WÄRTSILÄ WÄRTSILÄ32 Product Manual

WÄRTSILÄ 32
PRODUCT GUIDE
WÄRTSILÄ 32 – PRODUCT GUIDE
© Copyright by WÄRTSILÄ FINLAND OY
All rights reserved. No part of this booklet may be reproduced or copied in any form or by any means (electronic, mechanical, graphic, photocopying, recording, taping or other information retrieval systems) without the prior written permission of the copyright owner.
THIS PUBLICATION IS DESIGNED TO PROVIDE AN ACCURATE AND AUTHORITATIVE INFORMATION WITH REGARD TO THE SUBJECT-MATTER COVERED AS WAS AVAILABLE AT THE TIME OF PRINTING. HOWEVER,THE PUBLICATION DEALS WITH COMPLICATED TECHNICAL MATTERS SUITED ONLY FOR SPECIALISTS IN THE AREA, AND THE DESIGN OF THE SUBJECT-PRODUCTS IS SUBJECT TO REGULAR IMPROVEMENTS, MODIFICATIONS AND CHANGES. CONSEQUENTLY, THE PUBLISHER AND COPYRIGHT OWNER OF THIS PUBLICATION CAN NOT ACCEPT ANY RESPONSIBILITY OR LIABILITY FOR ANY EVENTUAL ERRORS OR OMISSIONS IN THIS BOOKLET OR FOR DISCREPANCIES ARISING FROM THE FEATURES OF ANY ACTUAL ITEM IN THE RESPECTIVE PRODUCT BEING DIFFERENT FROM THOSE SHOWN IN THIS PUBLICATION. THE PUBLISHER AND COPYRIGHT OWNER SHALL UNDER NO CIRCUMSTANCES BE HELD LIABLE FOR ANY FINANCIAL CONSEQUENTIAL DAMAGES OR OTHER LOSS, OR ANY OTHER DAMAGE OR INJURY, SUFFERED BY ANY PARTY MAKING USE OF THIS PUBLICATION OR THE INFORMATION CONTAINED HEREIN.
Introduction
This Product Guide provides data and system proposals for the early design phase of marine engine installations. For contracted projects specific instructions for planning the installation are always delivered. Any data and information herein is subject to revision without notice. This 2/2016 issue replaces all previous issues of the Wärtsilä 32 Project Guides.
UpdatesPublishedIssue
Technical data updated07.09.20162/2016
Technical data updated06.09.20161/2016
Information for operating in arctic conditions updated.11.09.20152/2015
Material for air assist and operation in Arctic conditions added. Other updates throughout the product guide.
25.02.20151/2015
Chapter Technical Data updated. Other minor updates.13.06.20141/2014
Wärtsilä, Marine Solutions
Vaasa, September 2016
Wärtsilä 32 Product Guide - a21 - 7 September 2016 iii
IntroductionWärtsilä 32 Product Guide
Table of contents
1-11. Main Data and Outputs .......................................................................................................................
1-11.1 Maximum continuous output .......................................................................................................
1-31.2 Reference conditions ...................................................................................................................
1-31.3 Operation in inclined position .....................................................................................................
1-31.4 Arctic package description ..........................................................................................................
1-41.5 Dimensions and weights .............................................................................................................
2-12. Operating Ranges ................................................................................................................................
2-12.1 Engine operating modes ..............................................................................................................
2-12.2 Engine operating range ...............................................................................................................
2-42.3 Loading capacity .........................................................................................................................
2-62.4 Operation at low load and idling ..................................................................................................
2-62.5 Low air temperature ....................................................................................................................
3-13. Technical Data ......................................................................................................................................
3-13.1 Wärtsilä 6L32, 720 rpm ...............................................................................................................
3-43.2 Wärtsilä 6L32, 750 rpm ...............................................................................................................
3-83.3 Wärtsilä 8L32, 720 rpm ...............................................................................................................
3-113.4 Wärtsilä 8L32, 750 rpm ...............................................................................................................
3-143.5 Wärtsilä 9L32, 720 rpm ...............................................................................................................
3-173.6 Wärtsilä 9L32, 750 rpm ...............................................................................................................
3-213.7 Wärtsilä 12V32, 720 rpm .............................................................................................................
3-243.8 Wärtsilä 12V32, 750 rpm .............................................................................................................
3-273.9 Wärtsilä 16V32, 720 rpm .............................................................................................................
3-303.10 Wärtsilä 16V32, 750 rpm .............................................................................................................
4-14. Description of the Engine ....................................................................................................................
4-14.1 Definitions ....................................................................................................................................
4-14.2 Main components and systems ..................................................................................................
4-64.3 Cross section of the engine .........................................................................................................
4-84.4 Overhaul intervals and expected life times ..................................................................................
4-84.5 Engine storage .............................................................................................................................
5-15. Piping Design, Treatment and Installation .........................................................................................
5-15.1 Pipe dimensions ..........................................................................................................................
5-25.2 Trace heating ...............................................................................................................................
5-25.3 Pressure class ..............................................................................................................................
5-35.4 Pipe class ....................................................................................................................................
5-45.5 Insulation .....................................................................................................................................
5-45.6 Local gauges ...............................................................................................................................
5-45.7 Cleaning procedures ...................................................................................................................
5-55.8 Flexible pipe connections ............................................................................................................
5-65.9 Clamping of pipes ........................................................................................................................
6-16. Fuel Oil System ....................................................................................................................................
6-16.1 Acceptable fuel characteristics ...................................................................................................
