Copyright (c) 1987-1988. All RIGHTS RESERVED: No part of this publication
may be reproduced, stored in a retrieval system or transmitted in any form by any
means; electronic, mechanical, photo copying, recording, or otherwise, without
the prior written permission of Watlow Anafaze
Printed in U.S.A.
STATEMENT OF WARRANTY
ANAFAZE, Incorporated warrants that the Products furnished under this
Agreement will be free from material defects in material and workmanship for a
period of 90 days from the date of shipment. The customer shall provide notice to
ANAFAZE, Incorporated of any such defect within one week after the Customer's
discovery of such defect. The sole obligation and liability of ANAFAZE,
Incorporated under this warranty shall be to repair or replace, at its option,
without cost to the Customer, the product or part which is so defective and as to
which such notice is given.
Upon request by ANAFAZE, Incorporated, the product or part claimed to be
defective shall immediately be returned at the Customer's expense to ANAFAZE,
Inc. Replaced or repaired products or parts will be shipped to the Customer at the
expense of ANAFAZE, Incorporated
There shall be no warranty or liability for any products or parts which have been
subject to misuse, accident, negligence, failure of electric power or modification
by the Customer without ANAFAZE, Incorporated's written approval. Final
determination of warranty eligibility shall be made by ANAFAZE, Incorporated.
If a warranty claim is considered invalid for any reason, the Customer will be
charged for services performed and expenses incurred by ANAFAZE,
Incorporated in handling and shipping the returned unit.
As to replacement parts supplied or repairs made during the original warranty
period, the warranty period of the replacement or repaired part shall terminate
with the termination of the warranty period with respect to the original product or
part.
THE FOREGOING WARRANTY CONSTITUTES THE SOLE
LIABILITY OF ANAFAZE INCORPORATED AND THE CUSTOMER'S
SOLE REMEDY WITH RESPECT TO THE PRODUCTS AND IS IN LIEU
OF ALL OTHER WARRANTIES, LIABILITIES AND REMEDIES.
EXCEPT AS THUS PROVIDED, ANAFAZE, INC. DISCLAIMS ALL
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
PLEASE NOTE EXTERNAL SAFETY DEVICES MUST BE USED WITH
THIS EQUIPMENT SEE WARNING ON NEXT PAGE.
PLEASE -- See last page to register your name and address with ANAFAZE
for technical updates.
WARNING
ANAFAZE HAS MADE EFFORTS TO ENSURE THE RELIABILITY AND
SAFETY OF THE SYSTEM 32 AND PROVIDE RECOMMENDATIONS
FOR ITS SAFE USE IN SYSTEMS APPLICATIONS. PLEASE NOTE
THAT IN ANY APPLICATION, FAILURES CAN OCCUR THAT WILL
RESULT IN FULL CONTROL OUTPUTS OR OTHER OUTPUTS THAT
MAY CAUSE DAMAGE OR UNSAFE CONDITIONS IN THE
EQUIPMENT OR PROCESS CONNECTED TO THE ANAFAZE SYSTEM
32.
GOOD ENGINEERING PRACTICES, ELECTRICAL CODES, AND
INSURANCE REGULATIONS REQUIRE INDEPENDENT, EXTERNAL,
SAFETY DEVICES BE USED TO PREVENT POTENTIALLY
DANGEROUS OR UNSAFE CONDITIONS ASSUMING THAT THE
SYSTEM 32 CAN FAIL WITH OUTPUTS FULL ON, OR OUTPUTS
FULL OFF, OR OTHER CONDITIONS THAT WOULD BE
UNEXPECTED.
