ACTEL 40MX, 42MX User Manual

4 (1)

v6.0

40MX and 42MX FPGA Families

Features

High Capacity

Single-Chip ASIC Alternative

3,000 to 54,000 System Gates

Up to 2.5 kbits Configurable Dual-Port SRAM

Fast Wide-Decode Circuitry

Up to 202 User-Programmable I/O Pins

High Performance

5.6 ns Clock-to-Out

250 MHz Performance

5 ns Dual-Port SRAM Access

100 MHz FIFOs

7.5 ns 35-Bit Address Decode

HiRel Features

Commercial, Industrial, Automotive, and Military Temperature Plastic Packages

Commercial, Military Temperature, and MIL-STD-883 Ceramic Packages

QML Certification

Ceramic Devices Available to DSCC SMD

Ease of Integration

Mixed-Voltage Operation (5.0V or 3.3V for core and I/Os), with PCI-Compliant I/Os

Up to 100% Resource Utilization and 100% Pin Locking

Deterministic, User-Controllable Timing

Unique In-System Diagnostic and Verification Capability with Silicon Explorer II

Low Power Consumption

IEEE Standard 1149.1 (JTAG) Boundary Scan Testing

Product Profile

Device

A40MX02

A40MX04

A42MX09

A42MX16

A42MX24

A42MX36

 

 

 

 

 

 

 

Capacity

 

 

 

 

 

 

System Gates

3,000

6,000

14,000

24,000

36,000

54,000

SRAM Bits

2,560

 

 

 

 

 

 

 

Logic Modules

 

 

 

 

 

 

Sequential

348

624

954

1,230

Combinatorial

295

547

336

608

912

1,184

Decode

24

24

 

 

 

 

 

 

 

Clock-to-Out

9.5 ns

9.5 ns

5.6 ns

6.1 ns

6.1 ns

6.3 ns

 

 

 

 

 

 

 

SRAM Modules

 

 

 

 

 

 

(64x4 or 32x8)

10

 

 

 

 

 

 

 

Dedicated Flip-Flops

348

624

954

1,230

 

 

 

 

 

 

 

Maximum Flip-Flops

147

273

516

928

1,410

1,822

 

 

 

 

 

 

 

Clocks

1

1

2

2

2

6

 

 

 

 

 

 

 

User I/O (maximum)

57

69

104

140

176

202

 

 

 

 

 

 

 

PCI

Yes

Yes

 

 

 

 

 

 

 

Boundary Scan Test (BST)

Yes

Yes

 

 

 

 

 

 

 

Packages (by pin count)

 

 

 

 

 

 

PLCC

44, 68

44, 68, 84

84

84

84

PQFP

100

100

100, 160

100, 160, 208

160, 208

208, 240

VQFP

80

80

100

100

TQFP

176

176

176

CQFP

208, 256

PBGA

272

 

 

 

 

 

 

 

January 2004

i

© 2004 Actel Corporation

See the Actel website (www.actel.com) for the latest version of this datasheet.

40MX and 42MX FPGA Families

Ordering Information

A42MX16 _ 1

PQ

 

100

 

ES

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Application (Temperature Range)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blank =

Commercial (0 to +70˚C)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

=

Industrial (–40 to +85˚C)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

=

Military (–55 to +125˚C)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

=

MIL-STD-883

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

=

Automotive (–40 to +125˚C)

 

 

 

 

 

 

 

 

 

 

 

 

 

Package Lead Count

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Package Type

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PL

=

Plastic Leaded Chip Carrier

 

 

 

 

 

 

 

 

 

 

PQ

=

Plastic Quad Flat Pack

 

 

 

 

 

 

 

 

 

 

 

TQ

=

Thin (1.4 mm) Quad Flat Pack

 

 

 

 

 

 

 

 

 

 

VQ

=

Very Thin (1.0 mm) Quad Flat Pack

 

 

 

 

 

 

 

 

 

 

BG

=

Plastic Ball Grid Array

 

 

 

 

 

 

 

 

 

 

 

CQ

=

Ceramic Quad Flat Pack

 

 

 

 

 

 

 

 

Speed Grade

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blank =

Standard Speed

 

 

 

 

 

 

 

 

 

–1

=

Approximately 15% Faster than Standard

 

 

 

 

 

 

 

–2

=

Approximately 25% Faster than Standard

 

 

 

 

 

 

 

–3

=

Approximately 35% Faster than Standard

 

 

 

 

 

 

 

–F

=

Approximately 40% Slower than Standard

 

 

 

 

Part Number

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A40MX02

=

 

3,000 System Gates

 

 

 

 

 

 

A40MX04

=

 

6,000 System Gates

 

 

 

 

 

 

A42MX09

=

 

14,000 System Gates

 

 

 

 

 

 

A42MX16

=

 

24,000 System Gates

 

 

 

 

 

 

A42MX24

=

 

36,000 System Gates

 

 

 

 

 

 

A42MX36

=

 

54,000 System Gates

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Plastic Device Resources

 

 

 

 

 

 

User I/Os

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PLCC

PLCC

PLCC

PQFP

PQFP

PQFP

PQFP

VQFP

VQFP

TQFP

PBGA

Device

44-Pin

68-Pin

84-Pin

100-Pin

160-Pin

208-Pin

240-Pin

80-Pin

100-Pin

176-Pin

272-Pin

 

 

 

 

 

 

 

 

 

 

 

 

A40MX02

34

57

57

57

 

 

 

 

 

 

 

 

 

 

 

 

A40MX04

34

57

69

69

69

 

 

 

 

 

 

 

 

 

 

 

 

A42MX09

72

83

101

83

104

 

 

 

 

 

 

 

 

 

 

 

 

A42MX16

72

83

125

140

83

140

 

 

 

 

 

 

 

 

 

 

 

 

A42MX24

72

125

176

150

 

 

 

 

 

 

 

 

 

 

 

 

A42MX36

176

202

202

 

 

 

 

 

 

 

 

 

 

 

 

Note: Package Definitions

PLCC = Plastic Leaded Chip Carrier, PQFP = Plastic Quad Flat Pack, TQFP = Thin Quad Flat Pack, VQFP = Very Thin Quad Flat Pack, PBGA = Plastic Ball Grid Array

ii

v6.0

40MX and 42MX FPGA Families

Ceramic Device Resources

 

User I/Os

 

 

 

 

Device

CQFP 208-Pin

CQFP 256-Pin

 

 

 

A42MX36

176

202

 

 

 

Note: Package Definitions CQFP = Ceramic Quad Flat Pack

Temperature Grade Offerings

Package

A40MX02

A40MX04

A42MX09

A42MX16

A42MX24

A42MX36

 

 

 

 

 

 

 

PLCC 44

C, I, M

C, I, M

 

 

 

 

 

 

 

 

 

 

 

PLCC 68

C, I, A, M

C, I, M

 

 

 

 

 

 

 

 

 

 

 

PLCC 84

 

C, I, A, M

C, I, A, M

C, I, M

C, I, M

 

 

 

 

 

 

 

 

PQFP 100

C, I, A, M

C, I, A, M

C, I, A, M

C, I, M

 

 

 

 

 

 

 

 

 

PQFP 160

 

 

C, I, A, M

C, I, M

C, I, A, M

 

 

 

 

 

 

 

 

PQFP 208

 

 

 

C, I, A, M

C, I, A, M

C, I, A, M

 

 

 

 

 

 

 

PQFP 240

 

 

 

 

 

C, I, A, M

 

 

 

 

 

 

 

VQFP 80

C, I, A, M

C, I, A, M

 

 

 

 

 

 

 

 

 

 

 

VQFP 100

 

 

C, I, A, M

C, I, A, M

 

 

 

 

 

 

 

 

 

TQFP 176

 

 

C, I, A, M

C, I, A, M

C, I, A, M

 

 

 

 

 

 

 

 

PBGA 272

 

 

 

 

 

C, I, M

 

 

 

 

 

 

 

CQFP 208

 

 

 

 

 

C, M, B

 

 

 

 

 

 

 

CQFP 256

 

 

 

 

 

C, M, B

 

 

 

 

 

 

 

Note:

 

 

 

 

 

 

C = Commercial

I = Industrial

A = Automotive

M = Military

B = MIL-STD-883 Class B

Speed Grade Offerings

 

– F

Std

–1

–2

–3

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

 

 

 

B

 

 

 

 

 

 

 

 

 

 

 

Note: Refer to the 40MX and 42MX Automotive Family FPGAs datasheet for details on automotive-grade MX offerings.

