TEST PROCEDURES..........................................................................................5-5
Annex AOPTION 11 FAST PULSE MODULATION ...........................................................A-1
Index ..............................................................................................................................1-1
iii
Page 5
Patent protection
The 3002 VXI Signal Generator is protected by the following patents:
EP 0322139
GB 2214012
US 4870384
EP 0125790
GB 2140232
US 4609881
PREFACE
iv
Page 6
Precautions
These terms have specific meanings in this manual:
WARNING
information to prevent personal injury. information to prevent damage to the equipment. important general information.
Symbols
The meaning of hazard symbols appearing on the equipment and in the documentation is as
follows:
Symbol Description
Refer to the operating manual when this symbol is marked on
the instrument. Familiarize yourself with the nature of the
hazard and the actions that may have to be taken.
Toxic hazard
Static sensitive components
General conditions of use
This product is designed and tested to comply with the requirements of IEC/EN61010-1 ‘Safety
requirements for electrical equipment for measurement, control and laboratory use’, for Class III
portable equipment and is for use in a pollution degree 2 environment. The equipment is designed
to operate from an installation category I supply.
Equipment should be protected from the ingress of liquids and precipitation such as rain, snow, etc.
When moving the equipment from a cold to a hot environment, it is important to allow the
temperature of the equipment to stabilize before it is connected to the supply to avoid condensation
forming. The equipment must only be operated within the environmental conditions specified in
Chapter 1 ‘Performance data’ in the Operating/Instruction manual, otherwise the protection
provided by the equipment may be impaired.
This product is not approved for use in hazardous atmospheres or medical applications. If the
equipment is to be used in a safety-related application, e.g. avionics or military applications, the
suitability of the product must be assessed and approved for use by a competent person.
WARNING
Electrical hazards (DC supply voltage)
This equipment conforms with IEC safety Class III, meaning that for continued safety it must only
be connected to supplies and signal sources which conform to ‘Separated Extra-Low Voltage’
(SELV and SELV-E) voltage and insulation requirements. No hazardous voltages are generated
internally. See under ‘Performance data’ in Chapter 1 for the maximum permitted voltage levels
that can be applied.
Do not remove instrument covers as this may result in personal injury. There are no userserviceable parts inside.
Refer all servicing to qualified personnel. See list of Service Centers at rear of manual.
v
Page 7
WARNING
Fire hazard
WARNING
Toxic hazards
WARNING
Beryllia
Access to the supply fuses is through the removal of an external cover. Removal of the covers
should be referred to qualified Personnel. For continued protection against fire, fuses must only be
replaced with those of the correct rating and type.
Some of the components used in this equipment may include resins and other materials which give
off toxic fumes if incinerated. Take appropriate precautions, therefore, in the disposal of these
items.
Beryllia (beryllium oxide) is used in the construction of some of the components in this equipment.
This material, when in the form of fine dust or vapour and inhaled into the lungs, can cause a
respiratory disease. In its solid form, as used here, it can be handled quite safely although it is
prudent to avoid handling conditions which promote dust formation by surface abrasion.
Because of this hazard, you are advised to be very careful in removing and disposing of these
components. Do not put them in the general industrial or domestic waste or despatch them by post.
They should be separately and securely packed and clearly identified to show the nature of the
hazard and then disposed of in a safe manner by an authorized toxic waste contractor.
WARNING
Beryllium copper
Some mechanical components within this instrument are manufactured from beryllium copper.
This is an alloy with a beryllium content of approximately 5%. It represents no risk in normal use.
The material should not be machined, welded or subjected to any process where heat is involved.
It must be disposed of as “special waste”.
It must NOT be disposed of by incineration.
Static sensitive components
This equipment contains static sensitive components which may be damaged by handling - refer to
the Maintenance Manual for handling precautions.
Voltage restraint
Excessive voltages can damage the instrument. Ensure that applied signal voltages are within the
limits marked on the front panel.
vi
Page 8
Installation
Never insert or remove the instrument when the mainframe is already powered up. Always switch
the mainframe off first and then on again afterwards, then run the resource manager again for
normal operation.
Suitability for use
This equipment has been designed and manufactured by Aeroflex to generate low-power RF
signals for testing radio communications apparatus.
If the equipment is not used in a manner specified by Aeroflex, the protection provided by the
equipment may be impaired.
Aeroflex has no control over the use of this equipment and cannot be held responsible for events
arising from its use other than for its intended purpose.
vii
Page 9
Précautions
Les termes suivants ont, dans ce manuel, des significations particulières:
WARNING
contient des informations pour éviter toute blessure au personnel.
contient des informations pour éviter les dommages aux équipements.
La signification des symboles de danger apparaissant sur l'équipement et dans la documentation est
la suivante:
Symbole Nature du risque
Reportez-vous au manuel d'utilisation quand ce symbole
apparaît sur l'instrument. Familiarisez-vous avec la nature
du danger et la conduite à tenir.
Danger produits toxiques
Conditions générales d’utilisation
Ce produit a été conçu et testé pour être conforme aux exigences des normes CEI/EN61010-1
“Règles de sécurité pour appareils électriques de mesurage, de régulation et de laboratoire”, pour
des équipements Classe III portables et pour une utilisation dans un environnement de pollution de
niveau 2. Cet équipement est conçu pour fonctionner à partir d’une alimentation de catégorie I.
Cet équipement doit être protégé de l’introduction de liquides ainsi que des précipitations d’eau, de
neige, etc... Lorsqu’on transporte cet équipement d’un environnement chaud vers un
environnement froid, il est important de laisser l’équipement se stabiliser en température avant de
le connecter à une alimentation afin d’éviter toute formation de condensation. L'appareil doit être
utilisé uniquement dans le cadre des conditions d'environnement spécifiées au chapitre 1
"Performance data" du manuel d'utilisation, toute autre utilisation peut endommager les systèmes
de protection.
Ce produit n’est pas garanti pour fonctionner dans des atmosphères dangereuses ou pour un usage
médical. Si l'équipement doit être utilisé pour des applications en relation avec la sécurité, par
exemple des applications militaires ou aéronautiques, la compatibilité du produit doit être établie et
approuvée par une personne compétente.
Cet équipement est conforme aux normes de sécurité CEI Classe III, c’est-à-dire qu’il ne doit être
connecté qu’à des sources d’alimentation ou de signaux qui suivent les recommandations de
tension et d’isolement du type ‘Tension extra-faible séparée’ (SELV at SELV-E). Aucune tension
dangereuse n’est générée en interne. “Performance data” dans le chapitre 1 du manuel d’utilisation
précise les niveaux de tension maximum acceptables en entrée.
Ne démontez pas le capot de l'instrument, car ceci peut provoquer des blessures. Il n'y a pas de
pièces remplaçables par l'utilisateur à l'intérieur.
viii
Page 10
Faites effectuer toute réparation par du personnel qualifié. Contacter un des Centres de
Maintenance Internationaux dans la liste jointe à la fin du manuel.
WARNING
Risque lié au feu
L'accès aux fusibles d'alimentation se fait après démontage d'un couvercle de protection extérieur.
Cette manipulation est à la charge d'un personnel qualifié. Pour un protection continue contre le
feu, les fusibles de remplacement doivent de type et de valeur adaptés.
WARNING
Danger produits toxiques
Certains composants utilisés dans cet appareil peuvent contenir des résines et d’autres matières qui
dégagent des fumées toxiques lors de leur incinération. Les précautions d’usages doivent donc être
prises lorsqu’on se débarrasse de ce type de composant.
WARNING
Le Béryllia
Le Béryllia (oxyde de Béryllium) entre dans la composition de certains composants de cet appareil.
Cette matière peut, lorsqu’elle est inhalée sous forme de vapeur ou de fine poussière, être la cause
de maladies respiratoires. Sous sa forme solide, comme c’est le cas ici, cette matière peut être
manipulée sans risque, bien qu’il soit conseillé d’éviter toute manipulation pouvant entraîner la
formation de poussière par abrasion de la surface.
Il est donc conseillé, pour éviter ce risque, de prendre les précautions requises pour retirer ces
composants et s’en débarrasser. Ne les jetez pas avec les déchets industriels ou domestiques ou ne
les envoyez pas par la poste. Il faut les emballer séparément et solidement et bien indiquer la
nature du risque avant de les céder, avec précautions, à une entreprise spécialisée dans le traitement
de déchets toxiques.