6-86.2 Internal fuel oil system .................................................................................................................
6-106.3 External fuel oil system ................................................................................................................
7-17. Lubricating Oil System ........................................................................................................................
7-17.1 Lubricating oil requirements ........................................................................................................
7-37.2 Internal lubricating oil system ......................................................................................................
7-117.3 External lubricating oil system .....................................................................................................
iv Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product GuideTable of contents
7-167.4 Crankcase ventilation system ......................................................................................................
7-177.5 Flushing instructions ....................................................................................................................
8-18. Compressed Air System ......................................................................................................................
8-18.1 Instrument air quality ...................................................................................................................
8-18.2 Internal compressed air system ..................................................................................................
8-68.3 External compressed air system .................................................................................................
9-19. Cooling Water System .........................................................................................................................
9-19.1 Water quality ...............................................................................................................................
9-29.2 Internal cooling water system ......................................................................................................
9-59.3 External cooling water system ....................................................................................................
10-110. Combustion Air System .......................................................................................................................
10-110.1 Engine room ventilation ...............................................................................................................
10-310.2 Combustion air system design ....................................................................................................
11-111. Exhaust Gas System ............................................................................................................................
11-111.1 Internal exhaust gas system ........................................................................................................
11-511.2 Exhaust gas outlet .......................................................................................................................
11-711.3 External exhaust gas system .......................................................................................................
12-112. Turbocharger Cleaning ........................................................................................................................
12-112.1 Turbine cleaning system ..............................................................................................................
12-212.2 Compressor cleaning system ......................................................................................................
13-113. Exhaust Emissions ...............................................................................................................................
13-113.1 Diesel engine exhaust components ............................................................................................
13-213.2 Marine exhaust emissions legislation ..........................................................................................
13-613.3 Methods to reduce exhaust emissions ........................................................................................
14-114. Automation System .............................................................................................................................
14-114.1 UNIC C2 .......................................................................................................................................
14-614.2 Functions ....................................................................................................................................
14-814.3 Alarm and monitoring signals ......................................................................................................
14-814.4 Electrical consumers ...................................................................................................................
15-115. Foundation ............................................................................................................................................
15-115.1 Steel structure design ..................................................................................................................
15-115.2 Mounting of main engines ...........................................................................................................
15-1415.3 Mounting of generating sets ........................................................................................................
15-1715.4 Flexible pipe connections ............................................................................................................
16-116. Vibration and Noise ..............................................................................................................................
16-116.1 External forces and couples ........................................................................................................
16-216.2 Torque variations .........................................................................................................................
16-316.3 Mass moments of inertia .............................................................................................................
16-316.4 Air borne noise .............................................................................................................................
16-416.5 Exhaust noise ..............................................................................................................................
17-117. Power Transmission ............................................................................................................................
17-117.1 Flexible coupling ..........................................................................................................................
17-217.2 Clutch ..........................................................................................................................................
17-217.3 Shaft locking device ....................................................................................................................
17-317.4 Power-take-off from the free end ................................................................................................
17-417.5 Input data for torsional vibration calculations .............................................................................
17-517.6 Turning gear .................................................................................................................................
Wärtsilä 32 Product Guide - a21 - 7 September 2016 v
Table of contentsWärtsilä 32 Product Guide
18-118. Engine Room Layout ...........................................................................................................................
18-118.1 Crankshaft distances ...................................................................................................................
18-1218.2 Space requirements for maintenance .........................................................................................
18-1218.3 Transportation and storage of spare parts and tools ..................................................................
18-1218.4 Required deck area for service work ...........................................................................................
19-119. Transport Dimensions and Weights ...................................................................................................
19-119.1 Lifting of main engines ................................................................................................................
19-319.2 Lifting of generating sets .............................................................................................................
19-419.3 Engine components .....................................................................................................................
20-120. Product Guide Attachments ...............................................................................................................
21-121. ANNEX ...................................................................................................................................................
21-121.1 Unit conversion tables .................................................................................................................
21-221.2 Collection of drawing symbols used in drawings ........................................................................
vi Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product GuideTable of contents
1. Main Data and Outputs
The Wärtsilä 32 is a 4-stroke, non-reversible, turbocharged and intercooled diesel engine with direct fuel injection.
320 mmCylinder bore ........................
400 mmStroke ...................................
32.2 l/cylinderPiston displacement .............
2 inlet valves 2 exhaust valves
Number of valves .................
6, 7, 8 and 9 in-line 12, 16 and 18 in V-form
Cylinder configuration .........
55°V-angle .................................
Clockwise, counterclockwise on requestDirection of rotation .............
720, 750 rpmSpeed ...................................
9.6, 10.0 m/sMean piston speed ...............
1.1 Maximum continuous output
Table 1-1 Rating table for Wärtsilä 32
Generating setsMain enginesCylinder
configuration
750 rpm720 rpm750 rpm
Generator
[kVA]
Engine [kW]Generator
[kVA]
Engine [kW][kW]
36003000346028803000
W 6L32
41803480403033603480
42003500403033603500W 7L32
48004000461038404000
W 8L32
55704640538044804640
54004500518043204500
W 9L32
62605220605050405220
72006000691057606000
W 12V32
83506960806067206960
96008000922076808000
W 16V32
1114092801075089609280
1080090001037086409000W 18V32
The mean effective pressure Pe can be calculated as follows:
Wärtsilä 32 Product Guide - a21 - 7 September 2016 1-1
1. Main Data and OutputsWärtsilä 32 Product Guide
where:
mean effective pressure [bar]Pe =
output per cylinder [kW]P =
engine speed [r/min]n =
cylinder diameter [mm]D =
length of piston stroke [mm]L =
operating cycle (4)c =
1-2 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide1. Main Data and Outputs
1.2 Reference conditions
The output is available up to a charge air coolant temperature of max. 38°C and an air temperature of max. 45°C. For higher temperatures, the output has to be reduced according to the formula stated in ISO 3046-1:2002 (E).
