Use this system with EXTREME caution! The AEM EMS System
allows for total flexibility in engine tuning. Misuse of this
product can destroy your engine! If you are not well versed in
!
engine dynamics and the tuning of management systems or are
not PC literate, please do not attempt the installation. Refer the
installation to a AEM trained tuning shop or call 800-423-0046
for technical assistance. You should also visit the AEM EMS
Tech Forum at http://www.aempower.com
NOTE: AEM holds no responsibility for any engine damage that
results from the misuse of this product!
This product is legal in California for racing vehicles only and should never
be used on public highways.
Note: Part number 30-6620 supersedes and replaces p/n 30-1620, 30-1621, and 30-1622.
Vehicle Series I EMS Series II EMS
1989-1998 Nissan Skyline (RB26DETT) 1621/U 6620
1993-1998 Nissan Skyline (RB25DETT) 1621/U 6620
Thank you for purchasing an AEM Engine Management System.
The AEM Engine Management System (EMS) is the result of extensive development on a
wide variety of cars. Each system is engineered for the particular application. The AEM
EMS differs from all others in several ways. The EMS is a stand alone system, which
completely replaces the factory ECU and features unique Plug and Play Technology,
which means that each system is configured especially for your make and model of car
without any jumper harnesses. There is no need to modify your factory wiring harness and
in most cases your car may be returned to stock in a matter of minutes.
For stock and slightly modified vehicles, the supplied startup calibrations are configured to
work with OEM sensors, providing a solid starting point for beginner tuning. For more
heavily modified cars, the EMS can be reconfigured to utilize aftermarket sensors and has
many spare inputs and outputs allowing the elimination of add-on rev-limiters, boost
controllers, nitrous controllers, fuel computers, etc. It also includes a configurable onboard
1MB data logger that can record any 16 EMS parameters at up to 250 samples per
second. Every EMS comes with all functions installed and activated; there is no need to
purchase options or upgrades to unlock the full potential of your unit.
The installation of the AEM EMS on the supported vehicles uses the stock sensors and
actuators. After installing the AEMTuner software, the startup calibration will be saved to
the following folder on your PC:
C:\Program Files\AEM\AEMTuner\Calibrations\Nissan\
Multiple calibrations may be supplied for each EMS; additional details of the test vehicle
used to generate each calibration can be found in the Calibration Notes section for that
file.
Please visit the AEM Performance Electronics Forum at http://www.aempower.com and
register. We always post the most current strategy release, PC Software and startup
calibrations online. On the forum, you can find and share many helpful hints/tips to make
your EMS perform its best.
TUNING NOTES AND WARNING:
While the supplied startup calibration may be a good starting point and can save
considerable time and money, it will not replace the need to tune the EMS for your specific
application. AEM startup calibrations are not intended to be driven aggressively before
tuning. We strongly recommend that every EMS be tuned by someone who is already
familiar with the AEM software and has successfully tuned vehicles using an AEM EMS.
Most people make mistakes as part of the learning process; be warned that using your
vehicle as a learning platform can damage your engine, your vehicle, and your EMS.
Read and understand these instructions BEFORE attempting to install this product.
1) Install AEMTuner software onto your PC
The latest version of the AEMTuner software can be downloaded from the AEMTuner
section of the AEM Performance Electronics forums. Series 2 units are not supported
by the older AEMPro tuning software.
2) Remove the Stock Engine Control Unit
a)
Access the stock Engine Control Unit (ECU). The Skyline ECU is located behind
the passenger-side kick panel.
b)
Carefully disconnect the wiring harness from the ECU. Avoid excessive stress or
pulling on the wires, as this may damage the wiring harness. Some factory ECUs
use a bolt to retain the factory connectors, and it must be removed before the
harness can be disconnected. There may be more than one connector, and they
must all be removed without damage to work properly with the AEM ECU. Do not
cut any of the wires in the factory wiring harness to remove them.
c)
Remove the fasteners securing the ECU to the car body, and set them aside. Do
not destroy or discard the factory ECU, as it can be reinstalled easily for street use
and troubleshooting.