THE SYSTEM 32 INCLUDES A RESET CIRCUIT THAT WILL SET THE
CONTROL OUTPUTS TO THE DATA STORED IN THE EEROM IF THE
MICROPROCESSOR RESETS -- NORMALLY THE RESULT OF A
POWER FAILURE AND POWER RETURN. THE COMPUTER OR
OTHER HOST DEVICE SHOULD BE PROGRAMMED TO
AUTOMATICALLY RELOAD THE DESIRED OPERATING
CONSTANTS, OR SAFE VALUES FOR THE PROCESS, UPON RETURN
OF SYSTEM POWER. THE COMPUTER CAN ALSO BE
PROGRAMMED TO CHECK PROCESS DATA AND CAUSE ALARMS
INCLUDING CONTACT OUTPUTS FOR AUTOMATIC SHUT DOWN
TO ASSIST IN PREVENTING DANGEROUS OR UNSAFE CONDITIONS.
ANAFAZE WILL BE PLEASED TO PROVIDE APPLICATION
ASSISTANCE AND PROGRAMMING IF DESIRED. IN ANY EVENT,
THESE SAFETY FEATURES DO NOT ELIMINATE THE NEED TO
PROVIDE EXTERNAL, INDEPENDENT SAFETY DEVICES IN
POTENTIALLY DANGEROUS OR UNSAFE CONDITIONS.
ANAFAZE ALSO OFFERS AN OPTIONAL SOFTWARE PROGRAM
FOR IBM PC COMPATIBLE COMPUTERS THAT WILL RELOAD THE
SYSTEM 32 WITH THE CURRENT VALUES IN THE COMPUTER
MEMORY UPON A RESET. THE USER MUST INSURE THAT THIS
WILL BE SAFE FOR THE PROCESS. THIS FEATURE STILL DOES
NOT ELIMINATE THE NEED FOR APPROPRIATE EXTERNAL,
INDEPENDENT SAFETY DEVICES.
PLEASE CONTACT ANAFAZE IMMEDIATELY IF THERE ARE ANY
QUESTIONS ABOUT SYSTEM SAFETY
11.4 SYSTEM 32 Problems _______________________________________64
1.0 INTRODUCTION
The ANAFAZE SYSTEM 32 is the key element used to form an innovative
measurement and control system. It combines its power with an IBM PC or
similar computer to deliver an extremely efficient data acquisition and process
control system. The SYSTEM 32 concentrates its power in analog measurement,
independent digital loop control, alarm monitoring, and signal processing. This
frees the computer to perform process control supervision including: graphic
process displays, operator data entry, data printout, data storage, and process
performance analysis.
The flexible ANAFAZE SYSTEM 32 is built upon a series of cost effective plug
in modules to handle a variety of diverse requirements. These plug in modules
make it easy to configure the SYSTEM 32 to specifically fit individual application
needs. Thus a tailored system can be obtained from off the shelf modules.
The SYSTEM 32 is an excellent choice for applications where multiple inputs
such as temperature, flow, speed, pressure, and others need to be measured or
controlled. This is because a mixture of different sensor types can be directly
connected to the SYSTEM 32. It is also well suited for processes with multiple
temperature zones and control methods including cascade, ramp and soak, and
adaptive control. The SYSTEM 32 is especially efficient since each controller
provides independent stand-alone PID control of up to 32 process loops and up to
96 channels of data acquisition.
The result is a powerful distributed process control system with the reliability of
independent loop control and the flexibility of computer supervision.
1.1 SYSTEM FEATURES
1.1.1 ACCURATE MEASUREMENT: Every process requires accurate
data measurement. The SYSTEM 32 assures this with optically-isolated
input modules. Further noise rejection is achieved by an integrating
measurement technique. Input to input isolation is provided with reed relay
switching. This combination enables the SYSTEM 32 to deliver needed
accuracy in difficult process environments.
1.1.2 CONVENIENT INSTALLATION: Substantial savings in wiring
and installation costs can be achieved by locating SYSTEM 32 units
physically near the process. This is because the communication between the
SYSTEM 32 and the computer requires only four wires. A local or remote
system of up to 16 units [512 loops] can be connected on a single serial line
using RS-232, RS-485, or 20ma loop communication -- all opticallyisolated. Larger systems may utilize multiple communication lines.