The specific fuel oil consumption is stated in the chapter Technical data. The stated specific fuel oil consumption applies to engines with engine driven pumps, operating in ambient conditions according to ISO 15550:2002 (E). The ISO standard reference conditions are:
100 kPatotal barometric pressure
25°Cair temperature
30%relative humidity
25°Ccharge air coolant temperature
Correction factors for the fuel oil consumption in other ambient conditions are given in standard ISO 3046-1:2002.
1.3 Operation in inclined position
Max. inclination angles at which the engine will operate satisfactorily.
Table 1-2 Inclination with Normal Oil Sump
15°
Transverse inclination, permanent (list)
22.5°
Transverse inclination, momentary (roll)
10°
Longitudinal inclination, permanent (trim)
10°
Longitudinal inclination, momentary (pitch)
1.4 Arctic package description
When a vessel is operating in cold ambient air conditions and the combustion air to the engine is taken directly from the outside air, the combustion air temperature and thus also the density is outside the normal range specified for the engine operation. Special arrangements are needed to ensure correct engine operation both at high and at low engine loading conditions. Read more about the special arrangements in chapters Combustion air system design in arctic
conditions, Cooling water system for arctic conditions and Lubricating oil system in arctic conditions.
Wärtsilä 32 Product Guide - a21 - 7 September 2016 1-3
1. Main Data and OutputsWärtsilä 32 Product Guide
1.5 Dimensions and weights
1.5.1 Main engines
Fig 1-1 In-line engines with 500kW/cyl (DAAE030112A)
WE2WE3LE4LE2HE3HE4HE2WE1HE1HE1*LE1LE1*Engine
135088025036701155500234523052490256052604980W 6L32
135088025041601155500234523052490256057505470W 7L32
135088025046501155500234523052295236062455960W 8L32
135088025051401155500234523052295236067306450W 9L32
WeightLE5LE5*WE6WE6*HE6HE6*HE5HE5*LE3LE3*WE5Engine
33.95051303606607107101780185011507751345W 6L32
38.25051303606607107101780185011507751345W 7L32
43.55051303606604204201780185011507751345W 8L32
47.75051303606604204201780185011507751345W 9L32
* Turbocharger at flywheel end.
All dimensions in mm. Weight in metric tons with liquids (wet sump) but without flywheel.
1-4 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide1. Main Data and Outputs
Fig 1-2 In-line engines with 580kW/cyl (DAAF061578A)
WE2WE3LE4LE2HE3HE4HE2WE1HE1LE1Engine
1350880250367011555002345238022955130W 6L32
1350880250465011555002345261023756379W 8L32
1350880250514011555002345261023756869W 9L32
WeightLE5WE6HE6HE5LE3WE5Engine
35.4515375460178012151425W 6L32
43.67051340545178012851650W 8L32
49.27051340545178012851650W 9L32
* Turbocharger at flywheel end.
All dimensions in mm. Weight in metric tons with liquids (wet sump) but without flywheel.
Wärtsilä 32 Product Guide - a21 - 7 September 2016 1-5
1. Main Data and OutputsWärtsilä 32 Product Guide
Fig 1-3 V-engines with 500kW/cyl (DAAE035123A)
WE2WE3LE4LE2HE3HE4HE2WE1*WE1HE1*HE1LE1LE1*Engine
15901220300415014756502120302030202715266566156935W 12V32
15901220300527014756502120302030202480243077358060W 16V32
15901220300583014756502120302030202480243082958620W 18V32
WeightLE5LE5*WE6WE6*HE6*HE6HE5*HE5WE4LE3LE3*WE5Engine
59.559059060060071071019651915850173517351510W 12V32
73.559059060060042042019651915850173517351510W 16V32
78.959059060060042042019651915850173517351510W 18V32
* Turbocharger at flywheel end.
All dimensions in mm. Weight in metric tons with liquids (wet sump) but without flywheel.
1-6 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide1. Main Data and Outputs
Fig 1-4 V-engines with 580kW/cyl (DAAF062155)
WE2WE3LE4LE2HE3HE4HE2WE1HE1LE1Engine
15901225300415012106502120290024306865W 12V32
15901225300527012106502120332525957905W 16V32
WeightLE5WE6HE6HE5WE4LE3WE5Engine
56.9555540470190585019851450W 12V32
71.1560575550202085019251665W 16V32
* Turbocharger at flywheel end.
All dimensions in mm. Weight in metric tons with liquids (wet sump) but without flywheel.
Wärtsilä 32 Product Guide - a21 - 7 September 2016 1-7
1. Main Data and OutputsWärtsilä 32 Product Guide
1.5.2 Generating sets
Fig 1-5 In-line engines with 500kW/cyl (DAAE030093)
* Actual dimensions might vary based on power output and turbocharger maker.
Weight**HA1HA2HA3HA4WA3WA2WA1LA4**LA2**LA3LA1**Engine
5739402345145010461600191022903160684511508345W 6L32
6941402345165010462000231026903650751511509215W 7L32
7739252345163010462000231026903710792011509755W 8L32
84392523451630104622002510289038258850115010475W 9L32
** Dependent on generator and flexible coupling.
All dimensions in mm. Weight in metric tons with liquids.
