook and Design Guide provide excellent design information on ECL interfacing.

The FLAG and FLAG outputs of the OC-3/STM-1

155 Mbits/s receiver and the OC-12/STM-4 622 Mbits/s receiver are 5 V TTL logic-level compatible. The FLAG output is provided directly by the comparator IC. However, the FLAG output is derived from the FLAG output through an inverter. Excessive loading of the FLAG output can cause the FLAG output to malfunction.

Recommended User Interface

The 1345 receiver is designed to be operated from a 5 V power supply and provides raised or pseudo-ECL (PECL) data outputs. Figures 2 and 3 show two possible application circuits for the 1345 receiver. Figure 2 represents an application for a PECL compatible interface while Figure 3 shows a possible application for an ac-coupled, ECL-compatible interface. In both instances, the DATA outputs are terminated with a

Thévenin equivalent circuit, which provides the equivalent of a 50 Ω load terminated to (VCC – 2 V). A single 50 Ω resistor terminated to (VCC – 2 V) could also be used, but this requires a second power supply. Other methods of terminating ECL-type outputs are discussed in the references previously mentioned.

Agere Systems Inc.

Loading...
+ 8 hidden pages