The W78L51 microcontroller supplies a wider frequency and supply voltage range than most 8-bit
microcontrollers on the market. It is compatible with the industry standard 80C51 microcontroller
series.
The W78L51 contains four 8-bit bidirectional parallel ports, one extra 4-bit bit-addressable I/O port
(Port 4) and two additional external interrupts (
timer and a serial port. These peripherals are supported by a seven-source, two-level interrupt
capability. There are 128 bytes of RAM and an 4K byte mask ROM for application programs.
The W78L51 microcontroller has two power reduction modes, idle mode and power-down mode, both
of which are software selectable. The idle mode turns off the processor clock but allows for continued
peripheral operation. The power-down mode stops the crystal oscillator for minimum power
consumption. The external clock can be stopped at any time and in any state without affecting the
processor.
, INT3 ), two 16-bit timer/counters, one watchdog
W78L51
FEATURES
• Fully static design
• Supply voltage of 1.8V to 5.5V
• DC-24 MHz operation
• 128 bytes of on-chip scratchpad RAM
• 4K bytes of on-chip mask ROM
• 64K bytes program memory address space
• 64K bytes data memory address space
• Four 8-bit bidirectional ports
• Two 16-bit timer/counters
• One full duplex serial port
• Seven-source, two-level interrupt capability
• One extra 4-bit bit-addressable I/O port
• Two additional external interrupts
• Watchdog timer
• EMI reduction mode
• Built-in power management
• Code protection
• Packages:
− DIP 40: W78L51-24
− PLCC 44: W78L51P-24
− QFP 44: W78L51F-24
/ INT3
Publication Release Date: January 1999
- 1 -Revision A2
PIN CONFIGURATIONS
40-Pin DIP (W78L51)
W78L51
44-Pin PLCC (W78L51P)
P
P
P
P
P1.5
P1.6
P1.7
RST
RXD, P3.0
INT2, P4.3
TXD, P3.1
INT0, P3.2
INT1, P3.3
T0, P3.4
T1, P3.5
P
1
.
4
6 5 4 3
7
8
9
10
11
12
13
14
15
16
17
P
3
.
6
,
/
W
R
1
.
3
P
3
.
7
,
/
R
D
1
1
.
.
2
1
X
X
T
T
A
A
L
L
1
2
1
.
0
2 1 44 43 42
V
S
S
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
RST
RXD, P3.0
TXD, P3.1
INT0, P3.2
INT1, P3.3
T0, P3.4
T1, P3.5
WR, P3.6
RD, P3.7
XTAL2
XTAL1
VSS
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
VDD1
40
39
P0.0, AD0
P0.1, AD1
38
P0.2, AD2
37
36
P0.3, AD3
35
P0.4, AD4
34
P0.5, AD5
33
P0.6, AD6
P0.7, AD7
32
31
EA
30
ALE
29
PSEN
28
P2.7, A15
27
P2.6, A14
26
P2.5, A13
P2.4, A12
25
P2.3, A11
24
23
P2.2, A10
22
P2.1, A9
21
P2.0, A8
44-Pin QFP (W78L51F)
P
P
P
1
1
1
.
.
.
0
1
2
4039 38 37 36 35
X
V
X
T
S
T
S
A
A
L
L
1
2
/
I
N
T
3
,
P
V
4
D
.
D
2
P
P
2
4
.
.
0
0
,
A
8
A
A
A
A
D
D
D
D
3
1
2
0
,
,
,
,
P
P
P
P
0
0
0
0
.
.
.
.
3
2
1
0
34
33
P0.4, AD4
32
P0.5, AD5
31
P0.6, AD6
30
P0.7, AD7
29
EA
28
P4.1
27
ALE
26
PSEN
25
P2.7, A15
24
P2.6, A14
23
P2.5, A13
22212019181716151413
P
P
P
P
2
2
2
2
.
.
.
.
4
3
1
2
,
,
,
,
A
A
A
A
1
1
9
1
2
1
0
/
I
N
T
3
,
P
V
4
D
.
D
2
P
P
2
4
.
.