1-8 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide1. Main Data and Outputs
Fig 1-6 In-line engines with 580kW/cyl (DAAF061592)
Weight**HA1HA2HA3HA4WA3*WA2*WA1*LA4*LA2*LA3LA1*Engine
56.98537452345145010461800211024903265687512158345W 6L32
75.760401023451630104620002310269037108555128510410W 8L32
85.650401023451630104622002510289038258870128510505W 9L32
* Dependent on generator and flexible coupling.
All dimensions in mm. Weight in metric tons with liquids.
Wärtsilä 32 Product Guide - a21 - 7 September 2016 1-9
1. Main Data and OutputsWärtsilä 32 Product Guide
Fig 1-7 V-engines with 500kW/cyl (DAAE039700B)
* Actual dimensions might vary based on power output and turbocharger maker.
Weight**HA1HA2HA3HA4WA3WA2WA1LA4**LA2**LA3LA1**Engine
96436521201700137522002620306037757955173510075W 12V32
121428021201850137522002620306037659020173511175W 16V32
133428021201850137525002920336038759690173511825W 18V32
** Dependent on generator and flexible coupling.
All dimensions in mm. Weight in metric tons with liquids.
1-10 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide1. Main Data and Outputs
Fig 1-8 V-engines with 580kW/cyl (DAAF061875)
Weight**HA1HA2HA3HA4WA3WA2WA1LA4**LA2**LA3LA1**Engine
100.1413021201700137522002620306041308325198510700W 12V32
127.3444521201850137525002920336042459130192511465W 16V32
** Dependent on generator and flexible coupling.
All dimensions in mm. Weight in metric tons with liquids.
Wärtsilä 32 Product Guide - a21 - 7 September 2016 1-11
1. Main Data and OutputsWärtsilä 32 Product Guide
This page intentionally left blank
2. Operating Ranges
2.1 Engine operating modes
If the engine is configured for SCR use then it can be operated in two modes; IMO Tier 2 mode and SCR mode. The mode can be selected by an input signal to the engine automation system.
In SCR mode the exhaust gas temperatures after the turbocharger are actively monitored and adjusted to stay within the operating temperature window of the SCR.
2.2 Engine operating range
Below nominal speed the load must be limited according to the diagrams in this chapter in order to maintain engine operating parameters within acceptable limits. Operation in the shaded area is permitted only temporarily during transients. Minimum speed is indicated in the diagram, but project specific limitations may apply.
2.2.1 Controllable pitch propellers
An automatic load control system is required to protect the engine from overload. The load control reduces the propeller pitch automatically, when a pre-programmed load versus speed curve (“engine limit curve”) is exceeded, overriding the combinator curve if necessary. The engine load is derived from fuel rack position and actual engine speed (not speed demand).
The propulsion control must also include automatic limitation of the load increase rate. Maximum loading rates can be found later in this chapter.
The propeller efficiency is highest at design pitch. It is common practice to dimension the propeller so that the specified ship speed is attained with design pitch, nominal engine speed and 85% output in the specified loading condition. The power demand from a possible shaft generator or PTO must be taken into account. The 15% margin is a provision for weather conditions and fouling of hull and propeller. An additional engine margin can be applied for most economical operation of the engine, or to have reserve power.
Wärtsilä 32 Product Guide - a21 - 7 September 2016 2-1
2. Operating RangesWärtsilä 32 Product Guide
Fig 2-1 Operating field for CP Propeller, 500 kW/cyl, 750 rpm
Fig 2-2 Operating field for CP Propeller, 580 kW/cyl, 750 rpm
2-2 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide2. Operating Ranges
2.2.2 Fixed pitch propellers
The thrust and power absorption of a given fixed pitch propeller is determined by the relation between ship speed and propeller revolution speed. The power absorption during acceleration, manoeuvring or towing is considerably higher than during free sailing for the same revolution speed. Increased ship resistance, for reason or another, reduces the ship speed, which increases the power absorption of the propeller over the whole operating range.
Loading conditions, weather conditions, ice conditions, fouling of hull, shallow water, and manoeuvring requirements must be carefully considered, when matching a fixed pitch propeller to the engine. The nominal propeller curve shown in the diagram must not be exceeded in service, except temporarily during acceleration and manoeuvring. A fixed pitch propeller for a free sailing ship is therefore dimensioned so that it absorbs max. 85% of the engine output at nominal engine speed during trial with loaded ship. Typically this corresponds to about 82% for the propeller itself.
If the vessel is intended for towing, the propeller is dimensioned to absorb 95% of the engine power at nominal engine speed in bollard pull or towing condition. It is allowed to increase the engine speed to 101.7% in order to reach 100% MCR during bollard pull.
A shaft brake should be used to enable faster reversing and shorter stopping distance (crash stop). The ship speed at which the propeller can be engaged in reverse direction is still limited by the windmilling torque of the propeller and the torque capability of the engine at low revolution speed.
Fig 2-3 Operating field for FP Propeller, 500 kW/cyl), 750 rpm
2.2.3 Dredgers
Mechanically driven dredging pumps typically require a capability to operate with full torque down to 80% of nominal engine speed. This requirement results in significant de-rating of the engine.