Contact your local Actel representative for device availability.

v6.0

iii

40MX and 42MX FPGA Families

Table of Contents

40MX and 42MX FPGA Families

General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 MX Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1 Other Architectural Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8 Development Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-13 5.0V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14 5V TTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-15 3.3V Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-16 3.3V LVTTL Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-17 Mixed 5.0V/3.3V Operating Conditions (for 42MX Devices Only) . . . . . . . . . . . . . 1-18 Mixed 5.0V/3.3V Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-18 Output Drive Characteristics for 5.0V PCI Signaling . . . . . . . . . . . . . . . . . . . . . . . . 1-19 Output Drive Characteristics for 3.3V PCI Signaling . . . . . . . . . . . . . . . . . . . . . . . . 1-20 Junction Temperature (TJ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22 Package Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-22 Timing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-23 Parameter Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-25 Sequential Module Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-26 Sequential Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-27 Decode Module Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28 SRAM Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28 Dual-Port SRAM Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-28 Predictable Performance: Tight Delay Distributions . . . . . . . . . . . . . . . . . . . . . . . 1-30 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-30 Temperature and Voltage Derating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-31 PCI System Timing Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35 PCI Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-35 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-36 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-77

Package Pin Assignments

44-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

68-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

84-Pin PLCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

v6.0

v

40MX and 42MX FPGA Families

Table of Contents

100-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

160-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

208-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-13

240-Pin PQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-17

80-Pin VQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-20

100-Pin VQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-22

176-Pin TQFP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24

208-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-28

256-Pin CQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-31

272-Pin BGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-34

Datasheet Information

List of Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

Datasheet Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

vi

v6.0

40MX and 42MX FPGA Families

40MX and 42MX FPGA Families

General Description

Actel's 40MX and 42MX families offer a cost-effective design solution at 5V. The MX devices are single-chip solutions and provide high performance while shortening the system design and development cycle. MX devices can integrate and consolidate logic implemented in multiple PALs, CPLDs, and FPGAs. Example applications include high-speed controllers and address decoding, peripheral bus interfaces, DSP, and coprocessor functions.

The MX device architecture is based on Actel’s patented antifuse technology implemented in a 0.45µm triplemetal CMOS process. With capacities ranging from 3,000 to 54,000 system gates, the MX devices provide performance up to 250 MHz, are live on power-up and have one-fifth the standby power consumption of comparable FPGAs. Actel’s MX FPGAs provide up to 202 user I/Os and are available in a wide variety of packages and speed grades.

Actel’s A42MX24 and A42MX36 devices also feature MultiPlex I/Os, which support mixed-voltage systems, enable programmable PCI, deliver high-performance operation at both 5.0V and 3.3V, and provide a lowpower mode. The devices are fully compliant with the PCI Local Bus Specification (version 2.1). They deliver 200 MHz on-chip operation and 6.1 ns clock-to-output performance.

The 42MX24 and 42MX36 devices include system-level features such as IEEE Standard 1149.1 (JTAG) Boundary Scan Testing and fast wide-decode modules. In addition, the A42MX36 device offers dual-port SRAM for implementing fast FIFOs, LIFOs, and temporary data storage. The storage elements can efficiently address applications requiring wide datapath manipulation and can perform transformation functions such as those required for telecommunications, networking, and DSP.

All MX devices are fully tested over automotive and military temperature ranges. In addition, the largest member of the family, the A42MX36, is available in both CQ208 and CQ256 ceramic packages screened to MIL- STD-883 levels. For easy prototyping and conversion from plastic to ceramic, the CQ208 and PQ208 devices are pincompatible.

MX Architectural Overview

The MX devices are composed of fine-grained building blocks that enable fast, efficient logic designs. All devices within these families are composed of logic modules, I/O modules, routing resources and clock networks, which are the building blocks for fast logic designs. In addition, the A42MX36 device contains embedded dual-port SRAM modules, which are optimized for high-speed datapath functions such as FIFOs, LIFOs and scratchpad memory. A42MX24 and A42MX36 also contain widedecode modules.

Logic Modules

The 40MX logic module is an eight-input, one-output logic circuit designed to implement a wide range of logic functions with efficient use of interconnect routing resources (Figure 1-1).

The logic module can implement the four basic logic functions (NAND, AND, OR and NOR) in gates of two, three, or four inputs. The logic module can also implement a variety of D-latches, exclusivity functions, AND-ORs and OR-ANDs. No dedicated hard-wired latches or flip-flops are required in the array; latches and flipflops can be constructed from logic modules whenever required in the application.

Figure 1-140MX Logic Module

v6.0

1-1

40MX and 42MX FPGA Families

The 42MX devices contain three types of logic modules: combinatorial (C-modules), sequential (S-modules) and decode (D-modules). Figure 1-2 illustrates the combinatorial logic module. The S-module, shown in Figure 1-3, implements the same combinatorial logic function as the C-module while adding a sequential element. The sequential element can be configured as either a D-flip-flop or a transparent latch. The S-module register can be bypassed so that it implements purely combinatorial logic.

A0

B0

S0

D00

D01 Y

D10

D11

S1

A1

B1

Figure 1-242MX C-Module Implementation

D00

 

 

 

 

 

 

 

 

 

D00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D01

 

 

 

 

 

 

 

 

 

D01

 

 

 

 

 

 

 

 

D10

 

Y

 

D

 

Q

 

OUT

 

D10

 

Y

 

 

D

Q

 

OUT

S0

 

 

 

 

 

 

 

S0

 

 

 

 

 

D11

 

 

CLR

 

 

 

D11

 

GATE

 

 

 

 

 

 

 

 

 

 

 

 

S1

 

 

 

 

 

 

S1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Up to 7-Input Function Plus D-Type Flip-Flop with Clear

Up to 7-Input Function Plus Latch

 

 

D0

 

 

 

 

 

 

 

 

D00

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D01

 

Y

 

OUT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Y

 

 

D

Q

 

OUT

 

 

 

 

 

 

 

 

 

 

 

 

D10

S0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D1

 

GATE

 

 

 

 

 

D11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

CLR

 

 

 

 

 

S1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Up to 4-Input Function Plus Latch with Clear

Up to 8-Input Function (Same as C-Module)

 

Figure 1-342MX S-Module Implementation

1-2

v6.0

40MX and 42MX FPGA Families

A42MX24 and A42MX36 devices contain D-modules, which are arranged around the periphery of the device. D-modules contain wide-decode circuitry, providing a fast, wide-input AND function similar to that found in CPLD architectures (Figure 1-4). The D-module allows A42MX24 and A42MX36 devices to perform widedecode functions at speeds comparable to CPLDs and PALs. The output of the D-module has a programmable inverter for active HIGH or LOW assertion. The D-module output is hardwired to an output pin, and can also be fed back into the array to be incorporated into other logic.

Dual-Port SRAM Modules

The A42MX36 device contains dual-port SRAM modules that have been optimized for synchronous or asynchronous applications. The SRAM modules are arranged in 256-bit blocks that can be configured as 32x8 or 64x4. SRAM modules can be cascaded together to form memory spaces of user-definable width and depth. A block diagram of the A42MX36 dual-port SRAM block is shown in Figure 1-5.

The A42MX36 SRAM modules are true dual-port structures containing independent read and write ports. Each SRAM module contains six bits of read and write addressing (RDAD[5:0] and WRAD[5:0], respectively) for 64x4-bit blocks. When configured in byte mode, the

highest order address bits (RDAD5 and WRAD5) are not used. The read and write ports of the SRAM block contain independent clocks (RCLK and WCLK) with programmable polarities offering active HIGH or LOW implementation. The SRAM block contains eight data inputs (WD[7:0]), and eight outputs (RD[7:0]), which are connected to segmented vertical routing tracks.

The A42MX36 dual-port SRAM blocks provide an optimal solution for high-speed buffered applications requiring FIFO and LIFO queues. The ACTgen Macro Builder within Actel's Designer software provides capability to quickly design memory functions with the SRAM blocks. Unused SRAM blocks can be used to implement registers for other user logic within the design.

7 Inputs

Hard-Wire to I/O

Programmable

Inverter

Feedback to Array

Figure 1-4A42MX24 and A42MX36 D-Module

Implementation

WD[7:0] Latches

[7:0]

 

 

Write

SRAM Module

[5:0]

Latches

RDAD[5:0]

 

 

Read

 

 

 

Port

32 x 8 or 64 x 4

Port

 

 

WRAD[5:0]

[5:0]

Logic

(256 Bits)

Logic

 

 

 

 

 

Read

 

Latches

 

 

 

 

 

 

 

 

REN

 

 

 

 

 

Logic

MODE

Write

 

RD[7:0]

 

 

RCLK

BLKEN

 

 

 

 

 

 

 

 

WEN

Logic

 

 

 

 

 

 

 

 

 

 

 

WCLK

 

 

Routing Tracks

 

 

 

 

 

 

 

 

 

Figure 1-5A42MX36 Dual-Port SRAM Block

v6.0

1-3

40MX and 42MX FPGA Families

Routing Structure

The MX architecture uses vertical and horizontal routing tracks to interconnect the various logic and I/O modules. These routing tracks are metal interconnects that may be continuous or split into segments. Varying segment lengths allow the interconnect of over 90% of design tracks to occur with only two antifuse connections. Segments can be joined together at the ends using antifuses to increase their lengths up to the full length of the track. All interconnects can be accomplished with a maximum of four antifuses.