WARNING
Bronze au béryllium
Dans cet équipement,certaines pièces mécaniques sont à base de bronze au béryllium. Il s'agit d'un
alliage dans lequel le pourcentage de béryllium ne dépasse pas 5%. Il ne présente aucun danger en
utilisation normale.
Toutefois, cet alliage ne doit pas être travaillé, soudé ou soumis à un processus qui implique
l'utilisation d'une source de chaleur.
En cas de destruction, il sera entreposé dans un container spécial. IL ne devra pas être détruit par
incinération.
Utilisation
Cet équipement a été conçu et fabriqué par Aeroflex pour générer des signaux RF de faible
puissance pour le test d'appareils de radio communications.
ix
Page 11
La protection de l'équipement peut être altérée s'il n'est pas utilisé dans les conditions spécifiées par
Aeroflex. Aeroflex n'a aucun contrôle sur l'usage de l'instrument, et ne pourra être tenu pour
responsable en cas d'événement survenant suite à une utilisation différente de celle prévue.
x
Page 12
Vorsichtsmaßnahmen
Diese Hinweise haben eine bestimmte Bedeutung in diesem Handbuch:
WARNING
dienen zur Vermeidung von Verletzungsrisiken.
dienen dem Schutz der Geräte.
enthalten wichtige Informationen.
Gefahrensymbole
Die Bedeutung der Gefahrensymbole auf den Geräten und in der Dokumentation ist wie folgt:
Symbol Gefahrenart
Beziehen Sie sich auf die Bedienungsanleitung wenn das
Messgerät mit diesem Symbol markiert ist. Machen Sie
sich mit der Art der Gefahr und den Aktionen die getroffen
werden müssen bekannt.
Warnung vor giftigen Substanzen
Allgemeine Hinweise zur Verwendung
Dieses Produkt wurde entsprechend den Anforderungen von IEC/EN61010-1
“Sicherheitsanforderungen für elektrische Ausrüstung für Meßaufgaben, Steuerung und
Laborbedarf”, Klasse III, transportabel zur Verwendung in einer Grad 2 verunreinigten Umgebung,
entwickelt und getestet. Dieses Gerät ist für Netzversorgung Klasse I zugelassen.
Das Gerät sollte vor dem Eindringen von Flüssigkeiten sowie vor Regen, Schnee etc. geschützt
werden. Bei Standortänderung von kalter in wärmere Umgebung sollte das Gerät wegen der
Kondensation erst nach Anpassung an die wärmere Umgebung mit dem Netz verbunden werden.
Das Gerät darf nur in Umgebungsbedingungen wie in Kapitel 1 "Leistungsdaten (Performance
data)" der Bedienungsanleitung beschrieben, betrieben werden; ansonsten wird der vom Gerät
vorgesehene Schutz des Anwenders beeinträchtigt.
Dieses Produkt ist nicht für den Einsatz in gefährlicher Umgebung (z.B. Ex-Bereich) und für
medizinische Anwendungen geprüft. Sollte das Gerät für den Einsatz in sicherheitsrelevanten
Anwendungen wie z.B. im Flugverkehr oder bei militaerischen Anwendungen vorgesehen sein, so
ist dieser von einer für diesen Bereich zuständigen Person zu beurteilen und genehmigen.
WARNING
Elektrische Schläge (Gleichspannungsversorgung)
Dieses Gerät entspricht der IEC Sicherheitsklasse III. Aus Sicherheitsgründen darf es nur an
Netzgeräte und Signalquellen angeschlossen werden, die in Spannung und Isolation der SELV und
SELV-E Richtlinie genügen (“Getrennte Niederspannung”). Im Gerät werden keine gefährlichen
Spannungen erzeugt. Im Handbuch, Kapitel 1, “Performance data” (Leistungsdaten), werden die
anschließbaren Höchstspannungen definiert.
Öffnen Sie niemals das Gehäuse der Geräte das dies zu ernsthaften Verletzungen führen kann. Es
gibt keine vom Anwender austauschbare Teile in diesem Gerät.
xi
Page 13
Lassen Sie alle Reparaturen durch qualifiziertes Personal durchführen. Eine Liste der
Servicestellen finden Sie auf der Rückseite des Handbuches.
WARNING
Brandgefahr
Der Zugriff auf die Netzsicherungen geschieht durch die Entfernung einer Abdeckung. Die
Entfernung der Abdeckungen sollte nur von qualifiziertem Personal ausgeführt werden. Zum
Schutz gegen Brandgefahr dürfen die Sicherungen nur gegen solche gleichen Typs und Wertes
ausgetauscht werden.
WARNING
Warnung vor giftigen Substanzen
In einigen Bauelementen dieses Geräts können Epoxyharze oder andere Materialien enthalten sein,
die im Brandfall giftige Gase erzeugen. Bei der Entsorgung müssen deshalb entsprechende
Vorsichtsmaßnahmen getroffen werden.
WARNING
Beryllium Oxid
Beryllium Oxid wird in einigen Bauelementen verwendet.
Als Staub inhaliert kann Beryllium zu Schädigungen der Atemwege führen. In fester Form kann es
ohne Gefahr gehandhabt werden, wobei Staubabrieb vermieden werden sollte.
Wegen dieser Gefahren dürfen diese Bauelemente nur mit der entsprechenden Vorsicht ausgebaut
und entsorgt werden. Sie dürfen nicht mit Industrie oder Hausmüll vermengt oder per Post
versandt werden. Sie müssen separat verpackt und entsprechend der Gefährdung markiert werden.
Die Entsorgung muß über einen autorisierten Fachbetrieb erfolgen.
WARNING
Beryllium Kupfer
In diesem Gerät sind einige mechanische Komponenten aus Beryllium Kupfer gefertigt. Dies ist
eine Verbindung welche aus einem Berylliumanteil von ca. 5 % besteht. Bei normaler Verwendung
besteht kein Gesundheitsrisiko.
Das Metall darf nicht bearbeitet, geschweißt oder sonstiger Wärmebehandlung ausgesetzt werden.
Es muß als Sondermüll entsorgt werden.
Es darf nicht durch Verbrennung entsorgt werden.
Eignung für Gebrauch
Dieses Gerät wurde von Aeroflex entwickelt und hergestellt um HF Signale geringer Leistung zum
Test von Kommunikationseinrichtungen zu erzeugen.
Sollte das Gerät nicht auf die von Aeroflex vorgesehene Art und Weise verwendet werden, kann
die Schutzfunktion des Gerätes beeinträchtigt werden.
Aeroflex hat keinen Einfluß auf die Art der Verwendung und übernimmt keinerlei Verantwortung
bei unsachgemässer Handhabung.
xii
Page 14
Precauzioni
Questi termini vengono utilizzati in questo manuale con significati specifici:
WARNING
riportano informazioni atte ad evitare possibili pericoli alla persona.
riportano informazioni per evitare possibili pericoli all'apparecchiatura.
riportano importanti informazioni di carattere generale.
Simboli di pericolo
Il significato del simbolo di pericolo riportato sugli strumenti e nella documentazione è il seguente:
Simbolo Tipo di pericolo
Fare riferimento al manuale operativo quando questo
simbolo è riportato sullo strumento. Rendervi conto della
natura del pericolo e delle precauzioni che dovrete
prendere.
Pericolo sostanze tossiche
Condizioni generali d’uso
Questo prodotto è stato progettato e collaudato per rispondere ai requisiti della direttiva
IEC/EN61010-1 ‘Safety requirements for electrical equipment for measurement, control and
laboratory use’ per apparati di classe III portatili e per l’uso in un ambiente inquinato di grado 2.
L’apparato è stato progettato per essere alimentato da un alimentatore di categoria I.
Lo strumento deve essere protetto dal possibile ingresso di liquidi quali, ad es., acqua, pioggia,
neve, ecc. Qualora lo strumento venga portato da un ambiente freddo ad uno caldo, è importante
lasciare che la temperatura all’interno dello strumento si stabilizzi prima di alimentarlo per evitare
formazione di condense. Lo strumento deve essere utilizzato esclusivamente nelle condizioni
ambientali descritte nel capitolo 1 ‘Performance data’ del manuale operativo, in caso contrario le
protezioni previste nello strumento potrebbero risultare non sufficienti.
Questo prodotto non è stato approvato per essere usato in ambienti pericolosi o applicazioni
medicali. Se lo strumento deve essere usato per applicazioni particolari collegate alla sicurezza
(per esempio applicazioni militari o avioniche), occorre che una persona o un istituto competente
ne certifichi l'uso.