Wärtsilä 32 Product Guide - a21 - 7 September 2016 2-3
2. Operating RangesWärtsilä 32 Product Guide
2.3 Loading capacity
Controlled load increase is essential for highly supercharged diesel engines, because the turbocharger needs time to accelerate before it can deliver the required amount of air. A slower loading ramp than the maximum capability of the engine permits a more even temperature distribution in engine components during transients.
The engine can be loaded immediately after start, provided that the engine is pre-heated to a HT-water temperature of 60…70ºC, and the lubricating oil temperature is min. 40 ºC.
The ramp for normal loading applies to engines that have reached normal operating temperature.
2.3.1 Mechanical propulsion
Fig 2-4 Maximum recommended load increase rates for variable speed engines
The propulsion control must include automatic limitation of the load increase rate. If the control system has only one load increase ramp, then the ramp for a preheated engine should be used. In tug applications the engines have usually reached normal operating temperature before the tug starts assisting. The “emergency” curve is close to the maximum capability of the engine.
If minimum smoke during load increase is a major priority, slower loading rate than in the diagram can be necessary below 50% load.
Large load reductions from high load should also be performed gradually. In normal operation the load should not be reduced from 100% to 0% in less than 15 seconds. When absolutely necessary, the load can be reduced as fast as the pitch setting system can react (overspeed due to windmilling must be considered for high speed ships).
2-4 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide2. Operating Ranges
2.3.2 Diesel electric propulsion and auxiliary engines
Fig 2-5 Maximum recommended load increase rates for engines operating at
nominal speed
In diesel electric installations loading ramps are implemented both in the propulsion control and in the power management system, or in the engine speed control in case isochronous load sharing is applied. If a ramp without knee-point is used, it should not achieve 100% load in shorter time than the ramp in the figure. When the load sharing is based on speed droop, the load increase rate of a recently connected generator is the sum of the load transfer performed by the power management system and the load increase performed by the propulsion control.
The “emergency” curve is close to the maximum capability of the engine and it shall not be used as the normal limit. In dynamic positioning applications loading ramps corresponding to 20-30 seconds from zero to full load are however normal. If the vessel has also other operating modes, a slower loading ramp is recommended for these operating modes.
In typical auxiliary engine applications there is usually no single consumer being decisive for the loading rate. It is recommended to group electrical equipment so that the load is increased in small increments, and the resulting loading rate roughly corresponds to the “normal” curve.
In normal operation the load should not be reduced from 100% to 0% in less than 15 seconds. If the application requires frequent unloading at a significantly faster rate, special arrangements can be necessary on the engine. In an emergency situation the full load can be thrown off instantly.
2.3.2.1 Maximum instant load steps (500 kW/cyl)
The electrical system must be designed so that tripping of breakers can be safely handled. This requires that the engines are protected from load steps exceeding their maximum load acceptance capability. The maximum permissible load step is 33% MCR. The resulting speed drop is less than 10% and the recovery time to within 1% of the steady state speed at the new load level is max. 5 seconds.
When electrical power is restored after a black-out, consumers are reconnected in groups, which may cause significant load steps. The engine must be allowed to recover for at least 10 seconds before applying the following load step, if the load is applied in maximum steps.
Wärtsilä 32 Product Guide - a21 - 7 September 2016 2-5
2. Operating RangesWärtsilä 32 Product Guide
2.3.2.2 Maximum instant load steps (580 kW/cyl)
The electrical system must be designed so that tripping of breakers can be safely handled. This requires that the engines are protected from load steps exceeding their maximum load acceptance capability. The maximum load steps are 0-28-60-100% MCR without air assist. Engines driving generators are prepared for air assist, see chapters Technical data and Exhaust gas system. Sudden load steps equal to 33% MCR can be absorbed also at low load if air assist is used. If air assist is used, the arrangement of the air supply must be approved by the classification society.
When electrical power is restored after a black-out, consumers are reconnected in groups, which may cause significant load steps. The engine must be allowed to recover for at least 10 seconds before applying the following load step, if the load is applied in maximum steps.
2.3.2.3 Start-up time
A diesel generator typically reaches nominal speed in about 20 seconds after the start signal. The acceleration is limited by the speed control to minimise smoke during start-up. If requested faster starting times can be arranged.
2.4 Operation at low load and idling
The engine can be started, stopped and operated on heavy fuel under all operating conditions. Continuous operation on heavy fuel is preferred rather than changing over to diesel fuel at low load operation and manoeuvring. The following recommendations apply:
Absolute idling (declutched main engine, disconnected generator)
Maximum 10 minutes if the engine is to be stopped after the idling. 3-5 minutes idling
before stop is recommended.
Maximum 6 hours if the engine is to be loaded after the idling.
Operation below 20 % load
Maximum 100 hours continuous operation. At intervals of 100 operating hours the engine
must be loaded to minimum 70 % of the rated output.
Operation above 20 % load
No restrictions.
NOTE
For operation profiles involving prolonged low load operation, please contact Wärtsilä.
2.5 Low air temperature
In cold conditions the following minimum inlet air temperatures apply:
Starting + 5ºC (when running)
Idling and highload - 5ºC
For lower suction air temperatures engines shall be configured for arctic operation.
For further guidelines, see chapter Combustion air system design.
2-6 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide2. Operating Ranges
3. Technical Data
3.1 Wärtsilä 6L32, 720 rpm
DE
SCR
mode
AE
SCR
mode
DE
IMO
Tier 2
AE
IMO
Tier 2
Wärtsilä 6L32
720 560
720 560
720 560
720 560
RPM
kW/cyl
Engine speed Cylinder output
3360336033603360kWEngine output
2.92.92.92.9MPaMean effective pressure
Combustion air system (Note 1)
6.026.026.026.02kg/sFlow at 100% load
45454545°CTemperature at turbocharger intake, max.