Horizontal Routing

Horizontal routing tracks span the whole row length or are divided into multiple segments and are located in between the rows of modules. Any segment that spans more than one-third of the row length is considered a long horizontal segment. A typical channel is shown in Figure 1-6. Within horizontal routing, dedicated routing tracks are used for global clock networks and for power and ground tie-off tracks. Non-dedicated tracks are used for signal nets.

Vertical Routing

Another set of routing tracks run vertically through the module. There are three types of vertical tracks: input, output, and long. Long tracks span the column length of the module, and can be divided into multiple segments. Each segment in an input track is dedicated to the input of a particular module; each segment in an output track is dedicated to the output of a particular module. Long segments are uncommitted and can be assigned during routing. Each output segment spans four channels (two above and two below), except near the top and bottom of the array, where edge effects occur. Long vertical tracks contain either one or two segments. An example of vertical routing tracks and segments is shown in Figure 1-6.

Antifuse Structures

An antifuse is a "normally open" structure. The use of antifuses to implement a programmable logic device results in highly testable structures as well as efficient programming algorithms. There are no pre-existing connections; temporary connections can be made using pass transistors. These temporary connections can isolate individual antifuses to be programmed and individual circuit structures to be tested, which can be done before and after programming. For instance, all metal tracks can be tested for continuity and shorts between adjacent tracks, and the functionality of all logic modules can be verified.

Segmented

 

Horizontal

Logic

Routing

Modules

 

Antifuses

Vertical Routing Tracks

Figure 1-6MX Routing Structure

Clock Networks

The 40MX devices have one global clock distribution network (CLK). A signal can be put on the CLK network by being routed through the CLKBUF buffer.

In 42MX devices, there are two low-skew, high-fanout clock distribution networks, referred to as CLKA and CLKB. Each network has a clock module (CLKMOD) that can select the source of the clock signal from any of the following (Figure 1-7 on page 1-5):

Externally from the CLKA pad, using CLKBUF buffer

Externally from the CLKB pad, using CLKBUF buffer

Internally from the CLKINTA input, using CLKINT buffer

Internally from the CLKINTB input, using CLKINT buffer

The clock modules are located in the top row of I/O modules. Clock drivers and a dedicated horizontal clock track are located in each horizontal routing channel.

Clock input pads in both 40MX and 42MX devices can also be used as normal I/Os, bypassing the clock networks.

The A42MX36 device has four additional register control resources, called quadrant clock networks (Figure 1-8 on page 1-5). Each quadrant clock provides a local, highfanout resource to the contiguous logic modules within its quadrant of the device. Quadrant clock signals can originate from specific I/O pins or from the internal array and can be used as a secondary register clock, register clear, or output enable.

1-4

v6.0

40MX and 42MX FPGA Families

 

CLKB

 

 

 

 

 

 

 

 

 

 

CLKINB

 

 

 

 

CLKA

 

 

 

 

 

 

 

 

 

CLKINA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From

 

 

 

 

 

 

 

 

 

S0

 

 

 

Pads

CLKMOD

 

 

 

Internal

 

 

 

 

 

 

S1

 

Signal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLKO(17)

 

Clock

 

 

 

 

 

 

 

CLKO(16)

 

 

 

 

 

 

Drivers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLKO(15)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLKO(2)

CLKO(1)

 

 

 

 

 

 

 

 

 

 

 

 

Clock Tracks

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-7Clock Networks of 42MX Devices

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QCLKA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QCLKC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quad

 

 

 

 

Quad

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

QCLKB

 

 

 

Clock

 

QCLK1

QCLK3

 

Clock

 

 

 

 

QCLKD

 

 

 

 

 

 

 

 

*QCLK1IN

 

 

 

Modul

 

 

 

 

Modul

 

 

 

*QCLK3IN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S0

S1

 

 

 

 

S1

S0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quad

 

 

 

 

Quad

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clock

 

QCLK2

QCLK4

 

Clock

 

 

 

 

 

*QCLK2IN

 

 

 

Modul

 

 

 

 

Modul

 

 

 

*QCLK4IN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S0

S1

 

 

 

 

S1

S0

 

 

 

 

 

Note: *QCLK1IN, QCLK2IN, QCLK3IN, and QCLK4IN are internally-generated signals.

Figure 1-8Quadrant Clock Network of A42MX36 Devices

v6.0

1-5

40MX and 42MX FPGA Families

MultiPlex I/O Modules

42MX devices feature Multiplex I/Os and support 5.0V, 3.3V, and mixed 3.3V/5.0V operations.

The MultiPlex I/O modules provide the interface between the device pins and the logic array. Figure 1-9 is a block diagram of the 42MX I/O module. A variety of user functions, determined by a library macro selection, can be implemented in the module. (Refer to the Antifuse Macro Library Guide for more information.) All 42MX I/O modules contain tristate buffers, with input and output latches that can be configured for input, output, or bidirectional operation.

All 42MX devices contain flexible I/O structures, where each output pin has a dedicated output-enable control (Figure 1-9). The I/O module can be used to latch input or output data, or both, providing fast set-up time. In addition, the Actel Designer software tools can build a D- type flip-flop using a C-module combined with an I/O module to register input and output signals. Refer to the

Antifuse Macro Library Guide for more details.

A42MX24 and A42MX36 devices also offer selectable PCI output drives, enabling 100% compliance with version 2.1 of the PCI specification. For low-power systems, all inputs and outputs are turned off to reduce current consumption to below 500µA.

To achieve 5.0V or 3.3V PCI-compliant output drives on A42MX24 and A42MX36 devices, a chip-wide PCI fuse is programmed via the Device Selection Wizard in the Designer software (Figure 1-10). When the PCI fuse is not programmed, the output drive is standard.

Actel's Designer software development tools provide a design library of I/O macro functions that can implement all I/O configurations supported by the MX FPGAs.

 

 

EN

 

Q

D

From Array

 

PAD

 

 

 

G/CLK*

To Array

Q

D

 

G/CLK*

Note: *Can be configured as a Latch or D Flip-Flop (Using C-Module)

Figure 1-942MX I/O Module

STD

Signal

Output

PCI

Drive

PCI Enable

Fuse

Figure 1-10PCI Output Structure of A42MX24 and

A42MX36 Devices

Other Architectural Features

Performance

MX devices can operate with internal clock frequencies of 250 MHz, enabling fast execution of complex logic functions. MX devices are live on power-up and do not require auxiliary configuration devices and thus are an optimal platform to integrate the functionality contained in multiple programmable logic devices. In addition, designs that previously would have required a gate array to meet performance can be integrated into an MX device with improvements in cost and time-to- market. Using timing-driven place-and-route (TDPR) tools, designers can achieve highly deterministic device performance.

User Security

The Actel FuseLock provides robust security against design theft. Special security fuses are hidden in the fabric of the device and prevent unauthorized users from accessing the programming and/or probe interfaces. It is virtually impossible to identify or bypass these fuses without damaging the device, making Actel antifuse FPGAs immune to both invasive and noninvasive attacks.

Special security fuses in 40MX devices include the Probe Fuse and Program Fuse. The former disables the probing circuitry while the latter prohibits further programming of all fuses, including the Probe Fuse. In 42MX devices, there is the Security Fuse which, when programmed, both disables the probing circuitry and prohibits further programming of the device.

Look for this symbol to ensure your valuable IP is secure.

For more information, refer to Actel's Implementation of Security in Actel Antifuse FPGAs application note.

1-6

v6.0

40MX and 42MX FPGA Families

nonprogrammed), Silicon Sculptor II also allows self-test to verify its own hardware extensively.

The procedure for programming an MX device using Silicon Sculptor II is as follows:

ue

Figure 1-11 • Fuselock

Programming

Device programming is supported through the Silicon Sculptor series of programmers. Silicon Sculptor II is a compact, robust, single-site and multi-site device programmer for the PC. With standalone software, Silicon Sculptor II is designed to allow concurrent programming of multiple units from the same PC.

Silicon Sculptor II programs devices independently to achieve the fastest programming times possible. After being programmed, each fuse is verified to insure that it has been programmed correctly. Furthermore, at the end of programming, there are integrity tests that are run to ensure no extra fuses have been programmed. Not only

does it

test fuses (both programmed and

Table 1 •

Voltage Support of MX Devices

1.Load the .AFM file

2.Select the device to be programmed

3.Begin programming

When the design is ready to go to production, Actel offers device volume-programming services either through distribution partners or via In-House Programming from the factory.

For more details on programming MX devices, please refer to the Programming Antifuse Devices and the Silicon Sculptor II user's guides.

Power Supply

MX devices are designed to operate in both 5.0V and 3.3V environments. In particular, 42MX devices can operate in mixed 5.0V/3.3V systems. Table 1 describes the voltage support of MX devices.