WARNING
Pericoli da elettricità (alimentazione a c.c.)
Questo strumento rispetta le norme IEC, classe III, e quindi, per una completa sicurezza, deve
essere collegato solo ad alimentatori e generatori di segnali che rispettano I requisiti di tensione ed
isolamento SELV e SELV-E (Separated Extra-Low Voltage). Nessuna tensione pericolosa è
generata al suo interno. Vedi capitolo 1 per quanto concerne I livelli massimi di tensione
applicabili.
Non rimuovete mai le coperture perché così potreste provocare danni a voi stessi. Non vi sono
all’interno parti di interesse all’utilizzatore.
xiii
Page 15
Tutte gli interventi sono di competenza del personale qualificato. Vedi elenco internazionale dei
Centri di Assistenza in fondo al manuale.
WARNING
Pericolo d'incendio
L'accesso ai fusibili dell'alimentazione avviene attraverso la rimozione di un coperchio esterno. La
rimozione dei coperchi dovrebbe essere eseguita solo da personale qualificato. Per una protezione
costante contro pericoli d'incendio, utilizzare esclusivamente fusibili del tipo e dalle caratteristiche
elettriche prescritte.
WARNING
Pericolo sostanze tossiche
Alcuni dei componenti usati in questo strumento possono contenere resine o altri materiali che, se
bruciati, possono emettere fumi tossici. Prendere quindi le opportune precauzioni nell’uso di tali
parti.
WARNING
Berillio
Berillio (ossido di berillio) è utilizzato nella costruzione di alcuni componenti di quest’apparato.
Questo materiale, se inalato sotto forma di polvere fine o vapore, può causare malattie respiratorie.
Allo stato solido, come è usato qui, può essere maneggiato con sufficiente sicurezza anche se è
prudente evitare condizioni che provochino la formazione di polveri tramite abrasioni superficiali.
A cause di questi pericoli occorre essere molto prudenti nella rimozione e nella locazione di questi
componenti. Questi non devono essere gettati tra i rifiuti domestici o industriali né. vanno spediti
per posta. Essi devono essere impacchettati separatamente ed in modo sicuro e devono indicare
chiaramente la natura del pericolo e quindi affidate a personale autorizzato.
WARNING
Rame berillio
Alcuni componenti meccanici in questo strumento sono realizzati in rame berillio. Si tratta di una
lega con contenuto di berillio di circa il 5%, che non presenta alcun rischio in usi normali.
Questo materiale non deve essere lavorato, saldato o subire qualsiasi processo che coinvolge alte
temperature.
Deve essere eliminato come "rifiuto speciale". Non deve essere eliminato tramite "inceneritore".
xiv
Page 16
Caratteristiche d’uso
Questo strumento è stato progettato e prodotto da Aeroflex generare segnali RF in bassa potenza
per provare apparati di radio comunicazione.
Se lo strumento non è utilizzato nel modo specificato da Aeroflex, le protezioni previste sullo
strumento potrebbero risultare inefficaci.
Aeroflex non può avere il controllo sull’uso di questo strumento e non può essere ritenuta
responsabile per eventi risultanti da un uso diverso dallo scopo prefisso.
xv
Page 17
Precauciones
Estos términos tienen significados específicos en este manual:
WARNING
contienen información referente a prevención de daños personales.
contienen información referente a prevención de daños en equipos.
contienen información general importante.
Símbolos de peligro
El significado de los símbolos de peligro en el equipo y en la documentación es el siguiente:
Símbolo Naturaleza del peligro
Vea el manual de funcionamiento cuando este símbolo
aparezca en el instrumento. Familiarícese con la
naturaleza del riesgo y con las acciones que deban de
Aviso de toxicidad
Condiciones generales de uso
Este producto ha sido diseñado y probado para cumplir los requerimientos de la normativa
IEC/EN61010-1 “Requerimientos de la normativa para equipos eléctricos de medida, control y uso
en laboratorio”, para equipos clase III portátiles y para uso en un ambiente con un grado de
contaminación 2. El equipo ha sido diseñado para funcionar sobre una instalación de alimentación
de categorías II.
Debe protegerse el equipo de la entrada de líquidos y precipitaciones como nieve, lluvia, etc.
Cuando se traslada el equipo de entorno frío a un entorno caliente, es importante aguardar la
estabilización el equipo para evitar la condensación. Sólo debe utilizarse el aparato en las
condiciones ambientales especificadas en el capítulo 1 “Especificaciones” o “Performance data”
del Manual de Instrucciones/Manual de Operación/Funcionamiento, en caso contrario la propia
protección del equipo puede resultar dañada.
Este producto no ha sido aprobado para su utilización en entornos peligrosos o en aplicaciones
médicas. Si se va a utilizar el equipo en una aplicación con implicaciones en cuanto a seguridad,
como por ejemplo aplicaciones de aviónica o militares, es preciso que un experto competente en
materia de seguridad apruebe su uso.
WARNING
Nivel peligroso de electricidad (tensión de alimentación DC)
Este equipo cumple con la norma de seguridad IEC clase III, lo que significa que para total
seguridad debe ser conectado a alimentaciones y fuentes de señal que cumplan los requerimientos
de tensión y aislamiento “Tensión Separada Extra-Baja” (SELV y SELV-E). Ninguna tensión
generada internamente implica riesgo para el operario.
En el capítulo 1 “Especificaciones” podrá encontrar los valores máximos permitidos que pueden
aplicarse.
xvi
Page 18
No retire las cubiertas del chasis del instrumento, ya que pudiera resultar dañado personalmente.
No existen partes que puedan ser reparadas en su interior.
Deje todas las tareas relativas a reparación a un servicio técnico cualificado. Vea la lista de
Centros de Servicios Internacionales en la parte trasera del manual.
WARNING
Peligro de incendio
El acceso a los fusibles de alimentación se lleva a cabo retirando la tapa exterior del equipo. La
retirada de las tapas deberá efectuaría personal cualificado. Para asegurar protección continuada
frente a incendios, los fusibles fundidos sólo deberán reemplazarse con aquellos del tipo y valores
correctos.
WARNING
Aviso de toxicidad
Alguno de los componentes utilizados en este equipo pudieran incluir resinas u otro tipo de
materiales que al arder produjeran sustancias tóxicas. Por tanto, tome las debidas precauciones en
la manipulación de esas piezas.
WARNING
Berilio
Berilio (óxido de berilio) Este material es utilizado en la fabricación de alguno de los componentes
de este equipo.
La inhalación de este material, en forma de polvo fino o vapor, entrando en los pulmones, puede
ser causa de enfermedades respiratorias. En forma sólida, como se utiliza en este caso, puede
manipularse con bastante seguridad, aunque se recomienda no manejarlo en aquellas condiciones
que pudieran favorecer la aparición de polvo por abrasión de la superficie.
Por todo lo anterior, se recomienda tener el máximo cuidado al reemplazar o deshacerse de estos
componentes, no tirándolos en basuras industriales o domésticas y no utilizar el correo para su
envío. Deben, ser empaquetados de forma segura y separada, y el paquete debidamente etiquetado
e identificado, señalando claramente la naturaleza del riesgo y ponerlo a disposición de un
destructor autorizado de productos tóxicos.
WARNING
Berilio-cobre
Algunos componentes mecánicos contenidos en este instrumento incorporan berilio-cobre en su
proceso de fabricación. Se trata de una aleación con un contenido aproximado de berilio del 5%, lo
que no representa ningún riesgo durante su uso normal.
El material no debe ser manipulado, soldado, ni sometido a ningún proceso que implique la
aplicación de calor.
Para su eliminación debe tratarse como un "residuo especial". El material NO DEBE eliminarse
mediante incineración.
xvii
Page 19
Idoneidad de uso
Este equipo ha sido diseñado y fabricado por Aeroflex para generar señales de VHF y UHF de bajo
nivel de potencia para prueba de equipos de radiocomunicaciones.
Si el equipo fuese utilizado de forma diferente a la especificada por Aeroflex, la protección
ofrecida por el equipo pudiera quedar reducida.
Aeroflex no tiene control sobre el uso de este equipo y no puede, por tanto, exigirsele
responsabilidades derivadas de una utilización distinta de aquellas para las que ha sido diseñado.
Main features ............................................................................................................................... 1-1
Performance data ......................................................................................................................... 1-3
Versions, options and accessories................................................................................................ 1-6
Introduction
The 3002 is a C size, message-based VXI signal generator covering the frequency range 9 kHz to
2.4 GHz. The RF output can be modulated in amplitude, frequency or phase using internal or
external signal sources. Additionally pulse modulation may be applied externally. An internal AF
source is capable of generating simultaneous two-tone modulation. The 3002 is 2 slots wide and
conforms to revisions 1.3 and 1.4 of the VXI specification.