55555555°CAir temperature after air cooler (TE 601)
Exhaust gas system (Note 2)
6.26.26.26.2kg/sFlow at 100% load
5.25.25.45.4kg/sFlow at 85% load
4.84.85.05.0kg/sFlow at 75% load
3.33.33.33.3kg/sFlow at 50% load
350350350350°CTemperature after turbocharger, 100% load (TE 517)
340340330330°CTemperature after turbocharger, 85% load (TE 517)
340340330330°CTemperature after turbocharger, 75% load (TE 517)
380380380380°CTemperature after turbocharger, 50% load (TE 517)
5.05.05.05.0kPaBackpressure, max.
629629629629
mmCalculated pipe diameter for 35m/s
Heat balance (Note 3)
430430430430kWJacket water, HT-circuit
766766766766kWCharge air, HT-circuit
414414414414kWCharge air, LT-circuit
388388388388kWLubricating oil, LT-circuit
110110110110kWRadiation
Fuel system (Note 4)
700±50700±50700±50700±50kPaPressure before injection pumps (PT 101)
4.34.34.34.3m3/hEngine driven pump capacity (MDF only)
3.43.43.43.4m3/hFuel flow to engine (without engine driven pump),
approx.
16...2416...2416...2416...24cStHFO viscosity before engine
140140140140°CHFO temperature before engine, max. (TE 101)
2.02.02.02.0cStMDF viscosity, min
45454545°CMDF temperature before engine, max. (TE 101)
183184182182
g/kWhFuel consumption at 100% load, HFO
184184181182
g/kWhFuel consumption at 85% load, HFO
184184182182
g/kWhFuel consumption at 75% load, HFO
Wärtsilä 32 Product Guide - a21 - 7 September 2016 3-1
3. Technical DataWärtsilä 32 Product Guide
DE
SCR
mode
AE
SCR
mode
DE
IMO
Tier 2
AE
IMO
Tier 2
Wärtsilä 6L32
720 560
720 560
720 560
720 560
RPM
kW/cyl
Engine speed Cylinder output
190195188193
g/kWhFuel consumption at 50% load, HFO
184185184185
g/kWhFuel consumption at 100% load, MDF
181183180182
g/kWhFuel consumption at 85% load, MDF
182183180182
g/kWhFuel consumption at 75% load, MDF
190191186190
g/kWhFuel consumption at 50% load, MDF
12.812.812.812.8
kg/hClean leak fuel quantity, MDF at 100% load
2.62.62.62.6
kg/hClean leak fuel quantity, HFO at 100% load
Lubricating oil system
500500500500
kPaPressure before bearings, nom. (PT 201)
30303030
kPaSuction ability main pump, including pipe loss,max.
50505050
kPaPriming pressure, nom. (PT 201)
30303030
kPaSuction ability priming pump, including pipe loss,
max.
63636363
°CTemperature before bearings, nom. (TE 201)
78787878
°CTemperature after engine, approx.
78787878
m³/hPump capacity (main), engine driven
67676767
m³/hPump capacity (main), stand-by
15.0 /
18.0
15.0 /
18.0
15.0 /
18.0
15.0 /
18.0
m³/hPriming pump capacity, 50Hz/60Hz
1.61.61.61.6
Oil volume, wet sump, nom.
4.54.54.54.5
Oil volume in separate system oil tank, nom.
0.350.350.350.35
g/kWhOil consumption (100% load), approx.
1380138013801380l/minCrankcase ventilation flow rate at full load
0.10.10.10.1kPaCrankcase ventilation backpressure, max.
8.5...9.58.5...9.58.5...9.58.5...9.5litersOil volume in turning device
1.91.91.91.9litersOil volume in speed governor
Cooling water system
High temperature cooling water system
250 +
static
250 +
static
250 +
static
250 +
static
kPaPressure at engine, after pump, nom. (PT 401)
530530530530
kPaPressure at engine, after pump, max. (PT 401)
77777777
°CTemperature before cylinders, approx. (TE 401)
96969696°CHT-water out from engine, nom(TE402)(singlestage
CAC)
96969696°CHT-water out from engine, nom (TE432) (two stage
CAC)
60606060
m³/hCapacity of engine driven pump, nom.
100100100100kPaPressure drop over engine, total (single stage CAC)
150150150150kPaPressure drop over engine, total (two stage CAC)
100100100100
kPaPressure drop in external system, max.
3-2 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide3. Technical Data
DE
SCR
mode
AE
SCR
mode
DE
IMO
Tier 2
AE
IMO
Tier 2
Wärtsilä 6L32
720 560
720 560
720 560
720 560
RPM
kW/cyl
Engine speed Cylinder output
70...15070...15070...15070...150kPaPressure from expansion tank
0.410.410.410.41
Water volume in engine
Low temperature cooling water system
250 +
static
250 +
static
250 +
static
250 +
static
kPaPressure at engine, after pump, nom. (PT 451)
530530530530
kPaPressure at engine, after pump, max. (PT 451)
25 ... 3825 ... 3825 ... 3825 ... 38°CTemperature before engine (TE 451)
60606060
m³/hCapacity of engine driven pump, nom.
35353535
kPaPressure drop over charge air cooler
30303030
kPaPressure drop over oil cooler
100100100100
kPaPressure drop in external system, max.