Device

VCC

VCCA

VCCI

Maximum Input Tolerance

Nominal Output Voltage

40MX

5.0V

5.5V

5.0V

 

 

 

 

 

 

 

3.3V

3.6V

3.3V

 

 

 

 

 

 

42MX

5.0V

5.0V

5.5V

5.0V

 

 

 

 

 

 

 

3.3V

3.3V

3.6V

3.3V

 

 

 

 

 

 

 

5.0V

3.3V

5.5V

3.3V

 

 

 

 

 

 

Power-Up/Down in Mixed-Voltage Mode

When powering up 42MX in mixed voltage mode

(VCCA = 5.0V and VCCI = 3.3V), VCCA must be greater than or equal to VCCI throughout the power-up sequence. If

VCCI exceeds VCCA during power up, either the I/Os' input protection junction on the I/Os will be forward-biased or the I/Os will be at logical HIGH, and ICC rises to high levels. For power-down, any sequence with VCCA and VCCI can be implemented.

Low Power Mode

42MX devices have been designed with a Low Power Mode. This feature, activated with setting the special LP pin to HIGH for a period longer than 800 ns, is particularly useful for battery-operated systems where battery life is a primary concern. In this mode, the core of the device is turned off and the device consumes minimal power with low standby current. In addition, all input buffers are turned off, and all outputs and bidirectional buffers are tristated. Since the core of the device is turned off, the states of the registers are lost. The device must be re-initialized when exiting Low Power Mode. I/ Os can be driven during LP mode, and clock pins should be driven HIGH or LOW and should not float to avoid drawing current. To exit LP mode, the LP pin must be pulled LOW for over 200 µs to allow for charge pumps to power up, and device initialization will begin.

v6.0

1-7

40MX and 42MX FPGA Families

Power Dissipation

The general power consumption of MX devices is made up of static and dynamic power and can be expressed with the following equation:

General Power Equation

P = [ICCstandby + ICCactive] * VCCI + IOL* VOL* N

+ IOH * (VCCI – VOH) * M

where:

ICCstandby is the current flowing when no inputs or outputs are changing.

ICCactive is the current flowing due to CMOS switching.

IOL, IOH are TTL sink/source currents. VOL, VOH are TTL level output voltages.

N equals the number of outputs driving TTL loads to VOL.

M equals the number of outputs driving TTL loads to VOH.

Accurate values for N and M are difficult to determine because they depend on the family type, on design details, and on the system I/O. The power can be divided into two components: static and active.

Static Power Component

The static power due to standby current is typically a small component of the overall power consumption. Standby power is calculated for commercial, worst-case conditions. The static power dissipation by TTL loads depends on the number of outputs driving, and on the DC load current. For instance, a 32-bit bus sinking 4mA at 0.33V will generate 42mW with all outputs driving LOW, and 140mW with all outputs driving HIGH. The actual dissipation will average somewhere in between, as I/Os switch states with time.

Active Power Component

Power dissipation in CMOS devices is usually dominated by the dynamic power dissipation. Dynamic power consumption is frequency-dependent and is a function of the logic and the external I/O. Active power dissipation results from charging internal chip capacitances of the interconnect, unprogrammed antifuses, module inputs, and module outputs, plus external capacitances due to PC board traces and load device inputs. An additional component of the active power dissipation is the totem pole current in the CMOS transistor pairs. The net effect can be associated with an equivalent capacitance that can be combined with frequency and voltage to represent active power dissipation.

The power dissipated by a CMOS circuit can be expressed by the equation:

Power (µW) = CEQ * VCCA2 * F(1)

where:

CEQ =Equivalent capacitance expressed in picofarads (pF) VCCA =Power supply in volts (V)

F =Switching frequency in megahertz (MHz)

Equivalent Capacitance

Equivalent capacitance is calculated by measuring ICCactive at a specified frequency and voltage for each circuit component of interest. Measurements have been made over a range of frequencies at a fixed value of VCC. Equivalent capacitance is frequency-independent, so the results can be used over a wide range of operating conditions. Equivalent capacitance values are shown below.

CEQ Values for Actel MX FPGAs

Modules (CEQM)3.5 Input Buffers (CEQI)6.9

Output Buffers (CEQO)18.2

Routed Array Clock Buffer Loads (CEQCR)1.4

To calculate the active power dissipated from the complete design, the switching frequency of each part of the logic must be known. The equation below shows a piece-wise linear summation over all components.

Power = VCCA2 * [(m x CEQM * fm)Modules + (n * CEQI * fn)Inputs + (p * (CEQO + CL) *

fp)outputs +

0.5 * (q1 * CEQCR * fq1)routed_Clk1 + (r1 *

fq1)routed_Clk1 +

0.5 * (q2 * CEQCR * fq2)routed_Clk2 + (r2 * fq2)routed_Clk2 (2)

where:

m= Number of logic modules switching at frequency fm

n= Number of input buffers switching at frequency fn

p= Number of output buffers switching at frequency fp

q1

= Number of clock loads on the first routed array

 

 

clock

q2

=

Number of clock loads on the second routed

 

 

array clock

r1

=

Fixed capacitance due to first routed array

 

 

clock

r2

=

Fixed capacitance due to second routed array

 

 

clock

1-8

v6.0

CEQM =

Equivalent capacitance of logic modules in pF

CEQI

=

Equivalent capacitance of input buffers in pF

CEQO =

Equivalent capacitance of output buffers in pF

CEQCR =

Equivalent capacitance of routed array clock in

 

 

pF

 

 

CL

=

Output load capacitance in pF

 

fm

=

Average logic module switching rate in MHz

fn

=

Average input buffer switching rate in MHz

fp

=

Average output buffer switching rate in MHz

fq1

=

Average first routed array clock rate in MHz

fq2

=

Average second routed array clock rate in MHz

Fixed Capacitance Values for MX FPGAs (pF)

 

 

 

r1

r2

Device Type

routed_Clk1

routed_Clk2

A40MX02

41.4

N/A

A40MX04

68.6

N/A

A42MX09

118

118

A42MX16

165

165

A42MX24

185

185

A42MX36

220

220

Test Circuitry and Silicon Explorer II Probe

MX devices contain probing circuitry that provides builtin access to every node in a design, via the use of Silicon Explorer II. Silicon Explorer II is an integrated hardware and software solution that, in conjunction with the Designer software, allow users to examine any of the internal nets of the device while it is operating in a prototyping or a production system. The user can probe into an MX device without changing the placement and routing of the design and without using any additional

40MX and 42MX FPGA Families

resources. Silicon Explorer II's noninvasive method does not alter timing or loading effects, thus shortening the debug cycle and providing a true representation of the device under actual functional situations.

Silicon Explorer II samples data at 100 MHz (asynchronous) or 66 MHz (synchronous). Silicon Explorer II attaches to a PC's standard COM port, turning the PC into a fully functional 18-channel logic analyzer. Silicon Explorer II allows designers to complete the design verification process at their desks and reduces verification time from several hours per cycle to a few seconds.

Silicon Explorer II is used to control the MODE, DCLK, SDI and SDO pins in MX devices to select the desired nets for debugging. The user simply assigns the selected internal nets in the Silicon Explorer II software to the PRA/PRB output pins for observation. Probing functionality is activated when the MODE pin is held HIGH.

Figure 1-12 illustrates the interconnection between Silicon Explorer II and 40MX devices, while Figure 1-13 on page 1-10 illustrates the interconnection between Silicon Explorer II and 42MX devices

To allow for probing capabilities, the security fuses must not be programmed. (Refer to <zBlue>“User Security” section on page 6 for the security fuses of 40MX and 42MX devices). Table 2 on page 1-10 summarizes the possible device configurations for probing.

PRA and PRB pins are dual-purpose pins. When the "Reserve Probe Pin" is checked in the Designer software, PRA and PRB pins are reserved as dedicated outputs for probing. If PRA and PRB pins are required as user I/Os to achieve successful layout and "Reserve Probe Pin" is checked, the layout tool will override the option and place user I/Os on PRA and PRB pins.

 

 

16 Logic Analyzer Channels

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serial Connection

 

 

 

 

 

 

 

 

MODE

 

 

 

 

40MX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to Windows PC

Silicon

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Explorer II

 

 

 

 

DCLK

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SDO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PRB

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-12Silicon Explorer II Setup with 40MX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v6.0

1-9

40MX and 42MX FPGA Families

16 Logic Analyzer Channels

 

Serial Connection

42MX

MODE

to Windows PC

Silicon

SDI

Explorer II

DCLK

 

SDO

PRA

PRB

Figure 1-13Silicon Explorer II Setup with 42MX

Table 2 •

Device Configuration Options for Probe Capability

 

 

 

 

 

 

 

Security Fuse(s)

 

 

PRA, PRB1

SDI, SDO, DCLK1

Programmed

MODE

 

No

 

LOW

 

User I/Os2

User I/Os2

No

 

HIGH

 

Probe Circuit Outputs

Probe Circuit Inputs

 

 

 

 

 

 

Yes

 

 

Probe Circuit Secured

Probe Circuit Secured

 

 

 

 

 

 

Notes:

 

 

 

 

 

1.Avoid using SDI, SDO, DCLK, PRA and PRB pins as input or bidirectional ports. Since these pins are active during probing, input signals will not pass through these pins and may cause contention.