3) Install the AEM Engine Management System
a)
Plug the factory wiring harness into the AEM EMS and position it so the wires are
not pulled tight or stressed in any manner. Secure the EMS with the provided
Velcro fasteners.
b)
Plug the comms cable into the EMS and into your PC.
c)
Turn the ignition on but do not attempt to start the engine.
d)
At the time these instructions were written, new EMS units do not require USB
drivers to be installed on the PC. Windows
e)
With the AEMTuner software open, select ECU>>Upload Calibration to upload the
startup calibration file (.cal) that most closely matches the vehicle’s configuration to
be tuned. Check the Notes section of the calibration for more info about the vehicle
it was configured for. These files can be found in the following folder:
Set the throttle range: Select Wizards>>Set Throttle Range and follow the onscreen instructions. When finished, check that the ‘Throttle’ channel never indicates
less than 0.2% or greater than 99.8%, this is considered a sensor error and may
cause some functions including idle feedback and acceleration fuel to operate
incorrectly.
g)
For Nissan vehicles, the OEM camshaft angle sensor’s trigger disc must be
removed and an AEM trigger disc must be installed before attempting to start the
engine. Please see pg. 7 for more info.
4) Ready to begin tuning the vehicle.
a)
Before starting the engine, verify that the fuel pump runs for a couple of seconds
when the key is turned on and there is sufficient pressure at the fuel rail.
If a MAP sensor is installed, check that the Engine Load indicates something near
atmospheric pressure (approximately 101kPa or 0 PSI at sea level) with the key on
and engine off. Press the throttle and verify that the ‘Throttle’ channel responds but
the Engine Load channel continues to measure atmospheric pressure correctly.
b)
Start the engine and make whatever adjustments may be needed to sustain a safe
and reasonably smooth idle. Verify the ignition timing: Select Wizards>>Ignition
Timing Sync from the pull-down menu. Click the ‘Lock Ignition Timing’ checkbox
and set the timing to a safe and convenient value (for instance, 10 degrees BTDC).
Use a timing light and compare the physical timing numbers to the timing value you
selected. Use the Sync Adjustment Increase/Decrease buttons to make the
physical reading match the timing number you selected.
Crankshaft timing marks are not labeled for some vehicles. Consult the factory
service manual for more information. The diagram below shows labels for the R33
Skyline:
c)
Note: This calibration needs to be properly tuned before driving the vehicle. It is
intended for racing vehicles and may not operate smoothly at idle or part-throttle.
NEVER TUNE THE VEHICLE WHILE DRIVING
5) Troubleshooting an engine that will not start
a)
Double-check all the basics first… engines need air, fuel, compression, and a
correctly-timed spark event. If any of these are lacking, we suggest checking simple
things first. Depending on the symptoms, it may be best to inspect fuses, sufficient
battery voltage, properly mated wiring connectors, spark using a timing light or by
removing the spark plug, wiring continuity tests, measure ECU pinout voltages,
replace recently-added or untested components with known-good spares. Check
that all EMS sensor inputs measure realistic temperature and/or pressure values.
b)
If the EMS is not firing the coils or injectors at all, open the Start tab and look for the
‘Stat Sync’d’ channel to turn ON when cranking. This indicates that the EMS has
detected the expected cam and crank signals; if Stat Sync’d does not turn on,
monitor the Crank Tooth Period and T2PER channels which indicate the time
between pulses on the Crank and T2 (Cam) signals. Both of these channels should
respond when the engine is cranking, if either signal is not being detected or
measuring an incorrect number of pulses per engine cycle the EMS will not fire the
coils or injectors.
c)
If the Engine Load changes when the throttle is pressed this usually indicates that
there is a problem with the MAP sensor wiring or software calibration (when the
EMS detects that the MAP Volts are above or below the min/max limits it will run in
a failsafe mode using the TPS-to-Load table to generate an artificial Engine Load
signal using the Throttle input). This may allow the engine to sputter or start but not
continue running properly.
