Advanced Linear Devices Inc ALD500RAU-20SEI, ALD500RAU-20SE, ALD500RAU-20QEI, ALD500RAU-20QE, ALD500RAU-20PEI Datasheet

...
0 (0)

ADVANCED

 

LINEAR

ALD500RAU/ALD500RA/ALD500R

DEVICES, INC.

PRECISION INTEGRATING ANALOG PROCESSOR

WITH PRECISION VOLTAGE REFERENCE

APPLICATIONS

4 1/2 digits to 5 1/2 digits plus sign measurements

Precision analog signal processor

Precision sensor interface

High accuracy DC measurement functions

Portable battery operated instruments

Computer peripheral

PCMCIA

FEATURES

Resolution up to 18 bits plus sign bit and over-range bit

Accuracy independent of input source impedances

Accurate on-chip voltage reference

Tempco as low as 10 ppm/°C guaranteed

Chip select - power down mode

High input impedance of 1012 Ω

Inherently filters and integrates any external noise spikes

Differential analog input

Wide bipolar analog input voltage range ±3.5V

Automatic zero offset compensation

Low linearity error - as low as 0.001% typical

Fast zero-crossing comparator - 1μs

Low power dissipation - 6mW typical

Automatic internal polarity detection

Low input current - 2pA typical

Optional digital control from a microcontroller, an ASIC, or a dedicated digital circuit

Flexible conversion speed vs. resolution trade-off

BENEFITS

Low cost, simple functionality

Wide dynamic signal range

Very high noise immunity

Automatic compensation and cancellation of error sources

Easy to use to acquire bipolar signals

Up to 19 bit (18 bit + sign bit) single conversion or 21 bit (20 bit + sign bit) multiple conversion and noise performance

Inherently linear and stable with temperature and component variations

PIN CONFIGURATION

 

 

ALD500R

 

IB

 

 

 

CS

1

 

20

CINT

 

 

 

V+

2

 

19

V-

 

 

 

DGND

3

 

18

CAZ

 

 

 

COUT

4

 

17

BUF

 

 

 

B

5

 

16

AGND

 

 

 

A

6

 

15

C-REF

 

 

 

V+IN

7

 

14

C+REF

 

 

 

V-IN

8

 

13

 

 

 

 

V+REF

N/C

9

 

12

 

 

 

N/C

10

 

11

V-REF

 

 

 

QE, PE, SE PACKAGE

* N/C pin is connected internally. Connect to V-.

Ordering Information

Resolution

Endpoint

Voltage Reference

 

Package Type

 

Operating

 

 

Linearity

Accuracy/Tempco

 

 

 

 

Temperature

 

 

 

 

20L PDIP

20L SOIC

20L QSOP

20LCDIP

 

 

 

 

 

 

 

 

 

 

 

16 bit

0.015%

0.5% 50ppm/C

ALD500R-50PE

ALD500R-50SE

ALD500R-50QE

 

0°C to 70°C

 

 

 

 

 

 

 

 

 

 

17 bit

0.01%

0.3%

20ppm/C

ALD500RA-20PE

ALD500RA-20SE

ALD500RA-20QE

 

0°C to 70°C

18 bit

0.005%

 

 

ALD500RAU-20PE

ALD500RAU-20SE

ALD500RAU-20QE

 

 

 

 

 

 

 

 

 

 

 

 

 

17 bit

0.01%

0.2%

10ppm/C

ALD500RA-10PE

ALD500RA-10SE

ALD500RA-10QE

 

0°C to 70°C

18 bit

0.005%

 

 

ALD500RAU-10PE

ALD500RAU-10SE

ALD500RAU-10QE

 

 

 

 

 

 

 

 

 

 

 

 

 

17 bit

0.01%

0.3%

20ppm/C

ALD500RA-20PEI

ALD500RA-20SEI

ALD500RA-20QEI

 

-40°C to +85°C

18 bit

0.005%

 

 

ALD500RAU-20PEI

ALD500RAU-20SEI

ALD500RAU-20QEI

 

 

 

 

 

 

 

 

 

 

 

 

 

18 bit

0.005%

0.3%

20ppm/C

 

 

 

ALD500RAU-20DE

-55°C to +125°C

 

 

 

 

 

 

 

 

 

 

* Contact factory for customized voltage reference voltage levels, accuracy and tempco specifications.