1
1.1.3 PROCESS INTEGRITY: The ANAFAZE approach delivers high
integrity because the SYSTEM 32 independently controls and checks each
loop for alarms while it is in turn checked by the computer. Thus a
computer failure will not affect the process and a controller problem will be
detected by the computer. Further integrity is built in to the SYSTEM 32
since it has EEROM memory to protect control and alarm parameters. A
watchdog timer with digital output adds to process integrity.
1.1.4 MULTIPLE TYPES OF INPUTS AND CONTROL OUTPUTS:
Since there is a large variety of processes and sensor types the system 32 has
been designed to accept nearly any input and provide nearly any control
output. Measurements from thermocouples, RTD's, infrared sensors,
millivolt, milliamp, and other signals are directly connected the SYSTEM
32. Thermocouple reference junction compensation and linearization is
done by the SYSTEM 32. With plug in input modules, 16 to 96 inputs can
be accommodated in a single SYSTEM 32.
For control, each SYSTEM 32 includes, as standard, 32 digital outputs for
time proportioning or on/off control. Additionally, 8 standard on/off
outputs can be used for global alarm shutdowns or process warnings.
Optional plug- in analog output modules provide open or closed loop
control. Each module contains 16 outputs which includes both 4 to 20ma
and 0 to 5Vdc outputs which can be selected individually for each output.
1.1.5 STANDARD [ALLEN BRADLEY] COMMUNICATION
PROTOCOL: The SYSTEM 32 utilizes a form of ANSI 3.28-1976
standard protocol for communication. Jumper selection of CRC or BCC,
and baud rate allow the system to matched to any host computer or other
device. This ANSI standard is also used by Allen Bradley enabling the
SYSTEM 32 to be connected directly to these programmable controllers.
1.1.6 COMPACT EASILY MAINTAINED PACKAGING: Front plug
in modules with removable screw terminal blocks provide high reliability
and convenient maintainability. A 3 and 6 slot housing is available and the
modules require a 5Vdc power supply which can be mounted internally or
externally.
1.2 PLUG IN SYSTEM 32 MODULES
The flexible ANAFAZE SYSTEM 32 design allows cost effective matching of
measurement and control capabilities to the process needs. By selecting a
combination of plug in modules the system will perform full PID control
processing, communications to a host computer, industrial sensor measurement,
and deliver precise control outputs.
2
Configurations can start with only the PROCESSOR I/O MODULE to provide 32
time proportioning or on/off open loop control outputs. For closed loop control,
simply add an ANALOG INPUT MODULE, either reed relay for 16 inputs, or
solid state for 32 inputs. A plug in ANALOG OUTPUT MODULE provides 16
analog control outputs.
Systems can be matched to different applications by combining the following
modules:
1.2.1 PROCESSOR I/O MODULE: The on board microprocessor
performs all necessary control calculations, on-line analog calibration,
system self test, thermocouple compensation and linearization, and
communication to the host computer. This module contains the
communications interface, 32 time proportioning or on/off control outputs,
24 digital outputs, and 16 digital inputs.
Powerful Control: The SYSTEM 32 features a digital control algorithm
that allows each loop to be independently defined. Control outputs can be
set for closed loop or open loop with computer setting of the output level.
Switching between open loop and closed loop control can be initiated with
bumpless transfer. Closed loop control modes can be selected as: on/off,
proportional only [P], proportional with integral [PI], or full PID. In
addition, each output can be selected as reverse [heat] or direct [cool] acting
and a programmable digital output filter can be used to further match each
loop to the process conditions.
Unique Control Output Flexibility: Total control flexibility is assured
since each control output can be easily selected from the computer to match
individual process needs. The unique ANAFAZE design offers: on/off,
Cycle Time Proportioning, or Distributed Zero Crossing. Further flexibility
is included since each output can be set as reverse or direct acting. When a
process requires high power or the use of contactors, the SYSTEM 32 Cycle
Time Proportioning outputs are automatically balanced to minimize the
peak power consumption. For processes with solid-state power switching,
the Distributed Zero Crossing outputs provide the smoothest application of
control power.