Application Notes for EMS P/N 30-6620
RB26DETT, RB25DETT, RB20DET, VG30DE, VG30DETT, VE30DE, SR20DET, and CA18DET
*All switch input pins must connect to ground; the switch should not provide 12V power to
the EMS because that will not be detected as on or off.
**Cam / Crank Angle Sensor: AEM trigger disc MUST be used
Discrepancies have been observed in the OEM cam/crank angle signals between model
years and/or trim levels; to avoid confusion the Series 2 EMS does not support the OEM
Nissan trigger pattern. A replacement trigger disc is now included with every Nissan EMS
and must be installed before attempting to start the engine. Two discs are supplied with
each 30-6620 EMS: one disc fits the CAS sensor found on RB, VG, CA and VE engines,
the other disc fits SR and ’99-‘03 Skyline GTR sensors. Please consult the following
instructions supplement, which will be installed to the C:\Program
Files\AEM\AEMTuner\Instructions folder:
‘10-6600-B for EMS - 30-66XX supplement- CAS trigger install RB and SR engines.PDF’
‘10-6620-A for EMS - 30-6620 supplement- CAS trigger install RB, VG and VE
engines.PDF’
Engine Wiring Harnesses, ‘swapped’ engine installations
Many Nissan wiring harnesses have been found to contain significant differences between
model years and/or trim levels. Likely differences include: Crank signal, Cam signal,
Ignition switch wiring (the Ignition switch input controls the Main Relay output), injector and
coil destinations. Official documentation for many of these vehicles was not offered in
English, so it would be very wise to double-check the pinout destinations for these circuits.
This is especially true if the vehicle contains a ‘swapped’ engine or if the wiring harness
has been cut, spliced, soldered, re-routed, re-pinned or modified in any other manner. It is
the user’s responsibility to check that the wiring on the vehicle matches the pinout chart
contained in this instruction manual. AEM will not be held responsible for loss or damage
that can occur if the EMS is installed in a vehicle in which the wiring harness does not
match the AEM-supplied pinout chart!
The function of several pins have been changed from the original 30-1620, 30-1621, and
30-1622 EMS, please see the pinout chart for more info.
Primary Load Sensor, EMS Fuel Strategy
The factory MAF (mass air flow) sensor(s) can be removed to help decrease intake air
restriction; the EMS can be configured to use a MAP sensor to determine engine load.
It is recommended to use a 3.5 bar MAP sensor or higher (P/N 30-2130-50).
The factory Mass Air Flow sensor can be used as the primary load input for the AEM EMS
if desired (the EMS will only use one MAF sensor for fuel calculations even if the vehicle is
equipped with two). Please check the Notes section of each calibration for more info about
the vehicle setup and fuel strategy that calibration was configured to use.
EMS Fuel Map, Boost Fuel Trim Table
The 30-6620 maps provided utilize the “Boost Fuel Trim Table” to provide a 1:1 fuel
compensation above and below atmospheric pressure. In the startup calibration, the
“Boost Fuel Trim Table” is configured to provide twice as much fuel when the manifold
pressure is twice as high and half the fuel when the manifold pressure is half as high; this
should help simplify the tuning process for different vacuum and boost levels. Notice the
values in the main “Fuel Map” do not change above 100 kPa (0 psi boost), the fuel
correction is being made by the “Boost Fuel Trim Table.”
Note: the “Boost Fuel Trim Table” must be adjusted if a different MAP sensor is installed or
if the Load breakpoints are adjusted. The Boost Fuel Trim value should be set to -90 at
10kPa, 0 at 100 kPa, +100 at 200 kPa, +200 at 300 kPa, etc…
Peak and Hold Injector Drivers
Injectors 1-6 include Peak (4 amps) and Hold (1 amp) injector drivers. These drivers may
be used with peak and hold or saturated type injectors. The factory Nissan wiring harness
may contain a resistor pack to prevent excessive current when using low-impedance
injectors with the stock ECU. With the 30-6620 installed, users can elect to remove and
bypass the OEM resistor pack for more precise control of low-impedance injectors.