Rev. 1.01 © 1999 Advanced Linear Devices, Inc., 415 Tasman Drive, Sunnyvale, California 94089-1706 Tel: (408) 747-1155, Fax: (408) 747-1286 http://www.aldinc.com

Advanced Linear Devices Inc ALD500RAU-20SEI, ALD500RAU-20SE, ALD500RAU-20QEI, ALD500RAU-20QE, ALD500RAU-20PEI Datasheet

FIGURE 1. ALD500R Functional Block Diagram

 

 

 

CREF

 

 

 

 

RINT

CINT

 

 

 

 

 

 

V+REF

 

V-REF

 

 

 

 

 

 

 

 

 

 

 

(12)

RREF

(11)

 

 

 

CAZ

 

CINT

 

 

 

RREF = 100KΩ

C+REF

 

 

C-REF

BUF

 

CAZ

 

 

 

CB = 0.1µF

(8)

 

 

 

 

(7)

 

(5)

 

(4)

(2)

 

 

 

 

 

REFINT

 

 

 

 

 

 

 

 

 

 

 

 

SWR

SWR

 

-

 

 

 

 

 

 

 

 

SWIN

 

 

 

 

 

 

 

 

 

 

 

 

V+IN

 

 

 

 

 

Buffer

 

 

Integrator

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-

 

 

 

 

(14)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SW-

 

SW+

 

 

 

 

 

 

+

 

 

 

 

 

R

R

 

 

 

 

+

-

 

 

 

 

 

 

 

 

 

 

Comp1

Level

 

 

 

 

 

 

 

 

 

 

 

 

-

Comp2

COUT

 

 

 

 

 

 

 

 

 

 

 

 

Shift

 

 

 

 

 

 

 

 

 

 

 

 

+

(17)

 

SWAz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SW+R

SW-R

 

SWS

SWAZ

 

 

 

 

 

 

 

 

 

 

 

 

 

Polarity

 

 

 

 

 

 

 

 

 

 

 

 

 

DGND

AGND

 

 

 

 

 

 

 

 

 

 

 

Detection

 

 

 

 

 

 

 

 

 

 

 

(18)

 

 

 

 

 

 

 

 

 

 

 

 

 

(6)

 

 

 

 

 

 

 

 

 

 

 

 

 

SWIN

 

 

SWG

 

 

 

 

 

 

 

 

 

V-IN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analog

Phase

 

 

(13)

 

 

 

 

 

 

 

 

 

 

Switch

Decoding

 

 

 

 

 

 

 

 

REF

 

 

 

Control

 

 

 

 

 

 

 

 

 

Bias

 

Logic

 

 

 

 

 

 

 

 

 

Control

 

 

Signals

 

 

 

 

 

 

 

 

VSS VDD

N/C N/C

 

 

 

A

B

 

 

 

 

 

 

CB

 

CS

(15)

(16)

 

 

 

 

 

 

(3)

(19)

(10) (9)

 

IB

 

(20)

Control Logic

 

 

 

 

 

 

 

 

 

 

(1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GENERAL DESCRIPTION

The ALD500RAU/ALD500RA/ALD500R are integrating dual slope analog processors, designed to operate on ±5V power supplies for building precision analog-to-digital converters. The ALD500RAU/ALD500RA/ALD500R feature specifications suitable for 18 bit/17 bit/16 bit resolution conversion, respectively. Together with three capacitors, two resistors, and a digital controller, a precision Analog to Digital converter with auto zero can be implemented. The digital controller can be implemented by an external microcontroller, under either hardware (fixed logic) or software control. For ultra high resolution applications, up to 23 bit conversion can be implemented with an appropriate digital controller and software.

The ALD500R series of analog processors accept differential inputs and the external digital controller first counts the number of pulses at a fixed clock rate that a capacitor requires to integrate against an unknown analog input voltage, then counts the number of pulses required to deintegrate the capacitor against a known internal reference voltage. This unknown analog voltage can then be converted by the microcontroller to a digital word, which is translated into a high resolution number, representing an accurate reading. This reading, when ratioed against the reference voltage, yields an accurate, absolute voltage measurement reading.

The ALD500R analog processors consist of on-chip digital control circuitry to accept control inputs, integrating buffer amplifiers, analog switches, and voltage comparators and a highly accurate, ultra-stable voltage reference. It functions in four operating modes, or phases, namely auto zero, integrate, deintegrate, and integrator zero phases. At the end of a conversion, the comparator output goes from high to low when the integrator crosses zero during deintegration. ALD500R analog processors also provide direct logic interface to CMOS logic families.

GENERAL THEORY OF OPERATION

Dual-Slope Conversion Principles of Operation

The basic principle of dual-slope integrating analog to digital converter is simple and straightforward. A capacitor, CINT, is charged with the integrator from a starting voltage, VX, for a fixed period of time at a rate determined by the value of an unknown input voltage, which is the subject of measurement. Then the capacitor is discharged at a fixed rate, based on an external reference voltage, back to VX where the discharge time, or deintegration time, is measured precisely. Both the integration time and deintegration time are measured by a digital counter controlled by a crystal oscillator. It can be demonstrated that the unknown input voltage is determined by the ratio of the deintegration time and integration time, and is directly proportional to the magnitude of the external reference voltage.