Open Heater Detection: The SYSTEM 32 measures the current flowing in
each heater or other time proportioning output circuit to ensure that open
heaters and stuck relays are detected.
Protected Memory: Setpoints and other control parameters entered from
the computer are stored in non-volatile memory eliminating the need to reenter these parameters after a power failure.
Communication Monitor: A communications monitor can be enabled that
will turn off all control outputs after a selectable time period if no
communication is received form the host computer.
3
1.2.2 ANALOG INPUT MODULES: Two optically-isolated analog input
modules are available for the SYSTEM 32. A 16 channel reed relay
switching module and a 32 channel solid state switching module. The reed
relay module provides the highest level of input noise protection and the
solid state module is more economical. The two types of input modules can
be mixed in a single controller. Allowing up to 48 channels of reed relay
inputs, 96 channels of solid state inputs , or any combination such as 32
reed relay inputs with 32 solid state inputs. Both modules offer direct
connection of industrial sensors including thermocouples, RTD's, infrared
sensors, milliamp, and millivolt signals.
1.2.3 PULSE INPUT MODULE: Allows measurement of speed, RPM,
flow, and other inputs from sensor that produce pulse outputs. Each module
accepts up to 32 inputs and optical- isolation can be optionally added where
necessary. The pulse input module requires an expanded PROCESSOR I/O
MODULE, please contact ANAFAZE for additional information.
1.2.4 ANALOG OUTPUT MODULE: Provides 16 analog outputs for
open or closed loop control. Both 4 to 20ma and 0 to 5vdc are available for
each output [select one].
1.2.5 HOUSING: provides fully enclosed mounting for all modules and
includes a passive [no electrical components] interconnecting backplane. A
3 and 6 slot housing is offered. The 6 slot housing can be mounted in
standard relay racks. The six slot housing is 19" wide, 12.25" high, and
only 7.5" deep. The 3 slot housing is 10 5/8" wide, 12.25" high, and 7.5"
deep.
1.2.6 POWER SUPPLY: All the SYSTEM 32 modules operate from this
5vdc power supply. The power supply is furnished mounted to a standard
module front panel and occupies one slot in the housing. If desired the
power supply can be removed from the panel and externally mounted. This
frees the slot for an other module. The power supply connects to terminals
on the passive backplane.
1.3 ANASOFT 32 -- POWERFUL OPERATING SOFTWARE
Whether the process is simple or complex it must be defined and set up in order to
control it. Therefor, another essential element of a successful measurement and
control system is the application software. ANASOFT 32 is sophisticated menu
driven software program for the SYSTEM 32 that runs on IBM PC and compatible
computers. It is designed to be easily operated by inexperienced computer users
and it offers full flexibility for complex applications.
1.3.1 GRAPHIC PROCESS DISPLAYS: ANASOFT features a process
monitor screen that provides an overview of the system status at a glance.
Measured data can be displayed in either a graphic or numeric mode. On
4
line, real-time data for each input can be graphically plotted on the screen.
Data is continuously stored for every input to provide a history over user
selected time intervals. These on line plots enable quick analysis of process
conditions for optimizing performance, tuning control loops, determining
reasons for alarms, and other situations.
1.3.2 TUNING AND PROCESS SET UP: The password protected tune
menu displays necessary data for efficient tuning since it displays real time
process information. Key selectable sub menus are used to enter control
parameters, input scaling, trend plot scaling and time interval, warning
levels, and alarm setpoints.
1.3.3 DATA LOGGING: Hardcopy data is essential for record keeping,
quality control, required agency reporting, and production reports.
ANASOFT offers both automatic printer data logging, and disk data logging
in LOTUS compatible files. An available option for data recording when the
computer is not on line is the on-board memory option. This is 28.8k Bytes
of RAM memory for each A32-PIOM module in the system.
1.3.4 SYSTEM EXPANSION: ANAFAZE can provide complete turn key
systems for advanced control applications. Ramp and soak, adaptive
control, cascade control, and other types of systems can be designed and
installed by ANAFAZE engineering. Since many applications can be based
on ANASOFT, the cost and the time period for implementation is reduced.