70 ...
150
70 ...
150
70 ...
150
70 ...
150
kPaPressure from expansion tank
Starting air system (Note 5)
3000300030003000
kPaPressure, nom.
1600160016001600
kPaPressure at engine during start, min. (20°C)
3000300030003000
kPaPressure, max.
1600160016001600
kPaLow pressure limit in air vessels (alarm limit)
2.12.12.12.1
Nm
3
Air consumption per start
----Nm
3
Air consumption per start without propeller shaft engaged
----Nm
3
Air consumption with automatic start and slowturn­ing
----Nm
3
Air consumption per start with propeller shaft en­gaged
----Nm
3
Air consumption with automatic start and high inertia slowturning
1111Nm
3
Air assist consumption (for engines with580 kW/cyl)
Notes:
At ISO 15550 conditions (ambient air temperature 25°C, LT-water 25°C) and 100% load. Flow tolerance 5%.Note 1
At ISO 15550 conditions (ambient air temperature 25°C, LT-water 25°C). Flow tolerance 5% and temperature tolerance 10°C.
Note 2
At ISO 15550 conditions (ambient air temperature 25°C, LT-water 25°C) and 100% load. Tolerance for cooling water heat 10%, tolerance for radiation heat 30%. Fouling factors and a margin to be taken into account when dimensioning heat exchangers.
Note 3
At ambient conditions according to ISO 15550. Lower calorific value 42 700 kJ/kg. Withengine driven pumps (two cooling water + one lubricating oil pump). Tolerance 5%. Note; SOI is different for MDO and HFO engines. If the engine is made for operation on both HFO and MDO, the consumption on both fuels will be according to HFO consumption.
Note 4
Automatic (remote or local) starting air consumption (average) per start, at 20°C for a specific long start impulse (DE/AUX:
2...3 sec, CPP/FPP: 4...6 sec) which is the shortest time required for a safe start.
Note 5
ME = Engine driving propeller, variable speed
AE = Auxiliary engine driving generator
DE = Diesel-Electric engine driving generator
Subject to revision without notice.
Wärtsilä 32 Product Guide - a21 - 7 September 2016 3-3
3. Technical DataWärtsilä 32 Product Guide
3.2 Wärtsilä 6L32, 750 rpm
ME
SCR
mode
DE
SCR
mode
AE
SCR
mode
ME
IMO
Tier 2
DE
IMO
Tier 2
AE
IMO
Tier 2
Wärtsilä 6L32
750 580
750 580
750 580
750 580
750 580
750 580
RPM
kW/cyl
Engine speed Cylinder output
348034803480348034803480kWEngine output
2.882.882.882.882.882.88MPaMean effective pressure
Combustion air system (Note 1)
6.116.316.316.116.316.31kg/sFlow at 100% load
454545454545°CTemperature at turbocharger intake, max.
555555555555°CAir temperature after air cooler (TE 601)
Exhaust gas system (Note 2)
6.36.56.56.36.56.5kg/sFlow at 100% load
5.45.45.45.65.85.8kg/sFlow at 85% load
4.94.94.94.95.35.3kg/sFlow at 75% load
3.43.63.63.43.63.6kg/sFlow at 50% load
370350350370350350°CTemperature after turbocharger, 100% load
(TE 517)
340340340330320320°CTemperature after turbocharger, 85% load
(TE 517)
340340340340320320°CTemperature after turbocharger, 75% load
(TE 517)
350360360350360360°CTemperature after turbocharger, 50% load
(TE 517)
5.05.05.05.05.05.0kPaBackpressure, max.
644644644644644644
mmCalculated pipe diameter for 35m/s
Heat balance (Note 3)
440449449440449449kWJacket water, HT-circuit
811799799811799799kWCharge air, HT-circuit
489481481489481481kWCharge air, LT-circuit
396405405396405405kWLubricating oil, LT-circuit
110110110110110110kWRadiation
Fuel system (Note 4)
700±50700±50700±50700±50700±50700±50kPaPressure before injection pumps (PT 101)
4.54.54.54.54.54.5m3/hEngine driven pump capacity (MDF only)
3.53.53.63.53.53.5m3/hFuel flow to engine (without engine driven
pump), approx.
16...2416...2416...2416...2416...2416...24cStHFO viscosity before engine
140140140140140140°CHFO temperature before engine, max. (TE
101)
2.02.02.02.02.02.0cStMDF viscosity, min
454545454545°CMDF temperature before engine, max. (TE
101)
184185185183183184
g/kWhFuel consumption at 100% load, HFO
183185185180182183
g/kWhFuel consumption at 85% load, HFO
183185185180182183
g/kWhFuel consumption at 75% load, HFO
3-4 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide3. Technical Data
ME
SCR
mode
DE
SCR
mode
AE
SCR
mode
ME
IMO
Tier 2
DE
IMO
Tier 2
AE
IMO
Tier 2
Wärtsilä 6L32
750 580
750 580
750 580
750 580
750 580
750 580
RPM
kW/cyl
Engine speed Cylinder output
185190195182188193
g/kWhFuel consumption at 50% load, HFO
185185186185185186
g/kWhFuel consumption at 100% load, MDF
181182184180181183
g/kWhFuel consumption at 85% load, MDF
181182184180181183
g/kWhFuel consumption at 75% load, MDF
182190191180186190
g/kWhFuel consumption at 50% load, MDF
13.413.413.413.413.413.4
kg/hClean leak fuel quantity, MDF at 100% load
2.72.72.72.72.72.7
kg/hClean leak fuel quantity, HFO at 100% load
Lubricating oil system
500500500500500500
kPaPressure before bearings, nom. (PT 201)
303030303030
kPaSuction ability main pump, including pipe
loss, max.