2.If no user signal is assigned to these pins, they will behave as unused I/Os in this mode. See the <zBlue>“Pin Descriptions” section on page 77 for information on unused I/O pins.

Design Consideration

It is recommended to use a series 70Ω termination resistor on every probe connector (SDI, SDO, MODE, DCLK, PRA and PRB). The 70Ω series termination is used to prevent data transmission corruption during probing and reading back the checksum.

IEEE Standard 1149.1 Boundary Scan Test

(BST) Circuitry

42MX24 and 42MX36 devices are compatible with IEEE Standard 1149.1 (informally known as Joint Testing Action Group Standard or JTAG), which defines a set of hardware architecture and mechanisms for cost-effective board-level testing. The basic MX boundary-scan logic circuit is composed of the TAP (test access port), TAP controller, test data registers and instruction register (Figure 1-14 on page 1-11). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/ PRELOAD and BYPASS) and some optional instructions. Table 3 on page 1-11 describes the ports that control JTAG testing, while Table 4 on page 1-11 describes the test instructions supported by these MX devices.

Each test section is accessed through the TAP, which has four associated pins: TCK (test clock input), TDI and TDO (test data input and output), and TMS (test mode selector).

The TAP controller is a four-bit state machine. The '1's and '0's represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles.

42MX24 and 42MX36 devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (lowest significant byte (LSB), ID number, part number and version). The boundary-scan register observes and controls the state of each I/O pin.

1-10

v6.0

Each I/O cell has three boundary-scan register cells, each with a serial-in, serial-out, parallel-in, and parallel-out pin. The serial pins are used to serially connect all the boundary-scan register cells in a device into a boundaryscan register chain, which starts at the TDI pin and ends

40MX and 42MX FPGA Families

at the TDO pin. The parallel ports are connected to the internal core logic tile and the input, output and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Boundary Scan Register

 

 

Output

 

 

TDO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MUX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bypass

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JTAG

 

 

 

 

Control Logic

 

 

 

Register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TAP Controller

 

Instruction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TCK

 

 

 

 

 

 

Decode

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

JTAG

 

 

 

Instruction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDI

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Register

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1442MX IEEE 1149.1 Boundary Scan Circuitry

 

 

 

 

 

 

 

Table 3 •

Test Access Port Descriptions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Port

 

 

 

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TMS

(Test

 

Mode

Serial input for the test logic control bits. Data is captured on the rising edge of the test logic clock (TCK).

Select)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TCK (Test Clock Input)

Dedicated test logic clock used serially to shift test instruction, test data, and control inputs on the rising edge

 

 

 

 

of the clock, and serially to shift the output data on the falling edge of the clock. The maximum clock frequency

 

 

 

 

for TCK is 20 MHz.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDI (Test Data Input)

Serial input for instruction and test data. Data is captured on the rising edge of the test logic clock.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TDO

(Test

Data

Serial output for test instruction and data from the test logic. TDO is set to an Inactive Drive state (high

Output)

 

 

 

impedance) when data scanning is not in progress.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 •

Supported BST Public Instructions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instruction

 

 

 

IR Code (IR2.IR0)

Instruction Type

 

 

 

Description

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXTEST

 

 

 

000

 

 

 

 

 

Mandatory

Allows the external circuitry and board-level interconnections to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

be tested by forcing a test pattern at the output pins and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

capturing test results at the input pins.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAMPLE/PRELOAD

001

 

 

 

 

 

Mandatory

Allows a snapshot of the signals at the device pins to be

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

captured and examined during operation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

HIGH Z

 

 

 

101

 

 

 

 

 

 

Optional

Tristates all I/Os to allow external signals to drive pins. Please

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

refer to the IEEE Standard 1149.1 specification.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CLAMP

 

 

 

110

 

 

 

 

 

 

Optional

Allows state of signals driven from component pins to be

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

determined from the Boundary-Scan Register. Please refer to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the IEEE Standard 1149.1 specification for details.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BYPASS

 

 

 

111

 

 

 

 

 

Mandatory

Enables the bypass register between the TDI and TDO pins. The

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

test data passes through the selected device to adjacent devices

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in the test chain.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v6.0

1-11

40MX and 42MX FPGA Families

JTAG Mode Activation

The JTAG test logic circuit is activated in the Designer software by selecting Tools -> Device Selection. This brings up the Device Selection dialog box as shown in Figure 1-15. The JTAG test logic circuit can be enabled by clicking the "Reserve JTAG Pins" check box. Table 5 explains the pins' behavior in either mode.

 

 

Figure 1-15Device Selection Wizard

 

Table 5 •

Boundary Scan Pin Configuration and Functionality

 

 

 

 

 

Reserve JTAG

Checked

 

Unchecked

 

 

 

 

 

TCK

 

BST input; must be terminated to logical HIGH or LOW to avoid floating

 

User I/O

 

 

 

 

 

TDI, TMS

 

BST input; may float or be tied to HIGH

 

User I/O

 

 

 

 

 

TDO

 

BST output; may float or be connected to TDI of another device

 

User I/O

 

 

 

 

 

TRST Pin and TAP Controller Reset

An active reset (TRST) pin is not supported; however, MX devices contain power-on circuitry that resets the boundary scan circuitry upon power-up. Also, the TMS pin is equipped with an internal pull-up resistor. This allows the TAP controller to remain in or return to the Test-Logic-Reset state when there is no input or when a logical 1 is on the TMS pin. To reset the controller, TMS must be HIGH for at least five TCK cycles.

Boundary Scan Description Language

(BSDL) File

Conforming to the IEEE Standard 1149.1 requires that the operation of the various JTAG components be documented. The BSDL file provides the standard format to describe the JTAG components that can be used by automatic test equipment software. The file includes the instructions that are supported, instruction bit pattern, and the boundary-scan chain order. For an in-depth discussion on BSDL files, please refer to Actel BSDL Files Format Description application note.

Actel BSDL files are grouped into two categories - generic and device-specific. The generic files assign all user I/Os as inouts. Device-specific files assign user I/Os as inputs, outputs or inouts.

Generic files for MX devices are available on Actel's website at http://www.actel.com/techdocs/models/bsdl.html.

1-12

v6.0

Development Tool Support

The MX family of FPGAs is fully supported by both Actel's Libero™ Integrated Design Environment and Designer FPGA Development software. Actel Libero IDE is a design management environment that streamlines the design flow. Libero IDE provides an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment. Libero IDE includes Synplify® for Actel from Synplicity®, ViewDraw for Actel from Mentor Graphics, ModelSim™ HDL Simulator from Mentor Graphics®, WaveFormer Lite™ from SynaptiCAD™, and Designer software from Actel. Refer to the Libero IDE flow (located on Actel’s website) diagram for more information.

Actel's Designer software is a place-and-route tool and provides a comprehensive suite of backend support tools for FPGA development. The Designer software includes timing-driven place-and-route, and a world-class integrated static timing analyzer and constraints editor. With the Designer software, a user can lock his/her design pins before layout while minimally impacting the results of place-and-route. Additionally, the backannotation flow is compatible with all the major simulators and the simulation results can be cross-probed with Silicon Explorer II, Actel’s integrated verification and logic analysis tool. Another tool included in the Designer software is the ACTgen macro builder, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design. Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

Actel's Designer software is compatible with the most popular FPGA design entry and verification tools from companies such as Mentor Graphics, Synplicity, Synopsys, and Cadence Design Systems. The Designer software is available for both the Windows and UNIX operating systems.

40MX and 42MX FPGA Families

Related Documents

Application Notes

Actel BSDL Files Format Description

www.actel.com/documents/BSDLformat_AN.pdf

Programming Antifuse Devices

http://www.actel.com/documents/

AntifuseProgram_AN.pdf

Actel's Implementation of Security in Actel Antifuse

FPGAs

www.actel.com/documents/Antifuse_Security_AN.pdf

User’s Guides and Manuals

Antifuse Macro Library Guide

www.actel.com/documents/libguide_UG.pdf

Silicon Sculptor II

www.actel.com/techdocs/manuals/default.asp#programmers

Miscellaneous

Libero IDE Flow Diagram

www.actel.com/products/tools/libero/flow.html

v6.0

1-13

40MX and 42MX FPGA Families

5.0V Operating Conditions

Table 6 •

Absolute Maximum Ratings for 40MX Devices*

 

 

 

 

 

 

 

Symbol

 

Parameter

Limits

Units

 

 

 

 

 

VCC

 

DC Supply Voltage

–0.5 to +7.0

V

VI

 

Input Voltage

–0.5 to VCC+0.5

V

VO

 

Output Voltage

–0.5 to VCC+0.5

V

tSTG

 

Storage Temperature

–65 to +150

°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 7 •

Absolute Maximum Ratings for 42MX Devices*

 

 

 

 

 

 

 

Symbol

 

Parameter

Limits

Units

 

 

 

 

 

VCCI

 

DC Supply Voltage for I/Os

–0.5 to +7.0

V

VCCA

 

DC Supply Voltage for Array

–0.5 to +7.0

V

VI

 

Input Voltage

–0.5 to VCCI+0.5

V

VO

 

Output Voltage

–0.5 to VCCI+0.5

V

tSTG

 

Storage Temperature

–65 to +150

°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 8 •

Recommended Operating Conditions

 

 

 

 

 

 

 

 

 

 

Parameter

 

Commercial

 

Industrial

Military

Units

 

 

 

 

 

 

Temperature Range*

0 to +70

 

-40 to +85

–55 to +125

°C

 

 

 

 

 

 

 

VCC (40MX)

 

4.75 to 5.25

 

4.5 to 5.5

4.5 to 5.5

V

VCCA (42MX)

 

4.75 to 5.25

 

4.5 to 5.5

4.5 to 5.5

V

VCCI (42MX)

 

4.75 to 5.25

 

4.5 to 5.5

4.5 to 5.5

V

Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades.