Chapter 1
GENERAL INFORMATION
Main features
Frequency selection
Carrier frequency resolution is 1 Hz across the band. A series of carrier frequencies can be stored
in non-volatile memory for recall when required.
Output
RF output up to +25 dBm (uncalibrated above 1.2 GHz) can be set with a resolution of 0.1 dB over
the entire range. Carrier output can be completely disabled.
An electronic trip protects the generator output against reverse power of up to 50 W. This prevents
damage to output circuits when RF or DC power is accidentally applied to the RF OUT connector.
To facilitate testing of receiver squelch systems, an attenuator hold function allows control of the
RF output without introducing RF level drop-outs from the step attenuator.
The RF output level can be offset by up to ± 5.0 dB to compensate for cable or switching losses, or
to standardize a group of instruments.
The maximum RF output level can be set so as to protect sensitive devices connected to the RF
OUTPUT socket.
Spectral purity
With an SSB phase noise performance of typically -121 dBc/Hz at 20 kHz offset from a 1 GHz
carrier, this instrument can be used for both in-channel and adjacent channel receiver
measurements. Harmonically related signals and non-harmonics are better than -25 dBc and
-60 dBc respectively.
Modulation
Comprehensive amplitude, frequency and phase modulations are available. Pulse modulation can
be applied to the carrier from an external pulse source. The instrument also accepts one or two
logic level inputs to produce a 2-level or 4-level FSK modulated output. An internal modulation
oscillator is provided, having a frequency range of 0.01 Hz to 20 kHz. The oscillator is capable of
generating one or two modulation tones simultaneously in one modulation channel. An
independent BNC input on the front panel allows external modulation signals to be combined with
1-1
Page 21
the internal signal(s). These sources can be combined to give a number of modulation modes. The
pulse modulation can be used in combination with the other forms of modulation.
The frequency modulation range provides a 1 dB bandwidth of typically 100 kHz and provides FM
deviation up to a maximum of 100 kHz. AC or DC coupled FM can be selected. Phase
modulation is also available with a 10 kHz bandwidth up to a maximum of 10 radians.
Amplitude modulation with a 1 dB bandwidth of typically 30 kHz and with modulation depths of
up to 99.9% is available with a resolution of 0.1%. Pulse modulation is available as standard with
typical rise and fall times of less than 10 µs and 40 dB on/off ratio.
The external input voltage required for 100% modulation is 1 V RMS (1.414 V peak). To
accommodate other signal levels, Automatic Level Control (ALC) can be selected which provides
correctly calibrated modulation for inputs between 0.75 and 1.25 V RMS. HI and LO indications
are reported when the input level is outside the range of the ALC system.
Incrementing
All major parameters can be incremented or decremented in steps. If no step size is programmed
for a parameter, the steps are preset to 1 kHz for carrier frequency, 1 kHz for modulation oscillator,
1 kHz for FM deviation, 1% for AM depth, 0.1 rad for
Frequency sweep
GENERAL INFORMATION
ΦM and 1 dB for output level.
The sweep capability of the instrument allows comprehensive testing of systems. Sweeps may be
logarithmic or linear. Four parameters are used to specify sweep: start, stop, step size and time per
step, all of which can be programmed by the user. Sweep triggering can be programmed as single
shot or continuous and can be initiated directly or on the detection of a trigger. The triggering
signal may be from a back plane trigger, programmed or from a TTL/CMOS signal applied to the
front panel TRIGGER INPUT.
Memory
The instrument provides both non-volatile and volatile memory for storing instrument settings.
The non-volatile memory provides 100 instrument settings and 100 settings of carrier frequency
only. The volatile memory (RAM) also provides 100 instrument settings. Any one of the nonvolatile instrument settings can be selected as the power-up setting for the instrument.
Memory sequencing
A software facility allows sequences of stored instrument settings to be defined. The incrementing
facilities can then be used to cycle through the settings using the VXI trigger facilities.
Memory protection
To prevent accidental change of the contents of the stored settings, individual memories or ranges
of memories can be write-protected.
Triggers
Triggering the 3002 Signal Generator may be via the VXI TTL triggers (0 - 7), the trigger
command, *TRG message or front panel input.
Calibration data
All alignment data is digitally derived. Realignment can be undertaken, without removing covers,
by protected functions via the VXI interface.
1-2
Page 22
Performance data
GENERAL
INFORMATION
GENERAL DESCRIPTION
CARRIER FREQUENCY
Range 9 kHz to 2.4 GHz.
Resolution 1 Hz.
Accuracy Equal to the frequency standard accuracy.
RF OUTPUT
Range -137 dBm to +25 dBm (+19 dBm above 1.2 GHz).
Resolution 0.1 dB
Accuracy
Attenuator hold Selection of attenuator hold provides for uncalibrated level reduction of at least 10 dB
VSWR For output levels less than -5 dBm output VSWR is less than 1.3:1 for carrier
Output impedance
Output protection
SPECTRAL PURITY
Harmonics Typically better than -30 dBc for levels up to +7 dBm,
Non-harmonics (offsets >
3 kHz)
Residual FM (FM off) Less than 4.5 Hz RMS in a 300 Hz to 3.4 kHz bandwidth at a carrier frequency of
SSB phase noise Better than -124 dBc/Hz at 20 kHz offset from a 470 MHz carrier.
ΦM on AM
The 3002 is a synthesized VXI signal generator covering the frequency range 9 kHz to
2.4 GHz.
The RF output can be amplitude, frequency, phase or pulse modulated. An internal
programmable AF source is capable of generating simultaneous two-tone modulation.
All functions can be controlled by an IEEE 488.2 message-based interface.
Accuracy over temperature range 17°C to 27°C
9 kHz to 1.2 GHz 1.2 GHz to 2.4 GHz
>−127 dBm
±1.2 dB
Temperature coeff. over temperature range 0°C to 55°C
9 kHz to 1.2 GHz 1.2 GHz to 2.4 GHz
When AM is selected, the maximum RF output level decreases linearly with increasing
AM depths to +19 dBm (+13 dBm above 1.2 GHz) at 99% depth.
without the mechanical attenuator operating.
frequencies up to 1.2 GHz and less than 1.5:1 for carrier frequencies up to 2.4 GHz.
50 Ω SMA female connector to MIL 390123D.
Protected from a source of reverse power up to 50 W from 50 Ω or 25 W from a source
VSWR of 5:1. Tripping of the reverse power protection circuit illuminates a front panel
LED and raises an interrupt. The protection circuit can be reset remotely.
typically better than -25 dBc for levels 6 dB below the maximum specified output.
Better than -70 dBc for carrier frequencies up to 1 GHz,
better than -64 dBc for carrier frequencies above 1 GHz,
better than -60 dBc for carrier frequencies above 2 GHz.
1 GHz.
Typically -121 dBc/Hz at 20 kHz offset from a 1 GHz carrier.
Typically 0.1 radians at 30% depth at 470 MHz.
±1.0 dB ±2.0 dB
<±0.02 dB/°C <±0.04 dB/°C
MODULATION
Internal and external modulation can be simultaneously enabled to produce combined
amplitude and frequency (or phase) modulation. Pulse modulation can be used in
combination with the other forms of modulation.
1-3
Page 23
GENERAL INFORMATION
FREQUENCY MODULATION
Deviation range
Resolution 3 digits or 1 Hz.
Accuracy ±5% at 1 kHz modulation rate.
Bandwidth (1 dB) DC to 100 kHz (DC coupled),
Group delay:
Carrier frequency offset Less than 1% of the set frequency deviation when DC coupled.
Distortion Less than 3% at 1 kHz rate for deviations up to 100 kHz.
Modulation source Internal LF generator or external via front-panel BNC.
FSK
Modes 2 level or 4 level FSK.
Data source External data connected to TRIGGER INPUT connector (2 level) or TRIGGER INPUT
Frequency shift:
Accuracy As FM deviation accuracy.
Timing jitter
Filter
PHASE MODULATION
Deviation 0 to 10 radians.
Resolution 3 digits or 0.01 radians.
Accuracy at 1 kHz ±5% of indicated deviation excluding residual phase modulation.
Bandwidth (3 dB) 100 Hz to 10 kHz.