Please note that the injector response time will be different with and without the factory
injector resistor pack. If the OEM resistor pack has been removed and bypassed, please
use the correct battery offset wizard for your injectors. Most battery offset wizards will
specify <P&H DRIVER> if they are intended for use without a resistor pack.
Wiring accessories to the EMS:
Please follow this suggested wiring diagram when adding accessories such as UEGO
gauges, MAP sensors, IAT sensors, or switches for use with the EMS. Note that wire
polarity is not important for the Air Temperature sensor.
Connection Diagram for EMS P/N 30-6620
‘89-
‘98 Nissan Skyline RB26DETT
,
1990-
1995 Nissan
300ZX
‘94-‘96 Nissan S
ilvia S14
SR20
DET
,
‘93-‘98 Nissan Skyline RB25DET,
Pin
‘89-‘94 Nissan Skyline RB20DET
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
Fuel Pump Relay Control Signal
Power Steering Oil Pressure Switch Cooling Fan Relay Cooling Fan Relay (SR20DET only)
30-1620 (Series 1) vs 30-6620 (Series 2) EMS differences:
The EMS functions assigned to certain pins have been changed and no longer match the 30-1620 EMS. Unless otherwise noted, the
following pins and functions will need to be manually reconfigured after using AEMTuner to convert a V1.19 (30-1620, Series 1 EMS)
calibration for use with the 30-6620 Series 2 hardware.
Coil outputs reallocated for sequential
ignition, Coil2 no longer wasted spark
Coil 5 moved to pin 2
Coil outputs reallocated for sequential
ignition, Coil1 no longer wasted spark
Coil outputs reallocated for sequential
ignition, Coil3 no longer wasted spark
LS 11 no longer available
Coil 4 moved to pin 13
HS 1 no longer available
Idle 8 not available
Copy settings from Idle 7 to INJ12
Copy settings from LS 8 to INJ11
AEM Electronics Warranty
Advanced Engine Management Inc. warrants to the consumer that all AEM Electronics
products will be free from defects in material and workmanship for a period of twelve
months from date of the original purchase. Products that fail within this 12-month warranty
period will be repaired or replaced when determined by AEM that the product failed due to
defects in material or workmanship. This warranty is limited to the repair or replacement of
the AEM part. In no event shall this warranty exceed the original purchase price of the
AEM part nor shall AEM be responsible for special, incidental or consequential damages
or cost incurred due to the failure of this product. Warranty claims to AEM must be
transportation prepaid and accompanied with dated proof of purchase. This warranty
applies only to the original purchaser of product and is non-transferable. All implied
warranties shall be limited in duration to the said 12-month warranty period. Improper use
or installation, accident, abuse, unauthorized repairs or alterations voids this warranty.
AEM disclaims any liability for consequential damages due to breach of any written or
implied warranty on all products manufactured by AEM. Warranty returns will only be
accepted by AEM when accompanied by a valid Return Merchandise Authorization (RMA)
number. Product must be received by AEM within 30 days of the date the RMA is issued.
Please note that before AEM can issue an RMA for any electronic product, it is first
necessary for the installer or end user to contact the tech line at 1-800-423-0046 to
discuss the problem. Most issues can be resolved over the phone. Under no
circumstances should a system be returned or a RMA requested before the above process
transpires.
AEM will not be responsible for electronic products that are installed incorrectly, installed
in a non approved application, misused, or tampered with.
Any AEM electronics product can be returned for repair if it is out of the warranty period.
There is a minimum charge of $75.00 for inspection and diagnosis of AEM electronic
parts. Parts used in the repair of AEM electronic components will be extra. AEM will
provide an estimate of repairs and receive written or electronic authorization before repairs
are made to the product.
2010 ADVANCED ENGINE MANAGEMENT INC.
2205 126th Street Unit A Hawthorne, CA. 90250
Phone: (310) 484-2322 Fax: (310) 484-0152
http://www.aempower.com
Instruction Part Number: 10-6620
Page 14 of 14
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.