A blocking voltage de-rating factor of 0.13% per °C is applicable to this device for Tj below 25°C.
3.0 ABCD Constants
These constants (applicable only over current range of VF characteristic in Figure 1) are the coefficients of
the expression for the forward characteristic given below:
where IF = instantaneous forward current.
4.0 Reverse recovery ratings
RRM
(V)
V
RSM
(V)
IDICIBAV⋅+⋅+⋅+=)ln(
FFFF
V
dc
R
(V)
(i) Qra is based on 50% Irm chord as shown in Fig.(a) below.
(ii) Qrr is based on a 150µs integration time.
s
µ
150
I.e.
(iii)
=
FactorK=
dtiQ
.
rrrr
∫
0
t
1
t
2
Data Sheet. Types M2322Z#300 to M2322Z#400 Issue 1Page 3 of 11November, 2003
WESTCODE
f
)
WESTCODE An IXYS CompanyFast Recovery Diode Types M2322Z#300-400
WESTCODEWESTCODE
5.0 Reverse Recovery Loss
The following procedure is recommended for use where it is necessary to include reverse recovery loss.
From waveforms of recovery current obtained from a high frequency shunt (see Note 1) and reverse
voltage present during recovery, an instantaneous reverse recovery loss waveform must be constructed.
Let the area under this waveform be E joules per pulse. A new sink temperature can then be evaluated
from:
[]
Where k = 0.2314 (°C/W)/s
E
= Area under reverse loss waveform per pulse in joules (W.s.)
= Rated frequency in Hz at the original sink temperature.
R
= d.c. thermal resistance (°C/W)
th(JK
The total dissipation is now given by:
fEWW
originaltot
NOTE 1 - Reverse Recovery Loss by Measurement
This device has a low reverse recovered charge and peak reverse recovery current. When measuring the
charge, care must be taken to ensure that:
(a) AC coupled devices such as current transformers are not affected by prior passage of high
amplitude forward current.
(b) A suitable, polarised, clipping circuit must be connected to the input of the measuring oscilloscope
to avoid overloading the internal amplifiers by the relatively high amplitude forward current signal.
)()(
⋅+=
RfkETT⋅+⋅−=
)()(JKthMAXjSINK
(c) Measurement of reverse recovery waveform should be carried out with an appropriate critically
damped snubber, connected across diode anode to cathode. The formula used for the calculation of this
snubber is shown below:
2
R
Where:Vr= Commutating source voltage
6.0 Snubber Components
When selecting snubber components, care must be taken not to use excessively large values of snubber
capacitor or excessively small values of snubber resistor. Such excessive component values may lead to
device damage due to the large resultant values of snubber discharge current. If required, please consult
the factory for assistance.
V
⋅= 4
C
R = Snubber resistance
r
di
C
⋅
dt
S
= Snubber capacitance
S
Data Sheet. Types M2322Z#300 to M2322Z#400 Issue 1Page 4 of 11November, 2003
Loading...
+ 7 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.