The major advantages of a dual-slope converter are:

a. Accuracy is not dependent on absolute values of

integration time tINT and deintegration time tDINT, but is dependent on their relative ratios. Long-term clock frequency

variations will not affect the accuracy. A standard crystal controlled clock running digital counters is adequate to generate very high accuracies.

b. Accuracy is not dependent on the absolute values of

RINT and CINT, as long as the component values do not vary through a conversion cycle, which typically lasts less than 1

second.

c.Offset voltage values of the analog components, such as VX, are cancelled out and do not affect accuracy.

d.Accuracy of the system depends mainly on the accuracy and the stability of the voltage reference value.

2

Advanced Linear Devices

ALD500RAU/ALD500RA/ALD500R

e. Very high resolution, high accuracy measurements can be achieved simply and at very low cost.
An inherent benefit of the dual slope converter system is noise immunity. The input noise spikes are integrated (averaged to near zero) during the integration periods. Integrating ADCs are immune to the large conversion errors that plague successive approximation converters and other high resolution converters and perform very well in high-noise environments.

reference voltage is integrated VREF = Reference Voltage

CINT = Integrating Capacitor value RINT = Integrating Resistor value

Actual data conversion is accomplished in two phases: Input

Signal Integration Phase and Reference Voltage Deintegration

Phase.

The slow conversion speed of the integrating converter provides

The integrator output is initialized to 0V prior to the start of

Input Signal Integration Phase. During Input Signal Integration

inherent noise rejection with at least a 20dB/decade attenuation

Phase, internal analog switches connect VIN to the buffer

rate. Interference signals with frequencies at integral multiples

input where it is maintained for a fixed integration time period

of the integration period are, theoretically, completely removed.

(tINT). This fixed integration period is generally determined by

Integrating converters often establish the integration period to

a digital counter

controlled by a crystal oscillator. The

reject 50/60Hz line frequency interference signals.

application of VIN causes the integrator output to depart 0V at

The relationship of the integrate and deintegrate (charge

a rate determined by VIN and a direction determined by the

polarity of VIN.

 

and discharge) of the integrating capacitor values are

 

 

shown below:

 

 

 

 

 

 

 

 

 

 

The Reference Voltage Deintegration Phase is initiated

 

 

 

 

 

 

. t

 

 

 

. C

 

 

 

immediately after tINT, within 1 clock cycle. During

V

INT

= V

X

- (V

 

/ R

INT

INT

)

 

ReferenceVoltage

Deintegration Phase, internal analog

 

 

IN

 

INT

 

 

 

 

switches connect a reference voltage having a polarity opposite

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(integrate cycle)

 

 

 

 

 

 

 

 

(1)

that of VIN to the integrator input. Simultaneously the same

V

 

= V

 

- (V

 

. t

 

 

/ R

 

. C

 

)

digital counter controlled by the same crystal oscillator used

X

 

 

DINT

INT

INT

above is used to start counting clock pulses. The Reference

 

 

INT

REF

 

 

 

 

Voltage Deintegration Phase is maintained until the comparator

(deintegrate cycle)

 

 

 

 

 

 

(2)

 

 

 

 

 

 

output inside the dual slope analog processor changes state,

Combining equations 1 and 2 results in:

 

indicating the integrator has returned to 0V. At that point the

 

digital counter is stopped. The Deintegration time period

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(tDINT), as measured by the digital counter, is directly

VIN / VREF = -tDINT / tINT

 

 

 

 

(3)

proportional to the magnitude of the applied input voltage.

where:

 

 

Vx

=

An offset voltage used as starting voltage

VINT

=

Voltage change across CINT during tINT and

VIN

 

during tDINT (equal in magnitude)

=

Average, or an integrated, value of input voltage

tINT

 

to be measured during tINT (Constant VIN)

=

Fixed time period over which unknown voltage is

 

 

integrated

tDINT =

Unknown time period over which a known

After the digital counter value has been read, the digital counter, the integrator, and the auto zero capacitor are all reset to zero through an Integrator Zero Phase and an Auto Zero Phase so that the next conversion can begin again. In practice, this process is usually automated so that analog-to- digital conversion is continuously updated. The digital control is handled by a microprocessor or a dedicated logic controller. The output, in the form of a binary serial word, is read by a microprocessor or a display adapter when desired.