Distortion Less than 3% at 10 radians at 1 kHz modulation rate. Typically <0.5% for deviations up
Modulation source Internal LF generator or external via front-panel BNC.
Distortion Less than 2.5% at 1 kHz rate for modulation depths up to 80%,
Modulation source Internal LF generator or external via front-panel BNC.
PULSE MODULATION
Carrier frequency range 32 MHz to 2.4 GHz, usable to 10 MHz.
RF level range Maximum guaranteed output is reduced to +20 dBm, +14 dBm above 1.2 GHz.
RF level accuracy When pulse modulation is enabled, adds ±0.5 dB to the RF level accuracy.
Control
ON/OFF ratio Better than 45 dB below 1.2 GHz.
Rise and fall time
0 to 100 kHz.
10 Hz to 100 kHz (AC coupled),
20 Hz to 100 kHz (AC coupled with ALC).
Less than 5 µs to 100 kHz.
Typically <0.5% at 1 kHz rate for deviations up to 10 kHz.
Note that 4 FSK is not available with Option 11 Fast Pulse fitted.
and PULSE INPUT connectors (4 level).
Settable up to ±100 kHz.
±3.2 µs
th
order Bessel, −3 dB at 20 kHz.
8
to 1 radian at 1 kHz.
±5% of set depth at 1 kHz rate at +17°C to 27°C ambient temperature.
Temperature coefficient <0.02% per °C.
10 Hz to 30 kHz (AC coupled),
20 Hz to 30 kHz (AC coupled with ALC).
Less than 1.5% at 1 kHz rate for modulation depths up to 30%.
TTL/CMOS compatible pulse input is on front-panel BNC connector with 10 kΩ input
impedance.
A logical ‘1’ (3.5 V to 5 V) turns the carrier on, a logical ‘0’ (0 V to 1 V) turns the carrier
off. Maximum safe input is ±15 V.
Better than 40 dB above 1.2 GHz.
Less than 10 µs.
1-4
Page 24
GENERAL
INFORMATION
INTERNAL LF GENERATOR
Frequency range 0.01 Hz to 20 kHz.
Resolution 0.01 Hz for frequencies up to 100 Hz,
Frequency accuracy As frequency standard.
Distortion Less than 0.1% THD at 1 kHz.
Waveforms Sine to 20 kHz, triangle or square wave to 3 kHz.
Audio output The modulation oscillator signal is available on a front-panel BNC connector at a level of
EXTERNAL MODULATION INPUT
Input level 1 V RMS (1.414 V peak) sine wave for set deviation.
Input impedance
Modulation ALC The external modulation input can be leveled by a peak leveling ALC system over the
SWEEP MODE
Control parameters Start/stop values of carrier frequency, size of step and time per step.
Sweep time 50 ms to 10 s per step.
Linear sweep Frequency step size of 1 Hz minimum.
Logarithmic sweep Percentage increment of 0.01% to 50% in 0.01% steps.
Sweep mode Single, continuous or external trigger.
Trigger mode A trigger input is available on a front-panel BNC. A step or the complete sweep may be
FREQUENCY STANDARD
TCXO 10 MHz.
Temperature stability
Aging rate Less than ±1 in 10
External input Front-panel BNC connector accepts an input of 1 MHz or 10 MHz at 220 mV RMS to
0.1 Hz for frequencies up to 1 kHz,
1 Hz for frequencies up to 20 kHz.
2 V RMS EMF from a 600 Ω source impedance.
A front panel BNC connector is provided for external modulation input.
100 kΩ nominal.
input voltage range of 0.75 V to 1.25 V RMS sine wave. High and low indications are
reported as part of the instrument status when the input is outside the leveling range.
A carrier frequency sweep mode is provided. The sweep is defined by setting the start,
stop and frequency step size. The step time can be set from. A step or the complete
sweep may be triggered by the trigger input on the front panel, VXI backplane trigger,
message or VXI command. Sweep can be set to continuous.
triggered by the front-panel input, VXI backplane trigger or VXI command.
7
Better than ±7 in 10
1.8 V RMS into 1 kΩ.
over the operating range 0 to 55°C.
6
per year.
VXI-bus INTERFACE
CAPABILITIES
Logical address Manual selection (1 - 254).
Device type A16 D16 message-based servant, programmable interrupter.
Protocol Word serial IEEE 488.2. Fast handshake not supported.
Connectors P1, P2 (highest slot of a 2-slot allocation).
TTLTRG Used to trigger sweep mode and step memory sequences.
CLK10 Not used.
Local bus Not used.
ECLTRG Not used.
Peak current & power
consumption
Cooling (per slot)
BITE (built-in test equipment)
RFI COMPATIBILITY
Complies with revisions 1.3 and 1.4 of the VXIbus specification for message-based
instruments.
+24 V: +12 V: +5 V: -12 V: Total power:
Ipm 1.2 A 1.0 A 2.0 A 0.6 A 60 W max.
Idm 0.1 A 0.1 A 1.3 A 0.1 A
2.4 litre/s at 1 mm H
LEDs on module's front panel indicate POWER OK (green), SYSTEM FAIL (red) and
RPP TRIP - Reverse Power Protection Tripped (red).
Complies with VXIbus revision 1.3/1.4 specifications below 1 GHz.
O backpressure for 10°C maximum temperature rise.
2
1-5
Page 25
GENERAL INFORMATION
ELECTROMAGNETIC
COMPATIBILITY
SAFETY
RATED RANGE OF USE
CONDITIONS OF STORAGE AND
TRANSPORT
CALIBRATION INTERVAL
DIMENSIONS AND WEIGHT
Dimensions 2 slot, C size.
Weight Less than 4 kg.
Conforms with the protection requirements of the EEC Council Directive 89/336/EEC.
Conforms with the limits specified in the following standards:
IEC/EN61326-1 : 1997, RF Emission Class B,
Immunity Table 1, Performance Criterion B
Conforms with the requirements of EEC Council Directive 73/23/EEC (as amended) and
the product safety standard IEC/EN 61010-1 : 2001 + C1 : 2002 + C2 : 2003 for Class 3
portable equipment, for use in a Pollution Degree 2 environment. The instrument is
designed to operate from an Installation Category 1 supply.
Full specification is met over the temperature range 0 to +55°C, humidity up to 93% at
40°C and elevation up to 3050 m (10,000 ft).
The instrument can be stored at temperatures from -40°C to +70°C, humidities up to
93% at 40°C, and elevations up to 4600 m (15,000 ft).
2 years.
Versions, options and accessories
When ordering please quote the full ordering number information.
Ordering numbersVersions
3002 9 kHz to 2.4 GHz Signal Generator.
Option
Option 11 Fast pulse modulator.
Supplied accessories
46882/226 Operating manual (this manual).
59000/285 LabWindows/CVI driver.
59000/286 VXI Plug & Play soft front panel.
1-6
Page 26
EC Declaration of Conformity
Certificate Ref. No.: DC230
The undersigned, representing:
GENERAL
INFORMATION
Manufacturer:
Address:
Aeroflex International Ltd.
Longacres House, Six Hills Way,
Stevenage, Hertfordshire, UK SG1 2AN
Herewith declares that the product:
Equipment Description:
Model No.
Options:
3002
11
VXI 9 kHz to 2.4 GHz Signal Generator
is in conformity with the following EC directive(s)
(including all applicable amendments)
Reference No.
73/23/EEC
89/336/EEC
Title:
Low Voltage Directive
EMC Directive
and that the standards and/or technical specifications referenced below have been applied:
Safety:
IEC/EN61010-1 : 2001 + C1 : 2002 + C2 : 2003
EMC:
IEC/EN 61326-1:1997 + A1 : 1998 + A2 : 2001
RF Emission Class B, Immunity Table 1 and Performance Criterion B
Disk installation/loading instructions........................................................................................... 2-4
List of figures
Fig. 2-1 3002 front panel showing connectors and indicators .................................................... 2-3
Chapter 2
INSTALLATION AND POWER-UP
WARNING
Initial visual inspection
After unpacking the equipment, inspect the shipping container and its cushioning material for signs
of stress or damage. If damage is identified, retain the packing material for examination by the
carrier in the event that a claim is made. Examine the equipment for signs of damage; do not
connect the equipment to a supply when damage is present, internal electrical damage could result
in shock if the equipment is turned on.