ANASOFT is written in Microsoft QUICKBASIC and the source code is
provided for users that want to make their own modifications.
5
2.0 SPECIFICATIONS
2.1 ANALOG INPUTS
Number of channels:32 for PID control, 48 total with reed multiplexer,
96 total with solid state.
Multiplexing:three wire reed relay, guarded inputs. two wire solid
state.
A/D converter:integrating voltage to frequency.
Loop update:each loop 2 times per second, reed modules; 1 time
per second solid state.
Input isolation:optical coupling.
Input resolution:0.02% full scale [Approximately 12.7uv].
Temp. coefficient:.005% per degree.
Measurement accuracy:+0.1% full scale.
Thermocouple break:up scale standard.
Standard input types:All are present in every system: select by command
from host, any order, any mix:
Thermocouple ranges:J: -350 to 1400 F K: -450 to 2500 F
[200 ohms max.]T: -450 to 750 F E: -450 to 1450 F
R: 0 to 3200 F S: 0 to 3200 F
SYSTEM 32 must be operating between 0 and 50
degrees C for full T/C ranges.
Thermocouple scaling:Degrees F [convert to degrees C in computer].
Other Inputs:-10mv to 60mv input range with provision for
scaling resistors and bridges for Voltage/Current
andRTD inputs.
Linear Scaling:-16.7% to 100% for -10 to 60 mv
Voltage Ranges:100v max:Select resistors for 0 to 10v, 0 to 5v, 2 to 10v, etc.
as required.
Current Ranges:Select resistors for 0 to 10ma, 4 to 20ma, 10 to
50ma, etc. as required.
Bridge Excitation:10v+.13%, at 50ma max [temperature coefficient
Mounting:4 mounting holes for standard rack or panel
mounting -- see outline drawings.
Weight:maximum 20 pounds depends on plug modules
selected.
8
2.9 SUBASSEMBLY IDENTIFICATION
A32-PIOM: PROCESSOR I/O MODULE includes factory selectable
communication interface [RS-232 or current loop], 32 control outputs, 24 digital
outputs, and 16 digital inputs.
A32-RRAIM: REED RELAY ANALOG INPUT MODULE for 16 mixed sensor
inputs including direct connection of thermocouples [J, K, or T] or millivolt [ -5 to
60mv]. Includes reference junction sensors for thermocouple inputs.
A32-SSAIM: SOLID STATE ANALOG INPUT MODULE for 32 mixed analog
inputs including direct connection of thermocouple or millivolt inputs. Includes
reference junction sensors for thermocouple inputs.
A32-IAIM-SIXX: SPECIAL INPUT SCALING for RRAIM or SSAIM to connect
milliamp, voltage, or RTD inputs. Consult ANAFAZE for details.
A32-AOM : ANALOG OUTPUT MODULE with 16 analog outputs set for both 0
to 5Vdc and 4 to 20ma. Consult ANAFAZE for other output levels.
A32-H6: 6 SLOT HOUSING including passive interconnection backplane and up
to three blank front panels. Can be mounted on a panel or in a standard 19 rack
[12.5" high, 19"wide, 7.5"deep].
A32-H3: 3 SLOT HOUSING including passive backplane and up to one blank
front panel. For panel mounting 12.5" high, 10.7" wide and 7.5" deep.
A32-PS: POWER SUPPLY: mounted on a blank front panel with wiring to
passive backplane. Supply can be externally mounted or plugged into a module
slot. Dimensions: 9" high, 2" wide and 5" deep.
A32-OS: OPERATOR STATION: allows for data display and setpoint entry away
from the system computer [requires ANASOFT].
ANASOFT-32: Software operating system for IBM PC and compatible computers.
CABLES: Interconnection cables with an RS-232 connector on one end and wires
There are some precautions that must be observed when installing SYSTEM 32:
WARNING: ELECTRICAL SHOCK DANGER
It is very important that all system power including the power input
be disconnected before servicing the ANAFAZE SYSTEM 32. HIGH
VOLTAGE MAY BE PRESENT EVEN WHEN POWER IS TURNED
OFF.