1-14

v6.0

40MX and 42MX FPGA Families

5V TTL Electrical Specifications

Table 9 •

5V TTL Electrical Specifications

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Commercial

Commercial -F

Industrial

Military

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

Min.

Max.

Min.

Max.

Min.

Max.

Min.

Max.

Units

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

IOH = -10mA

2.4

 

2.4

 

 

 

 

 

V

VOH

 

 

 

 

 

 

 

 

 

IOH = -4mA

 

 

 

 

3.7

 

3.7

 

V

V 1

 

I

OL

= 10mA

 

0.5

 

0.5

 

 

 

 

V

OL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IOL = 6mA

 

 

 

 

 

0.4

 

0.4

V

VIL

 

 

 

 

-0.3

0.8

-0.3

0.8

-0.3

0.8

-0.3

0.8

V

VIH (40MX)

 

 

 

 

2.0

VCC+0.3

2.0

VCC+0.3

2.0

VCC+0.3

2.0

VCC+0.3

V

VIH (42MX)

 

 

 

 

2.0

VCCI+0.3

2.0

VCCI+0.3

2.0

VCCI+0.3

2.0

VCCI+0.3

V

IIL

 

 

VIN = 0.5V

 

-10

 

-10

 

-10

 

-10

µA

IIH

 

 

VIN = 2.7V

 

-10

 

-10

 

-10

 

-10

µA

Input

Transition

 

 

 

 

500

 

500

 

500

 

500

ns

Time, TR and TF

 

 

 

 

 

 

 

 

 

 

 

 

CIO I/O Capacitance

 

 

 

 

10

 

10

 

10

 

10

pF

Standby

Current,

A40MX02,

 

3

 

25

 

10

 

25

mA

2

 

 

A40MX04

 

 

 

 

 

 

 

 

 

ICC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A42MX09

 

5

 

25

 

25

 

25

mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A42MX16

 

6

 

25

 

25

 

25

mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A42MX24,

 

20

 

25

 

25

 

25

mA

 

 

 

A42MX36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low-Power

Mode

42MX devices

 

0.5

 

ICC - 5.0

 

ICC - 5.0

 

ICC - 5.0

mA

Standby Current

 

 

only

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IIO, I/O source sink Can be derived from the IBIS model (http://www.actel.com/techdocs/models/ibis.html) current

Notes:

1.Only one output tested at a time. VCC/VCCI = min.

2.All outputs unloaded. All inputs = VCC/VCCI or GND.

v6.0

1-15

40MX and 42MX FPGA Families

3.3V Operating Conditions

Table 10 •

Absolute Maximum Ratings for 40MX Devices*

 

 

 

 

 

 

 

Symbol

 

Parameter

Limits

Units

 

 

 

 

 

VCC

 

DC Supply Voltage

–0.5 to +7.0

V

VI

 

Input Voltage

–0.5 to VCC+0.5

V

VO

 

Output Voltage

–0.5 to VCC+0.5

V

tSTG

 

Storage Temperature

–65 to +150

°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 11 •

Absolute Maximum Ratings for 42MX Devices*

 

 

 

 

 

 

 

Symbol

 

Parameter

Limits

Units

 

 

 

 

 

VCCI

 

DC Supply Voltage for I/Os

–0.5 to +7.0

V

VCCA

 

DC Supply Voltage for Array

–0.5 to +7.0

V

VI

 

Input Voltage

–0.5 to VCCI+0.5

V

VO

 

Output Voltage

–0.5 to VCCI+0.5

V

tSTG

 

Storage Temperature

–65 to +150

°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 12 • Recommended Operating Conditions

Parameter

Commercial

Industrial

Military

Units

 

 

 

 

 

Temperature Range*

0 to +70

–40 to +85

–55 to +125

°C

 

 

 

 

 

VCC (40MX)

3.0 to 3.6

3.0 to 3.6

3.0 to 3.6

V

VCCA (42MX)

3.0 to 3.6

3.0 to 3.6

3.0 to 3.6

V

VCCI (42MX)

3.0 to 3.6

3.0 to 3.6

3.0 to 3.6

V

Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades.

1-16

v6.0

40MX and 42MX FPGA Families

3.3V LVTTL Electrical Specifications

Table 13 • 3.3V LVTTL Electrical Specifications

 

 

 

Commercial

Commercial -F

Industrial

Military

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

Min.

Max.

Min.

Max.

Min.

Max.

Min.

Max.

Units

 

 

 

 

 

 

 

 

 

 

 

 

1

 

IOH = –4mA

2.15

 

2.15

 

2.4

 

2.4

 

V

VOH

 

 

 

 

 

V 1

 

I = 6mA

 

0.4

 

0.4

 

0.48

 

0.48

V

OL

 

OL

 

 

 

 

 

 

 

 

 

VIL

 

 

–0.3

0.8

–0.3

0.8

–0.3

0.8

–0.3

0.8

V

VIH (40MX)

 

 

2.0

VCC+0.3

2.0

VCC+0.3

2.0

VCC+0.3

2.0

VCC+0.3

V

VIH (42MX)

 

 

2.0

VCCI+0.3

2.0

VCCI+0.3

2.0

VCCI+0.3

2.0

VCCI+0.3

V

IIL

 

 

 

–10

 

–10

 

–10

 

–10

µA

IIH

 

 

 

–10

 

–10

 

–10

 

–10

µA

Input Transition

Time,

 

 

500

 

500

 

500

 

500

ns

TR and TF

 

 

 

 

 

 

 

 

 

 

 

CIO I/O Capacitance

 

 

10

 

10

 

10

 

10

pF

 

2

A40MX02,

 

3

 

25

 

10

 

25

mA

Standby Current, ICC

 

 

 

 

 

 

A40MX04

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A42MX09

 

5

 

25

 

25

 

25

mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A42MX16

 

6

 

25

 

25

 

25

mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A42MX24,

 

15

 

25

 

25

 

25

mA

 

 

A42MX36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Low-Power

Mode

42MX

 

0.5

 

ICC - 5.0

 

ICC - 5.0

 

ICC - 5.0

mA

Standby Current

 

devices only

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IIO, I/O source sink

Can be derived from the IBIS model (http://www.actel.com/techdocs/models/ibis.html)

 

 

current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes:

 

 

 

 

 

 

 

 

 

 

 

1.Only one output tested at a time. VCC/VCCI = min.

2.All outputs unloaded. All inputs = VCC/VCCI or GND.

v6.0

1-17

40MX and 42MX FPGA Families

Mixed 5.0V/3.3V Operating Conditions (for 42MX Devices Only)

Table 14 •

Absolute Maximum Ratings*

 

 

 

 

 

 

 

Symbol

 

Parameter

Limits

Units

 

 

 

 

 

VCCI

 

DC Supply Voltage for I/Os

–0.5 to +7.0

V

VCCA

 

DC Supply Voltage for Array

–0.5 to +7.0

V

VI

 

Input Voltage

–0.5 to VCCI+0.5

V

VO

 

Output Voltage

–0.5 to VCCI+0.5

V

tSTG

 

Storage Temperature

–65 to +150

°C

Note: *Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the Recommended Operating Conditions.

Table 15 • Recommended Operating Conditions

Parameter

Commercial

Industrial

Military

Units

 

 

 

 

 

Temperature Range*

0 to +70

-40 to +85

–55 to +125

°C

 

 

 

 

 

VCCA

4.75 to 5.25

4.5 to 5.5

4.5 to 5.5

V

VCCI

3.14 to 3.47

3.0 to 3.6

3.0 to 3.6

V

Note: *Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades.

Mixed 5.0V/3.3V Electrical Specifications

Table 16 • Mixed 5.0V/3.3V Electrical Specifications

 

 

Commercial

Commercial '-F

'Industrial

Military

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Min.

Max.

Min.

Max.

Min.

Max.

Min.

Max.