0
0
,
A
8
A
A
A
A
D
D
D
D
3
2
1
0
,
,
,
,
P
P
P
P
0
0
0
0
.
.
.
.
3
1
2
0
40
41
39
P0.4, AD4
38
P0.5, AD5
37
P0.6, AD6
36
P0.7, AD7
35
EA
34
P4.1
33
ALE
32
PSEN
31
P2.7, A15
30
P2.6, A14
29
P2.5, A13
2827262524232221201918
P
P
P
P
2
2
2
2
.
.
.
.
3
4
2
1
,
,
,
,
A
A
A
A
1
1
1
9
2
1
0
P1.5
P1.6
P1.7
RST
RXD, P3.0
INT2, P4.3
TXD, P3.1
INT0, P3.2
INT1, P3.3
T0, P3.4
T1, P3.5
1
2
3
4
5
6
7
8
9
10
11
P
1
.
4
44
12
P
3
.
6
,
/
W
R
P
1
.
3
43 4241
P
3
.
7
,
/
R
D
- 2 -
W78L51
INT0
INT1
WR
RD
INT2
EA
PIN DESCRIPTION
P0.0−P0.7
Port 0, Bits 0 through 7. Port 0 is a bidirectional I/O port. This port also provides a multiplexed low
order address/data bus during accesses to external memory.
P1.0−P1.7
Port 1, Bits 0 through 7. Port 1 is a bidirectional I/O port with internal pull-ups.
P2.0−P2.7
Port 2, Bits 0 through 7. Port 2 is a bidirectional I/O port with internal pull-ups. This port also provides
the upper address bits for accesses to external memory.
P3.0−P3.7
Port 3, Bits 0 through 7. Port 3 is a bidirectional I/O port with internal pull-ups. All bits have alternate
functions, which are described below:
PINALTERNATE FUNCTION
P3.0RXD Serial Receive Data
P3.1TXD Serial Transmit Data
P3.2
P3.3
P3.4T0 Timer 0 Input
P3.5T1 Timer 1 Input
P3.6
P3.7
External Interrupt 0
External Interrupt 1
Data Write Strobe
Data Read Strobe
P4.0−P4.3
Another bit-addressable bidirectional I/O port P4. P4.3 and P4.2 are alternative function pins. It can
be used as general I/O pins or external interrupt input sources (
External Address Input, active low. This pin forces the processor to execute out of external ROM.
This pin should be kept low for all W78C31 operations.
RST
Reset Input, active high. This pin resets the processor. It must be kept high for at least two machine
cycles in order to be recognized by the processor.
- 3 -Revision A2
/ INT3 ).
Publication Release Date: January 1999
W78L51
PSEN
PSEN
PSEN
ALE
Address Latch Enable Output, active high. ALE is used to enable the address latch that separates the
address from the data on Port 0. ALE runs at 1/6th of the oscillator frequency. A single ALE pulse is
skipped during external data memory accesses. ALE goes to a high impedance state during reset with
a weak pull-up.
Program Store Enable Output, active low.
address/data bus during fetch and MOVC operations.
enables the external ROM onto the Port 0
goes to a high impedance state during
reset with a weak pull-up.
XTAL1
Crystal 1. This is the crystal oscillator input. This pin may be driven by an external clock.
XTAL2
Crystal 2. This is the crystal oscillator output. It is the inversion of XTAL1.
VSS, VDD
Power Supplies. These are the chip ground and positive supplies.
BLOCK DIAGRAM
P1.0
~
P1.7
P3.0
~
P3.7
P4.0
~
P4.3
INT2
INT3
Port
1
Port
Port
3
4
Interrupt
UART
Port 1
Latch
Timer
0
Timer
1
Port 3
Latch
Port 4
Latch
Oscillator
ACC
PSW
Instruction
Decoder
&
Sequencer
Bus & Clock
Controller
ALU
SFR RAM
Address
128bytes
RAM & SFR
4KB
ROM
Watchdog
Timer
Reset Block
T2T1
B
Stack
Pointer
Power control
Port 0
Latch
DPTR
Temp Reg.