Setting logical address
Before installing the signal generator in the VXI mainframe, verify that the logical address is
between 1 and 254 and does not clash with the logical address of any other device in the rack. The
logical address is set on a bank of 8 DIL switches. These are located on the right-hand side of the
instrument. Use some form of stylus (e.g. a ball-point pen) to move the switches to form the binary
address. Logical addresses may be set in the range 1 to 254. Logical address 0 is reserved for slot
0 devices and logical address 255 is reserved for dynamically configured devices. The 3002 VXI
Signal Generator does not support dynamic configuration.
Ventilation requirements
Ensure that the VXI signal generator module is supplied with adequate cooling i.e. 2.4 liter/s at
1 mm H
O backpressure minimum per slot.
2
2-1
Page 28
INSTALLATION AND POWER-UP
Installing in VXI mainframe
This instrument will take up two slots of a C-sized VXI mainframe. Before installation ensure that
the mainframe power is off. To install the instrument first set the logical address (see ‘Setting
logical address’ above), if required, then slide the module into the mainframe ensuring that the top
and bottom card guides are in the slots. Ensure that the rear connectors are seated properly and
screw in the front panel retaining screws. The instrument is now ready to power up.
Never insert or remove the instrument when the mainframe is already powered up.
Routine safety testing and inspection
1. Visual inspection
In the UK the 'Electricity at Work Regulations' (1989) section 4(2) places a requirement on the
users of equipment to maintain it in a safe condition. The explanatory notes call for regular
inspections and tests together with a need to keep records.
This module is not designed to be connected to a supply or signals which present hazardous levels,
and no hazardous voltages are generated internally. All such levels must be maintained within
'Separated Extra-Low Voltage' (SELV or SELV-E) limits for continued safety. No requirement
therefore exists to carry out insulation tests on the module. Periodic electrical tests and visual
inspections should however be performed on the complete mainframe/chassis by competent
personnel. Information should be sought from the mainframe supplier regarding the visual
inspection, earth bonding and insulation resistance test requirements.
Visually check that the module has been installed in accordance with the instructions provided (e.g.
that the ventilation is adequate, all fixing screws are present and tightened, and that all warning
labels, markings and supplied safety information are present and legible). If any defect is noted
this should be rectified before proceeding with further electrical tests.
No attempt should be made to perform high current earth bonding tests on the functional earths
(e.g. signal carrying connector shells or screen connections) present on the module connectors.
High current earth bonding tests are also not recommended between the mainframe protective earth
connector and the module front panel. Serious damage may result to both the module and the
mainframe if the module is not fully screwed into the mainframe during high current testing. Low
current earth bonding tests (1 mA to 100 mA) should be performed to establish earth path
continuity between the module front panel and the mainframe protective earth.
2. Rectification
It is recommended that the results of the above tests are recorded and checked during each repeat
test. Significant differences between the previous readings and measured values should be
investigated.
If any failure is detected during the above visual inspection or tests, the equipment should be
disabled and the fault should be rectified by an experienced Service Engineer who is familiar with
the hazards involved in carrying out such repairs.
Safety critical components should only be replaced with equivalent parts, using techniques and
procedures recommended by Aeroflex.
The above information is provided for guidance only. Aeroflex designs and constructs its products
in accordance with International Safety Standards such that in normal use they represent no hazard
to the operator. Aeroflex reserves the right to amend the above information in the course of its
continuing commitment to product safety.
2-2
Page 29
INSTALLATION AND POWER-UP
Cleaning
Before commencing any cleaning, switch off the instrument and disconnect the mainframe from the
supply. The exterior surface of the case may be cleaned using a soft cloth moistened in water.
Do not use aerosol or liquid solvent cleaners.
Putting into storage
If the instrument is to be put into storage, ensure that the following conditions are maintained:
Temperature range: −40 to +70°C
Humidity: Less than 93% at 40°C
Front panel connectors and indicators
The front panel with its connectors and indicators is shown in Fig. 2-1 below:
INSTALLATION
Fig. 2-1 3002 front panel showing connectors and indicators
2-3
Page 30
INSTALLATION AND POWER-UP
RF OUT
1
SYSTEM FAIL
2
POWER OK
3
RPP TRIP
4
FREQ STD I/O
5
EXT MOD INPUT
6
TRIGGER INPUT
7
PULSE INPUT
8
LF OUTPUT
9
50 Ω SMA-type socket. Protected against the application of reverse power of up to
50 W.
This red LED lights to indicate that the signal generator has failed, or is in the process
of executing its self-test. It indicates the condition of the VXI-bus SYSFAIL line.
The LED will continue to be lit whilst the self-test is in progress even when SYSFAIL
is inhibited by the commander.
This green LED lights to indicate that power is being supplied to the signal generator.
All lines are continuously checked for sufficient voltage.
This red LED lights to indicate that the Reverse Power Protection (RPP) circuit has
tripped. The power source must be removed from the RF OUT socket.
BNC socket for the input of external standard frequencies of either 1 MHz or
10 MHz. Also supplies a 10 MHz internal standard output.
BNC socket which allows an external modulating signal to be applied.
BNC socket which has three uses; in priority order these are:
FSK logic input
Memory sequencing
Sweep trigger.
10 kΩ BNC socket which accepts a pulsed input. Also used as one logic input (the
other is the TRIGGER INPUT) for 4FSK modulation.
600 Ω BNC socket which monitors the modulation oscillator.
Switching on
Insert the signal generator module in the required slot in the mainframe and screw in the retaining
screws. Switch the mainframe on. All three LEDs should initially light while the generator carries
out its self checks. When the unit passes its self checks, and if there are no errors detected on the
backplane, the red SYSTEM FAIL and RPP LEDs will go out within 5 seconds and the green
POWER OK LED will remain on.
Disk installation/loading instructions
LabWindows/CVI Instrument Driver and VXI Plug and Play Soft Panel disks are supplied with this
instrument. Before inserting a disk in your disk drive read the installation or loading instructions
given on the label of the appropriate disk. Refer to 'read me' files for further information.
2-4
Page 31
PROGRAMMING
Introduction
An IEEE 488.2 program interface is provided. Ease of use is ensured by careful selection of
mnemonics. For example, if carrier frequency and RF level are to be set to 2.54 MHz and
-27.3 dBm respectively, the VXI instruction message is:
For full information on the IEEE protocols and syntax the IEEE 488.2 standard should be
consulted.
Device listening elements
The following is a list of the device listening elements (as defined in the IEEE 488.2 standard)
which are used in the instrument:
<PROGRAM MESSAGE>
<PROGRAM MESSAGE TERMINATOR>
<PROGRAM MESSAGE UNIT>
<PROGRAM MESSAGE UNIT SEPARATOR>
<COMMAND MESSAGE UNIT>
<QUERY MESSAGE UNIT>
<COMPOUND COMMAND PROGRAM HEADER>
<COMPOUND QUERY PROGRAM HEADER>
<PROGRAM HEADER SEPARATOR>
<PROGRAM DATA>
<PROGRAM DATA SEPARATOR>
<DECIMAL NUMERIC PROGRAM DATA>
<CHARACTER PROGRAM DATA>
<SUFFIX PROGRAM DATA>
<STRING PROGRAM DATA>
<ARBITRARY BLOCK PROGRAM DATA>
A message consists of one or more message units. Message units are separated by a semi-colon (;). The
whole message is ended by the Program Message Terminator (or End Of Message) defined as one
of the following:
(1) <newline> (ASCII 10 - often known as 'line feed') or
(2) <newline> + END (the EOI line is asserted as well) or
(3) + END (EOI is asserted in the last data byte of the message)
A response message is always terminated by <EOM> consisting of <newline> + END.
A message unit consists of a mnemonic header which may be followed by data. If data follows,
then it must be separated from its header by at least one space:
Spaces may be freely inserted in a message to improve readability, except within a header or within
data.
A header may be a command or a query. A query has a '?' as its final character and causes the
generation of a response message which will be read by the controller. Common commands and
queries (defined in IEEE 488.2) begin with a '*'.
Upper and lower case characters are considered equivalent (i.e. FM fm Fm fM are all interpreted
by the instrument in the same way).
<header><SPACE><data>
e.g. RFLV:INC 6.0 dB
Compound headers
The instrument implements compound headers which allows a complex set of commands to be
built up from a small set of basic elements in a 'tree and branch' structure. The elements of a
compound header are separated by a colon (:). Spaces are not allowed within a header.