505050505050
kPaPriming pressure, nom. (PT 201)
303030303030
kPaSuction ability priming pump, including pipe
loss, max.
636363636363
°CTemperature before bearings, nom. (TE 201)
787878787878
°CTemperature after engine, approx.
818181818181
m³/hPump capacity (main), engine driven
707070707070
m³/hPump capacity (main), stand-by
15.0 /
18.0
15.0 /
18.0
15.0 /
18.0
15.0 /
18.0
15.0 /
18.0
15.0 /
18.0
m³/hPriming pump capacity, 50Hz/60Hz
1.61.61.61.61.61.6
Oil volume, wet sump, nom.
4.74.74.74.74.74.7
Oil volume in separate system oil tank, nom.
0.350.350.350.350.350.35
g/kWhOil consumption (100% load), approx.
138013801380138013801380l/minCrankcase ventilation flow rate at full load
0.10.10.10.10.10.1kPaCrankcase ventilation backpressure, max.
8.5...9.58.5...9.58.5...9.58.5...9.58.5...9.58.5...9.5litersOil volume in turning device
1.91.91.91.91.91.9litersOil volume in speed governor
Cooling water system
High temperature cooling water system
250 +
static
250 +
static
250 + static
250 +
static
250 +
static
250 + static
kPaPressure atengine,after pump, nom. (PT 401)
530530530530530530
kPaPressure atengine, after pump, max. (PT 401)
777777777777
°CTemperature before cylinders, approx. (TE
401)
969696969696°CHT-water out from engine, nom (TE402)
(single stage CAC)
969696969696°CHT-water out from engine, nom (TE432) (two
stage CAC)
606060606060
m³/hCapacity of engine driven pump, nom.
100100100100100100kPaPressure drop over engine, total (single stage
CAC)
Wärtsilä 32 Product Guide - a21 - 7 September 2016 3-5
3. Technical DataWärtsilä 32 Product Guide
ME
SCR
mode
DE
SCR
mode
AE
SCR
mode
ME
IMO
Tier 2
DE
IMO
Tier 2
AE
IMO
Tier 2
Wärtsilä 6L32
750 580
750 580
750 580
750 580
750 580
750 580
RPM
kW/cyl
Engine speed Cylinder output
150150150150150150kPaPressure drop over engine, total (two stage
CAC)
100100100100100100
kPaPressure drop in external system, max.
70...15070...15070...15070...15070...15070...150kPaPressure from expansion tank
0.410.410.410.410.410.41
Water volume in engine
Low temperature cooling water system
250 + static
250 + static
250 +
static
250 +
static
250 +
static
250 + static
kPaPressure atengine,after pump, nom. (PT 451)
530530530530530530
kPaPressure atengine, after pump, max. (PT 451)
25 ...
38
25 ...
38
25 ...
38
25 ...
38
25 ...
38
25 ...
38
°CTemperature before engine (TE 451)
606060606060
m³/hCapacity of engine driven pump, nom.
353535353535
kPaPressure drop over charge air cooler
303030303030
kPaPressure drop over oil cooler
100100100100100100
kPaPressure drop in external system, max.
70 ...
150
70 ...
150
70 ...
150
70 ...
150
70 ...
150
70 ...
150
kPaPressure from expansion tank
Starting air system (Note 5)
300030003000300030003000
kPaPressure, nom.
160016001600160016001600
kPaPressure at engine during start, min. (20°C)
300030003000300030003000
kPaPressure, max.
160016001600160016001600
kPaLow pressure limit in air vessels (alarm limit)
-
2.12.1
-
2.12.1
Nm
3
Air consumption per start
2.1
--
2.1
--Nm
3
Air consumption per start without propeller shaft engaged
------Nm
3
Air consumption with automatic start and slowturning
3.4
--
3.4
--Nm
3
Air consumption per start with propeller shaft engaged
------Nm
3
Air consumption with automatic start and high inertia slowturning
111111Nm
3
Air assist consumption (for engines with 580 kW/cyl)
Notes:
At ISO 15550 conditions (ambient air temperature 25°C, LT-water 25°C) and 100% load. Flow tolerance 5%.Note 1
At ISO 15550 conditions (ambient air temperature 25°C, LT-water 25°C). Flow tolerance 5% and temperature tolerance 10°C.
Note 2
At ISO 15550 conditions (ambient air temperature 25°C, LT-water 25°C) and 100% load. Tolerance for cooling water heat 10%, tolerance for radiation heat 30%. Fouling factors and a margin to be taken into account when dimensioning heat exchangers.
Note 3
At ambient conditions according to ISO 15550. Lower calorific value 42 700 kJ/kg. Withengine driven pumps (two cooling water + one lubricating oil pump). Tolerance 5%. Note; SOI is different for MDO and HFO engines. If the engine is made for operation on both HFO and MDO, the consumption on both fuels will be according to HFO consumption.
Note 4
Automatic (remote or local) starting air consumption (average) per start, at 20°C for a specific long start impulse (DE/AUX:
2...3 sec, CPP/FPP: 4...6 sec) which is the shortest time required for a safe start.
Note 5
3-6 Wärtsilä 32 Product Guide - a21 - 7 September 2016
Wärtsilä 32 Product Guide3. Technical Data
Loading...
+ 224 hidden pages