PC
Incrementor
Addr. Reg.
Port 2
Latch
Port
0
Port
2
P0.0
~
P0.7
P2.0
~
P2.7
XTAL1PSENALEGNDVDDRSTXTAL2
- 4 -
W78L51
FUNCTIONAL DESCRIPTION
The W78L51 architecture consists of a core controller surrounded by various registers, five general
purpose I/O ports, 128 bytes of RAM, two timer/counters, one watchdog timer and a serial port. The
processor supports 111 different opcodes and references both a 64K program address space and a
64 K data storage space.
Timers 0, 1
Timers 0, 1 each consist of two 8-bit data registers. These are called TL0 and TH0 for Timer 0, TL1
and TH1 for Timer 1. The TCON and TMOD registers provide control functions for timers 0, 1.
Clock
The W78L51 is designed to be used with either a crystal oscillator or an external clock. Internally, the
clock is divided by two before it is used. This makes the W78L51 relatively insensitive to duty cycle
variations in the clock.
Crystal Oscillator
The W78L51 incorporates a built-in crystal oscillator. To make the oscillator work, a crystal must be
connected across pins XTAL1 and XTAL2. In addition, a load capacitor must be connected from each
pin to ground, and a resistor must also be connected from XTAL1 to XTAL2 to provide a DC bias
when the crystal frequency is above 24 MHz.
External Clock
An external clock should be connected to pin XTAL1. Pin XTAL2 should be left unconnected. The
XTAL1 input is a CMOS-type input, as required by the crystal oscillator. As a result, the external clock
signal should have an input high level of greater than 3.5 volts when VDD = 5 volts.
Power Management
Idle Mode
The idle mode is entered by setting the IDL bit in the PCON register. In the idle mode, the internal
clock to the processor is stopped. The peripherals and the interrupt logic continue to be clocked. The
processor will exit idle mode when either an interrupt or a reset occurs.
Power-down Mode
When the PD bit of the PCON register is set, the processor enters the power-down mode. In this
mode all of the clocks, including the oscillator are stopped. The only way to exit power-down mode is
by a reset.
Reset
The external RESET signal is sampled at S5P2. To take effect, it must be held high for at least two
machine cycles while the oscillator is running.
An internal trigger circuit in the reset line is used to deglitch the reset line when the W78L51 is used
with an external RC network. The reset logic also has a special glitch removal circuit that ignores
glitches on the reset line.
During reset, the ports are initialized to FFH, the stack pointer to 07H, PCON (with the exception of
bit 4) to 00H, and all of the other SFR registers except SBUF to 00H. SBUF is not reset.
Publication Release Date: January 1999
- 5 -Revision A2
W78L51
INT2
INT2
INT2
New Defined Peripheral
In order to be more suitable for I/O, an extra 4-bit bit-addressable port P4 and two external interrupts
, INT3 have been added to either the PLCC or QFP package. And description follows:
1.
Two additional external interrupts,
interrupt 0 and 1 in the standard 80C52. The functions/status of these interrupts are
determined/shown by the bits in the XICON (External Interrupt Control) register. The XICON register
is bit-addressable but is not a standard register in the standard 80C52. Its address is at 0C0H. To
set/clear bits in the XICON register, one can use the "SETB (/CLR) bit" instruction. For example,
"SETB 0C2H" sets the EX2 bit of XICON.
***XICON - external interrupt control (C0H)
PX3: External interrupt 3 priority high if set
EX3: External interrupt 3 enable if set
IE3: If IT3 = 1, IE3 is set/cleared automatically by hardware when interrupt is detected/serviced
IT3: External interrupt 3 is falling-edge/low-level triggered when this bit is set/cleared by software
PX2: External interrupt 2 priority high if set
EX2: External interrupt 2 enable if set
IE2: If IT2 = 1, IE2 is set/cleared automatically by hardware when interrupt is detected/serviced
IT2: External interrupt 2 is falling-edge/low-level triggered when this bit is set/cleared by software
Seven-source interrupt informations:
/ INT3
and INT3 , whose functions are similar to those of external