Special rules apply when more than one compound header is used in one message. When the
separator ';' is encountered, all headers except the trailing element of the previous header in the
message are assumed to precede the following header, for example:
AM:DEPTH 30PCT;ON
is equivalent to the two commands:
AM:DEPTH 30PCT
and AM:ON
This does not apply to common commands (*RST etc.). The rule may be overridden by preceding
a header with a colon, for example:
AM:ON;:FM:ON
Most main functions have a short form of header which may be used for clarity and brevity in
simple messages, for example:
CFRQ 1.25GHZ is the same as CFRQ:VALUE 1.25GHZ
3-2
Page 33
Program data
a
Data can take many forms, as follows:
Decimal Numeric Data is a flexible numeric format which encompasses integer, fixed point and
floating point (mantissa and exponent) representations. Data is rounded to a resolution appropriate
to the function. Decimal data can, in most cases, be followed by the appropriate units. If no units
are present, the specified default units are assumed.
Character Data is an alphanumeric word.
String Data consists of a number of 7-bit ASCII characters enclosed in quotes, either a pair of
single ('ASCII 39') or double ("ASCII 34") quotes may be used.
Some commands can accept Multiple Data items which are separated by commas, for example
MODE FM,AM.
Message exchange protocol
The controller should not attempt to read a response until it has sent the entire query message
(terminated by EOM). Also, it should not start to send a new message until it has read the entire
response (terminated by EOM). The query message may contain more than one query message
unit, but only one response message (containing several response message units) is generated.
Failure to follow the protocol will generate a query error:
INTERRUPTED (error 450) occurs when the controller starts to send a new message before having
read the response to a preceding query.
UNTERMINATED (error 451) occurs when the controller attempts to read a response without
having sent a query.
DEADLOCK (error 452) can only occur if the input and output buffers are both filled by the
controller having sent an extra long message containing several query message units.
These instruments have an input buffer of 256 characters and an output buffer of 256 characters.
Common commands and queries (IEEE 488.2)
The IEEE 488.2 standard defines a set of common commands and queries which implement
common system functions.
Common command and query mnemonics are preceded by an asterisk (*) to distinguish them from
device dependent data such as instrument programming strings. The following common commands
and queries are implemented in the instrument:
Mnemonic Name and Description
*IDN?
Example: IFR,3002,811152/011,44533/445/01.00<EOM>
*OPT? Option Identification Query. Returns an arbitrary ASCII response containing a dat
If no options are fitted, ASCII '0' is returned.
Identification Query. Returns an arbitrary ASCII response comprising four data
fields in the format:
<manufacturer>,<model>,<serial number>,<software part number and issue number>
where: <manufacturer> is IFR ,<model> is the instrument model number, 3002.
<serial number> is the instrument serial number in the form nnnnnn/nnn, where
n is an ASCII digit in the range 0 to 9.
<software part number and issue number> is in the form nnnnn/nnn/n.nn, where
n is an ASCII digit in the range 0 to 9.
field for each fitted option in the format:
<option a>,<option b>, ... ,<option n><EOM>
Because an Arbitrary ASCII Response ends with the Response Message Terminator
(<EOM>) either *IDN? or *OPT? must be the last Query Message Unit in a Program
Message.
3-3
Page 34
r
*RST Reset Command. Sets the instrument functions to the factory default power up
state.
*TST? Self Test Query. Returns a '0' when the VXI interface and processor are operating.
*OPC Operation Complete Command. Sets the Operation Complete bit in the Standard
Event Status Register when execution of the preceding operation is complete.
*OPC? Operation Complete Query. Returns a '1' when the preceding operation has been
completed.
*WAI Wait to Continue Command. Inhibits execution of an overlapped command until
the execution of the preceding operation has been completed.
*TRG Trigger Command. Equivalent to Group Execute Trigger.
*STB? Read Status Byte Query. Returns the value of the Status Byte as an nr1 number (0-
255).
*SRE <nrf> Service Request Enable Command. Sets the Service Request Enable Register.
*SRE? Service Request Enable Query. Returns the value of the Service Request Enable
Register as nr1.
*ESR? Standard Event Status Register Query. Returns the value of the Status Event Status
Register as nr1.
*ESE <nrf> Standard Event Status Enable Command. Sets the Standard Event Enable Register.
*ESE? Standard Event Status Enable Query. Returns the value of the Standard Event
Status Enable Register as nr1.
*CLS Clear Status Command. Clears all the Status Event registers and clears the Erro
Queue. Does not affect the Enable Registers.
The IEEE 488.2 Device Clear function only affects the remote functions. The input and
output buffers are cleared and the instrument put into a state to accept new messages.
Earlier versions of IEEE 488.1 put the instrument functions into a defined state, but this is
now performed by the *RST common command.
Device dependent commands
The following list describes the features of the device dependent mnemonics for the instrument
together with simple examples of their use within each major section (Carrier frequency, RF level,
etc.) The root mnemonic is listed first followed by the lower level mnemonics. Each group is
followed by a list of requirements for data type and suffix.
In addition to the normal listen commands the instrument accepts query commands which cause it
to prepare a message which will be sent to the controller when the instrument is next addressed to
talk. For each query an example of a response is given. Where responses are similar for a group of
queries not all are listed. Some queries can produce more than one type of response - an example
of each is usually given.
In the list which follows, the abbreviations <char>, <nrf> and <str> have the following meanings:
<char> = Character Program Data
<nrf> = Decimal Numeric Program Data
<str> = String Program Data
Where the data format is Decimal Numeric Program Data, the value may be expressed as a signed
or unsigned number in any of the following formats:
nr1: Decimal integer, e.g. 1234 or -567
nr2: Floating point number, e.g. 1.234 or -56.789
nr3: Floating point number with exponent, e.g. 1.2345E5 or -12.47E-8
3-4
Page 35
Default settings
The instrument is reset to the factory default settings in the following cases:
ΦM1 : Deviation: 0 rad, OFF : Internal source, frequency: 1 kHz, sine
ΦM2 : Deviation: 0 rad, OFF : Internal source, frequency: 400 Hz, sine
: Internal source, frequency: 1 kHz, sine
: Internal source, frequency: 400 Hz, sine
∆FM 1 kHz, ∆ΦM 0.1 rad, ∆AM 1%
Fixed
Single sweep
Linear
OFF
9 kHz
2.4 GHz
1 kHz
50 ms
3-5
Page 36
Carrier frequency
These commands enable you to set the carrier frequency in the range 9 kHz to 2.4 GHz to a
resolution of 1 Hz. You can adjust the frequency in steps by setting the size of the step and then
stepping the frequency up or down. After having adjusted the frequency you can either return to
the reference frequency or make the current frequency the reference frequency. Additionally, you
can adjust the phase offset of the carrier in degrees in the range -359.99° to +359.99°. Also you
can configure the instrument as a swept frequency signal generator where you define the start and
stop frequencies and set the step size, step time and step direction. For triggering methods, refer to
'Trigger source' at the end of this section.
CFRQ
:VALUE
:INC
:UP
:DN
:RETN
:XFER
:MODE
:START
:STOP
:TIME
:PHASE
Data type :
Allowed suffices :
Default suffix :
Data type :
Allowed suffices :
Default suffix :
Data type :
Allowed suffices :
Default suffix :
Data type :
Allowed suffices :
Default suffix :
Data type :
Allowed suffices :
Default suffix :
Data type :
Allowed suffices :
Default suffix :
Set Carrier Frequency (short form)
Set Carrier Frequency
Set Carrier Frequency step size
Decimal Numeric Program Data
Any one of: GHZ, MHZ, KHZ or HZ
HZ
Go UP one step
Go DOWN one step
Return to original setting
Transfer current value to be the new setting
None
None
None
Selects the mode of carrier frequency operation. SWEPT enables swept
carrier frequency operation, while FIXED disables it
Character Program Data (FIXED - non swept mode, SWEPT - swept
mode)
None
None
Set Start Frequency for use in sweep
Set Stop Frequency for use in sweep
Decimal Numeric Program Data
Any one of: GHZ, MHZ, KHZ or HZ
HZ
These commands enable you to set the RF level in the range -137 to +25 dBm to a resolution of
0.1 dB. You can adjust the level in steps by setting the size of the step and then stepping the level
up or down. And after having adjusted the level you can either return to the reference level or
make the current level the reference level. You can set the units to a default if required. For
voltage related units, you can select either EMF or PD. You can also switch the output at the RF
OUT socket off or on. For attenuator hold see under 'Miscellaneous commands' below.