Units

 

 

 

 

 

 

 

 

 

 

 

1

IOH = –10mA

2.4

 

2.4

 

 

 

 

 

V

VOH

 

 

 

 

 

 

 

IOH = –4mA

 

 

 

 

3.7

 

3.7

 

V

V 1

I = 10mA

 

0.5

 

0.5

 

 

 

 

V

OL

OL

 

 

 

 

 

 

 

 

 

 

IOL = 6mA

 

 

 

 

 

0.4

 

0.4

V

VIL

 

–0.3

0.8

–0.3

0.8

–0.3

0.8

–0.3

0.8

V

VIH

 

2.0

VCCI+0.3

2.0

VCCI+0.3

2.0

VCCI+0.3

2.0

VCCI+0.3

V

IL

VIN = 0.5V

 

–10

 

–10

 

–10

 

–10

µA

IH

VIN = 2.7V

 

–10

 

–10

 

–10

 

–10

µA

Input Transition Time, TR and TF

 

 

500

 

500

 

500

 

500

ns

CIO I/O Capacitance

 

 

10

 

10

 

10

 

10

pF

2

A42MX09

 

5

 

25

 

25

 

25

mA

Standby Current, ICC

 

 

 

 

 

A42MX16

 

6

 

25

 

25

 

25

mA

 

 

 

 

 

 

 

 

 

 

 

 

A42MX24, A42MX36

 

20

 

25

 

25

 

25

mA

 

 

 

 

 

 

 

 

 

 

 

Low-Power Mode Standby Current

 

 

0.5

 

ICC - 5.0

 

ICC - 5.0

 

ICC - 5.0

mA

IIO I/O source sink current

Can be derived from the IBIS model (http://www.actel.com/techdocs/models/ibis.html)

 

Notes:

 

 

 

 

 

 

 

 

 

 

1.Only one output tested at a time. VCCI = min.

2.All outputs unloaded. All inputs = VCCI or GND.

1-18

v6.0

40MX and 42MX FPGA Families

Output Drive Characteristics for 5.0V PCI Signaling

MX PCI device I/O drivers were designed specifically for high-performance PCI systems. Figure 1-16 on page 1-21 shows the typical output drive characteristics of the MX devices. MX output drivers are compliant with the PCI Local Bus Specification.

Table 17 •

DC Specification (5.0V PCI Signaling)1

 

 

 

 

 

 

 

 

 

 

PCI

 

 

MX

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Condition

Min.

 

Max.

Min.

 

Max.

Units

 

 

 

 

 

 

 

 

 

 

V

Supply Voltage for I/Os

 

4.75

 

5.25

4.75

 

5.252

V

CCI

 

 

 

 

 

 

 

 

 

VIH

Input High Voltage

 

2.0

 

VCC + 0.5

2.0

 

VCCI + 0.3

V

VIL

Input Low Voltage

 

–0.5

 

0.8

–0.3

 

0.8

V

IIH

Input High Leakage Current

VIN = 2.7V

 

 

70

 

10

µA

IIL

Input Low Leakage Current

VIN=0.5V

 

 

–70

 

–10

µA

VOH

Output High Voltage

IOUT = –2 mA

2.4

 

 

 

 

 

V

 

 

IOUT = –6 mA

 

 

 

3.84

 

 

 

VOL

Output Low Voltage

IOUT = 3 mA,

 

 

0.55

 

0.33

V

 

 

6 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN

Input Pin Capacitance

 

 

 

10

 

10

pF

CCLK

CLK Pin Capacitance

 

5

 

12

 

10

pF

LPIN

Pin Inductance

 

 

 

20

 

< 8 nH3

nH

Notes:

1.PCI Local Bus Specification, Version 2.1, Section 4.2.1.1.

2.Maximum rating for VCCI –0.5V to 7.0V.

3.Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance.

Table 18 •

AC Specifications (5.0V PCI Signaling)*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCI

 

 

MX

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Condition

 

Min.

Max.

Min.

 

Max.

Units

 

 

 

 

 

 

 

 

 

 

ICL

Low Clamp Current

–5 < VIN –1

 

–25 + (VIN +1)

 

–60

 

–10

mA

 

 

 

 

/0.015

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slew (r)

Output Rise Slew Rate

0.4V to 2.4V load

 

1

5

1.8

 

2.8

V/ns

 

 

 

 

 

 

 

 

 

 

Slew (f)

Output Fall Slew Rate

2.4V to 0.4V load

 

1

5

2.8

 

4.3

V/ns

 

 

 

 

 

 

 

 

 

 

Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.1.2.

 

 

 

 

 

 

v6.0

1-19

40MX and 42MX FPGA Families

Output Drive Characteristics for 3.3V PCI Signaling

Table 19 •

DC Specification (3.3V PCI Signaling)1

 

 

 

 

 

 

 

 

 

 

PCI

 

 

MX

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Condition

Min.

 

Max.

Min.

 

Max.

Units

 

 

 

 

 

 

 

 

 

 

VCCI

Supply Voltage for I/Os

 

3.0

 

3.6

3.0

 

3.6

V

VIH

Input High Voltage

 

0.5

 

VCC + 0.5

0.5

 

VCCI + 0.3

V

VIL

Input Low Voltage

 

–0.5

 

0.8

–0.3

 

0.8

V

IIH

Input High Leakage Current

VIN = 2.7V

 

 

70

 

 

10

µA

IIL

Input Leakage Current

 

 

 

–70

 

 

–10

µA

VOH

Output High Voltage

IOUT = –2 mA

0.9

 

 

3.3

 

 

V

VOL

Output Low Voltage

IOUT = 3 mA,

 

 

0.1

 

 

0.1 VCCI

V

 

 

6 mA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CIN

Input Pin Capacitance

 

 

 

10

 

 

10

pF

CCLK

CLK Pin Capacitance

 

5

 

12

 

 

10

pF

LPIN

Pin Inductance

 

 

 

20

 

 

< 8 nH3

nH

Notes:

1.PCI Local Bus Specification, Version 2.1, Section 4.2.2.1.

2.Maximum rating for VCCI –0.5V to 7.0V.

3.Dependent upon the chosen package. PCI recommends QFP and BGA packaging to reduce pin inductance and capacitance.

Table 20 •

AC Specifications for (3.3V PCI Signaling)*

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PCI

 

 

MX

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Condition

 

Min.

Max.

Min.

 

Max.

Units

 

 

 

 

 

 

 

 

 

 

ICL

Low Clamp Current

–5 < VIN –1

 

–25 + (VIN +1)

 

–60

 

–10

mA

 

 

 

 

/0.015

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slew (r)

Output Rise Slew Rate

0.2V to 0.6V load

 

1

4

1.8

 

2.8

V/ns

 

 

 

 

 

 

 

 

 

 

Slew (f)

Output Fall Slew Rate

0.6V to 0.2V load

 

1

4

2.8

 

4.0

V/ns

 

 

 

 

 

 

 

 

 

 

Note: *PCI Local Bus Specification, Version 2.1, Section 4.2.2.2.

 

 

 

 

 

 

1-20

v6.0

ACTEL 40MX, 42MX User Manual

40MX and 42MX FPGA Families

 

0.50

 

 

 

 

 

 

 

0.45

 

 

 

 

 

 

 

0.40

 

PCI I OL Maximum

 

 

 

 

 

 

 

 

 

 

 

 

0.35

 

 

 

 

 

 

 

0.30

 

 

 

 

 

 

 

0.25

 

 

 

 

 

 

 

0.20

 

MX PCI IOL

 

 

 

 

 

 

 

 

 

 

 

(A)

0.15

 

 

 

 

 

 

 

 

 

 

 

 

 

Current

0.10

 

 

 

PCI I OL Minimum

 

 

 

 

 

 

0.05

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.00

 

 

 

 

 

 

 

0

1

2

3

4

5

6

 

–0.05

PCI I OH Maximum

 

 

 

 

 

 

 

 

MX PCI IOH

 

 

–0.10

 

 

 

 

 

 

 

 

 

 

 

 

 

–0.15

 

 

 

PCI I OH

Minimum

 

 

 

 

 

 

 

 

–0.20

 

 

 

 

 

 

Voltage Out (V)

Figure 1-16Typical Output Drive Characteristics (Based Upon Measured Data)

v6.0

1-21

40MX and 42MX FPGA Families

Junction Temperature (TJ)

The temperature variable in the Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because the heat generated from dynamic power consumption is usually hotter than the ambient temperature. EQ 1-1, shown below, can be used to calculate junction temperature.

EQ 1-1

Junction Temperature = T + Ta(1)

Where:

Ta = Ambient Temperature

∆T = Temperature gradient between junction (silicon) and ambient

∆T = θja * P(2)

P = Power

θja = Junction to ambient of package. θja numbers are located in the Package Thermal Characteristics table below.

Package Thermal Characteristics

The device junction-to-case thermal characteristic is θjc, and the junction-to-ambient air characteristic is θja. The thermal characteristics for θja are shown with two different air flow rates.

The maximum junction temperature is 150°C.

Maximum power dissipation for commercialand industrial-grade devices is a function of θja.