To reduce the danger of electrical shock always mount the SYSTEM 32
in an enclosure that prevents personnel contact.
Since the ANAFAZE SYSTEM 32 can make measurements of input signals that
are not referenced to ground, the SYSTEM 32 ground and other signal lines can
have power line or other high voltage present even if the input power is turned off.
This could happen, for example, if a thermocouple was inadvertently shorted to the
AC power line.
WARNING: USE CORRECT INSULATION TRIM LENGTH AND
WIRE GAGE
The correct insulation trim length is 1/4" or 5mm. Care must be taken
to prevent contact between any wires and the case which is grounded.
The terminal manufacturer has UL approval for #14 to #30 AWG
(American Wire Gage). ANAFAZE recommends using #18 or #20
AWG.
To effectively use the plug-in terminals, the wire insulation should be trimmed so
that the wire fits inside the terminal with no bare wire exposed. Stranded wire
should be tinned.
WARNING: SUPPORT CABLES
Power, input, and output cables should be supported to reduce strain
on the connectors and to prevent them from being pulled out of the
terminal strips.
3.1 PHYSICAL CONSIDERATIONS
The ANAFAZE SYSTEM 32 consists of a number of plug in modules for a
housing with a passive backplane. Three or six slots are provided for plug-in
option boards.
3.1.1 MOUNTING [SEE DIAGRAMS ON NEXT 3 PAGES]
For optimum performance when directly connecting thermocouple inputs
the unit should be protected from thermal shocks whenever possible. This
will minimize any temperature gradients across the terminal strips and result
in the highest accuracy.
10
6 SLOT HOUSING DIMENSIONS
11
3 SLOT HOUSING DIMENSIONS
12
POWER SUPPLY DIMENSIONS
13
3.1.3 DETACHABLE TERMINAL BLOCKS
WARNING - ALWAYS CHECK TERMINAL LOCATION AND
ORIENTATION
All connections, except the Ac power supply, are made on removable
terminal strips. Terminal strip removal is achieved by removing the
retaining screws and pulling them directly away from the front panel. The
terminal strips must be carefully installed in the correct position and not up
side down.
3.2 CONFIGURATION
WARNING - TURN OFF POWER BEFORE CHANGING SWITCH
The unit configuration switch is located on the A32-PIOM PROCESSOR I/O
MODULE. It is a eight position DIP switch which is used to set the unit station
number, the baud rate, and the communications check character. The functions are:
Four bit switches (Switch 1 - Switch 4) are provided on the SYSTEM 32 to
select controller addresses. These are read in hex format providing 16
addresses, 0000 to 1111. The base Station Number is 08 and the bit
switches select an address above that. Setting the bit switch in the on
position is considered a one by the processor.
The communications timer provides a method of turning off all control
outputs if there is a problem in the host computer that effects
communication. It operates by monitoring activity on the communication
line. If this controller has not been contacted within the time interval, it
automatically sets all control outputs to manual with zero outputs. A
dedicated digital output is set when the watchdog times out.
WARNING: IF THE COMMUNICATIONS WATCHDOG IS
ENABLED, INSURE THAT THE HOST COMPUTER
COMMUNICATES WITH EACH SYSTEM 32 WITH IN THE TIME
LIMIT. IF NOT THE CONTROL OUTPUTS WILL BE SET TO
MANUAL WITH ZERO OUTPUT.
Switch SettingWatchdog Status
OnEnabled
OffDisabled
The hardware bit switch number 5 must be set to the "ON" position to
enable the communications watchdog timer. If the switch is ON at startup
then the controller constantly monitors the elapsed time between host
communication packets and takes action should the elapsed time overflow
the preset timeout period.
Furthermore, the option may be disabled by the host. If a value of -1 is
written into the timeout period counter then the controller disables the
option and ceases to monitor elapsed time. To re-enable the option via
software, the host must rewrite a valid timeout period to the watchdog
counter.
