Zetex ZDS1009 Datasheet

SM-8 COMPLEMENTARY CURRENT MIRROR
ZDS1009
DESCRIPTION
The ZDS1009 current mirror has been developed specifically for high side, current sense plus level translation applications and as such will find a broad applications base including battery charge management, DC motor control and over current monitoring functions. It is of particular interest for current sense applications for feedback purposes in fast battery chargers for Li-Ion cell based systems.
FEATURES
Excellent Temperature Tracking Characteristics
Compact Cost Effective Solution
Broad application base from
Single Cell Li-ion High Side Current sense chargers to Multi-cell Lead-Acid systems
Only 4 Connections required
SCHEMATIC DIAGRAM
Thedevicefunctionsbysensing the voltagedeveloped across an external (user defined) high side current sense resistor, and by an arrangement of current mirrors refer this sensed voltage, with or without multiplication, to a low side referenced signal. This signal can then be used, for example, to close the control loop to a controller IC, for a DC-DC converter providing charge to a battery.
SM-8
(8 LEAD SOT223)
TYPICAL APPLICATION CIRCUIT
R
VIR
sense 2
For balance R3=R4
R2=100m
R1=R3=R4=100
4
=
R
1
eg
CONNECTION DIAGRAM
ISSUE 2 - JANUARY 2000
sensitivity = 100mV/A
V
sense
1
ZDS1009
ABSOLUTE MAXIMUM RATINGS.
PARAMETER SYMBOL VALUE UNIT Maximum Operating Voltage V Maximum Voltage (E1-E2,E3-E4) V Peak Pulse Current I Continuous Current (E1-E4,E2-E3) I Total Power Dissipation at T
= 25°C* P
amb
Operating and Storage Temperature Range T
* The power which can be dissipated assuming the device is mounted in a typical manner on a PCB with copper equal to 2 inches square.
ELECTRICAL CHARACTERISTICS (at T
=25°C)
amb
y1-x1
E-E’ M C
tot
j:Tstg
Parameter Symbol Min Max Unit Conditions
Breakdown Voltage BV Breakdown Voltage BV Breakdown Voltage BV Breakdown Voltage BV Breakdown Voltage BV Breakdown Voltage BV Breakdown Voltage BV Leakage I Leakage I Leakage I Leakage I Leakage I Leakage I Leakage I
Y1 X1 Y1 E1 E2 E3 E4
Input Voltage V Input Voltage V Input Voltage V Input Voltage V Transfer
V
Characteristic Transfer
V
Characteristic Output Zero-Offset
V
Voltage
Y1-X1 X1-E1 Y1-E3 E1-Y1 E2-Y1 E3-X1 E4-X1
Y1-E2 Y1-E3 X1-E1 X1-E4 OUT
OUT
OFFSET
120 V
-30 V IX1=-10mA 30 V IY1=10mA
-12 V
-6 V 12 V 6VI
50 nA V
-10 10
µA µA
-100 nA V
-100 nA V 100 nA V 100 nA V
-1.45 -1.65 V IY1=-1A
1.45 1.75 V IY1=1A,VX1=V
-1.45 -1.75 V IX1=-1A,VX1=V
1.45 1.65 V IX1=1A
0.99 1.01 V See Fig 1.VCC=5V
1 mV See Fig 1.VCC=5V
4mV
120 V
10 V
4A 1A 2W
-55 to +150 °C
I
=100µA
Y1
I
=-100µA
E1
I
=-100µA
E2
I
=100µA
E3
=100uA
E4
=100V
Y1-X1
V
=-30V, Vy1=V
X1-E1
V
=30V,VX1=V
Y1-E3
=-8V
E1-Y1
=-4V
E2-Y1
=8V
E3-X1
=4V
E4-X1
R1=R3=R4=100,V
R1=R3=R4=100,V See Fig 2.V
R1=R3=R4=100
E3
Y1
Y1
=5V,R2<1
CC
E1
IN
IN
=1V
=5mV
ISSUE 2 - JANUARY 2000
2
Loading...
+ 3 hidden pages