 

 

CINT

 

 

 

 

 

 

RINT

INTEGRATOR

 

 

 

 

 

 

-

 

 

 

 

 

 

 

VINT

-

COMPARATOR

 

ANALOG

 

 

COUT

INPUT

 

+

 

+

 

 

 

(VIN)

S1

 

 

 

POLARITY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DETECTION

 

VOLTAGE

SWITCH DRIVER

PHASE

 

 

 

REF

 

CONTROL

CONTROL

 

REFERENCE

 

 

SWITCHES

 

 

 

 

LOGIC

 

 

 

 

 

 

 

 

POLARITY CONTROL

 

 

 

 

 

INTEGRATOR OUTPUT

 

 

 

 

A

B

 

Vx 0

VINT = 4.1V MAX

 

 

 

 

 

VIN VFULL SCALE

 

 

 

MICROCONTROLLER

 

 

VIN 1/2VFULL SCALE

 

 

 

 

 

 

 

 

 

(CONTROL LOGIC

 

 

tDINT

 

 

 

 

+ COUNTER)

 

 

 

 

 

 

 

 

tINT

tDINT

 

 

 

 

 

 

Figure 2. Basic Dual-Slope Converter

ALD500RAU/ALD500RA/ALD500R

Advanced Linear Devices

3

ABSOLUTE MAXIMUM RATINGS

Supply voltage, V+

 

 

 

 

 

 

 

 

 

 

13.2V

Differential input voltage range

 

 

 

-0.3V to V+ +0.3V

 

 

 

Power dissipation

 

 

 

 

 

 

 

 

 

600 mW

 

 

 

 

 

 

 

 

 

Operating temperature range

PE, SE package

 

 

 

 

0°C to +70°C

Operating temperature range

QE package

 

 

 

 

-55°C to +125°C

Storage temperature range

 

 

 

 

 

 

-65°C to +150°C

Lead temperature, 10 seconds

 

 

 

 

 

 

 

+260°C

OPERATING ELECTRICAL CHARACTERISTICS

 

 

 

 

 

 

 

 

 

T

A

= 25°C V+ = +5V V- = -5V (V supply ± 5V) unless otherwise specified; C

= C

 

= 0.47μf

 

 

 

 

 

 

 

 

 

 

 

 

AZ

REF

 

 

 

 

 

 

500RAU

 

 

500RA

 

 

500R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter

Symbol

Min Typ

Max

Min

Typ

Max

Min

Typ

Max

Unit

Test Conditions

Resolution

 

15

 

 

30

 

 

60

 

 

 

 

μV

 

Notes 1, 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zero-Scale

ZSE

 

 

0.0025

 

 

0.003

 

 

 

0.005

%

 

0°C to 70°C

Error

 

 

 

0.003

 

 

0.005

 

 

 

0.008

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End Point

ENL

 

0.001

0.005

 

0.003

0.010

 

0.005

 

0.015

%

 

Notes 1, 2

Linearity

 

 

 

0.007

 

 

0.015

 

 

 

0.020

 

 

0°C to +70°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Best Case

NL

 

 

0.0025

 

0.003

0.005

 

0.003

 

0.008

%

 

Notes 1, 2

Straight Line

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linearity

 

 

 

0.004

 

 

0.008

 

 

 

0.015

 

 

0°C to +70°C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zero-Scale

TCZS

 

0.3

0.6

 

0.3

0.7

 

0.3

 

0.7

μV/°C

0°C to +70°C

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coefficient

 

 

0.15

0.3

 

0.15

0.35

 

0.15

 

0.35

ppm/°C

Notes 1, 7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Full-Scale

SYE

 

0.005

 

 

0.008

 

 

0.01

 

 

 

%

 

0°C to 70°C

Symmetry Error

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Rollover Error)

 

 

0.008

 

 

0.010

 

 

0.012

 

 

 

%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Full-Scale

TCFS

 

1.3

 

 

1.3

 

 

1.3

 

 

 

ppm/°C

0°C to +70°C

Temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note 7

Coefficient

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input

IIN

 

2

 

 

2

 

 

2

 

 

 

pA

 

VIN = 0V

Current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Common-Mode

CMVR

VSS+1.5

 

VDD-1.5

VSS+1.5

 

VDD-1.5

VSS+1.5

 

 

VDD-1.5

V

 

 

Voltage Range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integrator

VINT

VSS+0.9

 

VDD-0.9

VSS+0.9

 

VDD-0.9

VSS+0.9

 

 

VDD-0.9

V

 

 

Output Swing

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analog Input

VIN

VSS+1.5

 

VDD-1.5

VSS+1.5

 

VDD-1.5

VSS+1.5

 

 

VDD-1.5

V

 

AGND = 0V

Signal Range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Voltage

VREF

VSS+1

 

VDD-1

VSS+1

 

VDD-1

VSS+ 1

 

 

VDD-1

V

 

 

Reference

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Range

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

Advanced Linear Devices

ALD500RAU/ALD500RA/ALD500R

Loading...
+ 8 hidden pages