A sample calculation of the absolute maximum power dissipation allowed for a TQFP 176-pin package at commercial temperature and still air is as follow:

Maximum Power Allowed =

Max.---------------------------------------------------------------------------------------------------------------------------------junction temp. (°C) – Max. ambient temp. (°C)

=

150----------------------------------°C – 70°C

= 2.86W

 

θja(°C/W)

 

28°C/W

 

The maximum power dissipation for military-grade devices is a function of θjc. A sample calculation of the absolute maximum power dissipation allowed for CQFP 208-pin package at military temperature and still air is as follows:

Maximum Power Allowed =

Max.---------------------------------------------------------------------------------------------------------------------------------junction temp. (°C) – Max. ambient temp. (°C)

=

150-------------------------------------°C – 125°C

= 3.97W

 

θjc(°C/W)

 

6.3°C/W

 

Table 21 • Package Thermal Characteristics

 

 

 

 

θja

 

 

 

 

θjc

 

1.0 m/s

2.5 m/s

 

Plastic Packages

Pin Count

Still Air

200 ft/min.

500 ft/min.

Units

Plastic Quad Flat Pack

100

12.0

27.8

23.4

21.2

°C/W

 

 

 

 

 

 

 

Plastic Quad Flat Pack

160

10.0

26.2

22.8

21.1

°C/W

 

 

 

 

 

 

 

Plastic Quad Flat Pack

208

8.0

26.1

22.5

20.8

°C/W

 

 

 

 

 

 

 

Plastic Quad Flat Pack

240

8.5

25.6

22.3

20.8

°C/W

 

 

 

 

 

 

 

Plastic Leaded Chip Carrier

44

16.0

20.0

24.5

22.0

°C/W

 

 

 

 

 

 

 

Plastic Leaded Chip Carrier

68

13.0

25.0

21.0

19.4

°C/W

 

 

 

 

 

 

 

Plastic Leaded Chip Carrier

84

12.0

22.5

18.9

17.6

°C/W

 

 

 

 

 

 

 

Thin Plastic Quad Flat Pack

176

11.0

24.7

19.9

18.0

°C/W

 

 

 

 

 

 

 

Very Thin Plastic Quad Flat Pack

80

12.0

38.2

31.9

29.4

°C/W

 

 

 

 

 

 

 

Very Thin Plastic Quad Flat Pack

100

10.0

35.3

29.4

27.1

°C/W

 

 

 

 

 

 

 

Plastic Ball Grid Array

272

3.0

18.3

14.9

13.9

°C/W

 

 

 

 

 

 

 

Ceramic Packages

 

 

 

 

 

 

 

 

 

 

 

 

 

Ceramic Quad Flat Pack

208

2.0

22.0

19.8

18.0

°C/W

 

 

 

 

 

 

 

Ceramic Quad Flat Pack

256

2.0

20.0

16.5

15.0

°C/W

 

 

 

 

 

 

 

1-22

v6.0

40MX and 42MX FPGA Families

Timing Models

Predicted

Input Delay Internal Delays Routing Output Delay

Delays

 

 

 

 

I/O Module

 

 

 

 

 

 

I/O Module

 

 

 

 

 

tINYL=0.62 ns tIRD2=2.59 ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logic Module

 

 

 

 

 

 

 

 

 

 

 

 

 

tDLH=3.32 ns

 

 

 

 

 

 

tIRD1=2.09 ns

tRD1=1.28 ns

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tIRD4=3.64 ns

t

tRD2=1.80 ns

tENHZ=7.92 ns

 

 

 

 

 

 

tIRD8=5.73 ns

tPD=1.24 ns

tRD4=2.33 ns

 

 

 

 

 

 

 

 

 

CO=1.24 ns

tRD8=4.93 ns

 

 

 

 

 

 

 

 

 

 

 

 

 

Array

 

 

 

 

 

 

 

 

 

Clock

tCKH=4.55 ns

FO=128

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FMAX=180 MHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: * Values are shown for 40MX ‘–3’ speed devices at 5.0V worst-case commercial conditions.

Figure 1-1740MX Timing Model*

 

 

 

 

 

 

 

Input Delays

Internal Delays

Predicted

Output Delays

 

 

 

 

 

Routing

 

 

I/O Module

 

tIRD1=2.0 ns

 

 

Delays

I/O Module

 

 

 

 

tINYL=0.8 ns

 

 

 

 

 

 

 

 

Combinatorial

 

 

 

 

 

 

 

Logic Module

 

t

 

 

tDLH=2.5 ns

 

 

 

 

RD1=0.7 ns

 

D

Q

tPD=1.2 ns

 

tRD2=1.9 ns

 

 

 

 

 

 

tRD4=1.4 ns

 

 

 

 

 

 

tRD8=2.3 ns

 

 

G

 

 

 

 

 

I/O Module

tINH=0.0 ns

 

Sequential

 

 

 

tDLH=2.5 ns

 

Logic Module

 

 

 

 

tINSU=0.3 ns

 

 

 

 

 

 

 

tINGL=1.3 ns

 

Combin

 

 

 

 

 

 

 

D

Q

D

Q

 

 

 

 

 

-atorial

 

 

tRD1=0.70 ns

tENHZ=4.9 ns

 

 

Logic

 

 

 

 

 

 

 

 

 

G

 

 

 

include

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tOUTH=0.00 ns

Array

 

tSUD=0.3 ns

tCO=1.3 ns

t

 

 

tOUTSU=0.3 ns

Clocks

 

tHD=0.00 ns

 

 

 

GLH=2.6 ns

FO = 32

 

 

 

 

 

 

 

 

 

 

 

tCKH=2.70 ns

 

 

 

 

 

 

FMAX=296 MHz

tLCO=5.2 ns (light loads, pad-to-pad)

 

 

Notes: *Values are shown for A42MX09 ‘–3’ at 5.0V worst-case commercial conditions.

† Input module predicted routing delay.

Figure 1-1842MX Timing Model*

v6.0

1-23

40MX and 42MX FPGA Families

Input Delays

Internal Delays

Predicted

Output Delays

 

 

 

 

Routing

 

 

I/O Module

 

tIRD1=2.0 ns

 

Delays

I/O Module

 

 

 

tINYL=0.8 ns

 

 

 

 

 

 

 

Combinatorial

 

 

 

 

 

 

Logic Module

 

tRD1=0.7 ns

 

tDLH=2.5 ns

 

 

 

 

 

D

Q

tPD=1.2 ns

 

tRD2=1.9 ns

 

 

 

 

 

 

tRD4=1.4 ns

 

 

 

 

 

 

tRD8=2.3 ns

 

 

G

 

 

 

 

I/O Module

tINH=0.0 ns

 

Sequential

 

 

tDLH=2.5 ns

 

Logic Module

 

 

 

tINSU=0.3 ns

 

 

 

 

 

 

tINGL=1.3 ns

 

Combin

 

 

 

 

 

 

D

Q

D

Q

 

 

 

 

 

-atorial

 

tRD1=0.70 ns

tENHZ=4.9 ns

 

 

Logic

 

 

 

 

 

 

 

G

 

 

 

include

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tOUTH=0.00 ns

Array

 

tSUD=0.3 ns

tCO=1.3 ns

t

 

 

tOUTSU=0.3 ns

Clocks

 

tHD=0.00 ns

 

 

GLH=2.6 ns

FO = 32

 

 

 

 

 

 

 

 

 

tCKH=2.70 ns

 

 

 

 

 

FMAX=296 MHz

tLCO=5.2 ns (light loads, pad-to-pad)

 

 

Notes: * Values are shown for A42MX36 ‘–3’ at 5.0V worst-case commercial conditions. ** Load-dependent

Figure 1-1942MX Timing Model (Logic Functions Using Quadrant Clocks)

Input Delays

I/O Module

tINPY=1.0ns

t

 

 

 

 

 

IRD1=2.0ns

 

 

 

D

Q

 

 

 

 

G

 

 

Predicted

I/O Module

 

 

 

 

 

 

Routing

tINSU=0.5ns

 

tDLH=2.6ns

 

Delays

tINH=0.0ns

WD [7:0]

RD [7:0]

 

 

tINGO=1.4ns

WRAD [5:0]

tRD1=0.9ns

 

 

 

 

RDAD [5:0]

 

 

 

 

BLKEN

REN

D

Q

 

 

 

 

WEN

 

 

 

 

 

G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WCLK

RCLK

 

 

 

 

 

 

tADSU=1.6ns

tADSU=1.6ns

 

t

GHL=2.9ns

Array

 

tADH=0.0ns

tADH=0.0ns

 

t

LSU=0.5ns

 

t

t

 

 

Clocks

 

WENSU=2.7ns

RENSU=0.6ns

 

tLH=0.0ns

 

 

 

tBENS=2.8ns

tRCO=3.4ns

 

 

 

 

FMAX =167 MHz

Note: *Values are shown for A42MX36 ‘–3 at 5.0V worst-case commercial conditions.

Figure 1-2042MX Timing Model (SRAM Functions)

1-24

v6.0

Loading...
+ 93 hidden pages