Timeout Period
The host computer may adjust the timeout period value within the range of
1 to 1092 seconds (or 18.2 minutes) with a resolution of one second. A 2byte number representing the length of the timeout period in seconds can be
written to the controller data table addresses 0290 and 0291 Hex.
The default timeout period (set by the controller on startup/reset) is 2
minutes (120 seconds).
Controller Action on Timeout
If the watchdog option is enabled and the elapsed time between
communication packets from the host exceeds the set timeout period, the
controller initiates a communications alarm sequence. This sequence
involves the following :
15
1. All control output types are set to MANUAL
2. All output values for control outputs are set to 0%.
3. Digital output 72 is set ON. This output is available at
TB2, pin 30.
4. The internal controller reset flag is set TRUE. (Hence the host
will receive a RESET status code upon re-establishing
communication).
3.2.3 BAUD RATE SELECTION
Switch 6 is used to set the baud rate at either 2400 or 9600. If
communication problems occur try 2400 baud.
Switch Setting Baud Rate
0 2400
1 9600
3.2.4 ERROR CHECKING
Switch 7 is used to select the method of error that is used by the SYSTEM
32. BCC is slightly faster and can be used for most applications. CRC
provides the highest data integrity and is recommended if communications
problems are noted.
Switch Setting Error Check
0 BCC
1 CRC
3.3 AC POWER INPUT
The ANAFAZE 32 PID requires 120VAC at 60Hz for power input to the power
supply. The power supply can be mounted to a module panel or externally if
desired.
3.3.1 POWER CONNECTIONS
The power must be connected according to the terminal labels. The
abbreviations are:
FG Third wire ground -- normally Green wire
NEU 110VAC Neutral -- normally white wire
HOT 110VAC Hot -- normally black wire
+5 +5Vdc input on back plane
GND GND on backplane
WARNING: DO NOT REVERSE THE +5 AND GND
CONNECTIONS IRREVERSIBLE DAMAGE TO THE 32 SYSTEM
WILL OCCUR
16
3.3.2 POWER FUSE
The SYSTEM 32 power supply is not fused. An external 1/2 AMP fuse in
the AC input line is recommended.
4.0 COMMUNICATIONS SET-UP AND CONNECTIONS
The ANAFAZE SYSTEM 32 is designed for three types of serial communications:
RS-232, RS-485, and 20ma current loop. Up to 16 units can be connected on one
communication line.
4.1 RS-232
The optically-isolated RS-232 interface is located on the processor module A32PIOM. Multiple SYSTEM 32 units are connected in parallel. Connections are
made on the upper terminal block TB1 as follows:
Computer SYSTEM 32 [1] SYSTEM 32 [2]
TB1 TB1
RX #3 ----------- TX- #2 ------------ TX- #2
TX #2 ----------- RX+ #3 ------------ RX+ #3
GND #7 ---------- RX- #4 ------------ RX- #4
The computer pins are for the normal 25 pin RS-232 connector. On some
computers transmit TX and receive RX may be reversed. Please check your
computer manual for details.
The ANAFAZE SYSTEM 32 RS-232 interface transmits data on TX- and receives
data on RX+. The host computer TXD output should be connected to the SYSTEM
32 RX+ input. The SYSTEM 32 TX- output should be connected to the host
computer RXD input. Host computer communication ground should be connected
to the SYSTEM 32 RX-.
Multiple SYSTEM 32 units are connected on the RS-232 line in parallel. The
SYSTEM 32 nearest to the computer is connected as described above. Then each
SYSTEM 32 is daisy chained wire for wire to the next unit. The next units' TX- is
connected to the first units' TX-, RX+ to RX+, and RX- to RX- etc.
WARNING: REMOVE JUMPER FOR MULTIPLE SYSTEM 32
INSTALLATIONS
Jumper JU18 must be removed on all but the farthest unit from the
computer when multiple units are on the same communications line.
17
Loading...
+ 49 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.