You can also set your own maximum output power limit which allows you to protect sensitive
devices connected to the RF OUT socket. The maximum calibrated output level is +25.1 dBm up
to 1.2 GHz and +19 dBm above this frequency. Above 1.2 GHz an uncalibrated level up to
+25.1 dBm is allowed. The setting will be saved in non-volatile memory so that when
subsequently the instrument is switched on again it will be set with your specified RF level limit.
The RF offset function enables you to offset the RF output level to compensate for cable or
switching losses, or to standardize a group of instruments so that they give identical measurements.
One offset is allowed in each of the following ranges:
9 kHz - 150 MHz
150 MHz - 300 MHz
300 MHz - 600 MHz
600 MHz - 1.2 GHz
1.2 GHz - 2.4 GHz
The entered carrier frequency automatically selects the appropriate frequency range over which the
offset is applied. Set the required positive or negative RF offset in the range 0 to 5.0 dB to a
resolution of 0.1 dB. For each required additional range enter the carrier frequency then the offset.
Ensure that your offsets are saved so that when subsequently the instrument is switched on again it
will be set with your specified offsets.
RFLV
:VALUE
Data type :
Allowed suffices :
Default suffix :
:INC
Data type :
Allowed suffices :
Default suffix :
:UP
:DN
:RETN
:XFER
:ON
:OFF
Data type :
Allowed suffices : None
Default suffix :
:TYPE
Data type :
Allowed suffices :
Default suffix :
Set RF Output Level (short form)
Set RF Output Level
Decimal Numeric Program Data
Any one of: DBM, DBV, DBMV, DBUV, V, MV or UV
DBM unless changed by UNITS command
Set RF Level step (dB)
Decimal Numeric Program Data
DB only
DB
Go UP one step
Go DOWN one step
Return to original setting
Transfer current value to be the new setting
Turn RF Output ON
Turn RF Output OFF
None
None
Selects EMF or PD for voltage related units
Character Program Data (EMF or PD)
None
None
3-7
Page 38
:UNITS
Data type : Character Program Data (DBM, DBV, DBMV, DBUV, V, MV or UV)
Allowed suffices :
Default suffix :
Examples: RFLV:VALUE -27.3DBM;ON
:LIMIT
:VALUE Set RF Level max limit
Data type :
Allowed suffices :
Default suffix :
:ENABLE Enable limit
:DISABLE Disable limit
:OFFS
:VALUE Set RF Level offset for given frequency band
Data type : Decimal Numeric Program Data
Allowed suffices :
Default suffix :
:ENABLE Enable offsets
:DISABLE Disable offsets
:SAVE Save offsets in non-volatile memory
RFLV?
Select default RF level units.
None
None
RFLV:TYPE PD;VALUE 1.23UV
Set RF Level max limit (short form)
Decimal Numeric Program Data
Any one of: DBM, DBV, DBMV, DBUV, V, MV or UV
DBM unless changed by UNITS command
Set RF Level offset for given frequency band (short form)
DB only
DB
Prepares message containing information on RF Level setting in the
following format:
Prepares message containing information on RF Level max limit setting
in the following format:
:RFLV:LIMIT:VALUE<nr2>;<status>;
Prepares message containing information on RF Level offset in the
following format:
:RFLV:OFFS:VALUE<nr2>;<status>;
level units (DBM, DBV, DBMV, DBUV, V, MV or UV),
<type> is character program data indicating EMF or PD and
<status> is a program mnemonic indicating whether the RF
output is ON or OFF
3-8
Page 39
Output control
These commands allow you to download and store settings without the output changing.
OUTPUT
:DISABLE
:ENABLE
[not used alone]
Allows user to download and store settings in the normal way without
the output of the instrument changing until the OUTPUT:ENABLE
command is received.
Enables the instrument outputs such that the outputs will adjust to the
values specified by commands sent while the outputs were disabled.
Note: It is up to the user to ensure that the last command sent, prior to
OUTPUT:ENABLE, is such that the RF output is set to a safe
level.
Data type :
Allowed suffices :
Default suffix :
Examples: OUTPUT:DISABLE
OUTPUT?
None
None
None
CFRQ 300MHZ; RFLV 10DBM; MODE AM; AM 40PCT;
AM:ON; MOD:ON; STO 200
CFRQ 400MHZ; RFLV 7DBM; STO 201
CFRQ 500MHZ; RFLV 5DBM; STO 202
CFRQ 600MHZ; RFLV 4DBM; STO 203
OUTPUT;ENABLE
RCL 200
RCL 201
RCL 202
RCL 203
Prepares message containing information on output control setting in
the following format:
: OUTPUT: <status>
where: <status> is a program mnemonic indicating whether the
Examples: :OUTPUT:ENABLE
:OUTPUT:DISABLE
output control is ENABLED or DISABLED
3-9
Page 40
Modulation mode
These commands allow you to select the modulation mode between amplitude, frequency and
phase modulation as well as binary (2-level) and quadrature (4-level) frequency shift keying.
Binary FSK results from a logic level digital signal applied to the TRIGGER INPUT socket.
Quadrature FSK is achieved using both the TRIGGER INPUT and PULSE INPUT sockets. Also
pulse modulation may be selected from a signal connected to the PULSE INPUT socket. These
modulations may be used in the combinations shown in the table below. Additionally, an external
signal applied to the EXT MOD INPUT socket can be combined with any selected modulation
combination.
MODE
Data type :
Allowed suffices :
Default suffix :
Examples: MODE AM,FM
Set modulation mode
Character Program Data (valid combinations of AM, FM, PM, FSK2L,
FSK4L or PULSE. See table below.)
None
None
MODE FM,PULSE
AM [,PULSE]
FM [,PULSE]
PM [,PULSE]
AM,FM [,PULSE]
AM,PM [,PULSE]
FSK2L [,PULSE]
FSK4L
Note...
TRIGGER SHIFT TRIGGER PULSE SHIFT
VALID MODE COMBINATIONS TABLE
Order is not important, for example AM,FM is equivalent to
FM,AM. PULSE modulation can be used with any of the
AM,FM,PM and FSK2L modes, but not with FSK4L.
FSK2L and FSK4L parameters are controlled using the FM
commands. The frequency shifts produced by the applied data
are as follows:
2FSK 4FSK
1 +D 1 0 +D
0
0 1
0 0
1 1 +D/3
−D
Where D is the set deviation value.
−D/3
−D
MODE? Prepares message containing information on Modulation Mode in the
Example: :MODE AM,FM
following format:
:MODE <mode>
where: <mode> is character program data indicating the modulation
mode settings
3-10
Page 41
Modulation control
These commands allow you to switch ALL modulation ON or OFF.
MOD
:ON
:OFF
[not used alone]
Turn modulation globally ON
Turn modulation globally OFF
Examples:
MOD? Prepares message containing information on Modulation Control in the
Example:
MOD:ON
MOD:OFF
following format:
:MOD:<status>
where: <status> is a program mnemonic indicating whether the
Modulation is globally ON or OFF
:MOD:ON
3-11
Page 42
Frequency modulation (and FSK)
These commands enable you to select frequency modulation either as a single modulation or as the
sum of two signals, to set the deviation rate, to switch the modulation on and off and to perform DC
FM nulling. (For the latter, ensure that a ground reference is connected to the EXT MOD INPUT
socket before you implement the command.) You can set the modulation oscillator frequency and
select between sine, triangle and square waveforms. Also the phase difference of modulation
oscillator channel 2 relative to channel 1 can be offset in degrees. Both deviation rate and
modulation oscillator frequency can have their step sizes set and then be stepped up or down. And
after having adjusted the deviation rate or the modulation oscillator frequency you can either return
to the reference (rate or frequency) or make the current value the new reference.
FM or FM1 or FM2
:DEVN
:INC
Data type :
Allowed suffices :
Default suffix :
:<src>
:ON
:OFF
:UP
:DN
:RETN
:XFER
Data type :
Allowed suffices :
Default suffix :
Set FM Deviation (short form)
Set FM Deviation
Set FM step size
Decimal Numeric Program Data
Any one of: GHZ, MHZ, KHZ or HZ
HZ
Select modulation source where <src> is any one of: INT, EXTAC,
EXTALC, or EXTDC
Turn FM ON (locally)
Turn FM OFF (locally)
Go UP one step
Go DOWN one step
Return to original setting
Transfer current value to be the new setting
None
None
None
:MODF
:VALUE
:INC
:UP
:DN
:RETN
:XFER
:SIN
:TRI
:SQR
Examples: FM:DEVN 25KHZ;INT;ON
Data type :
Allowed suffices :
Default suffix :
Data type :
Allowed suffices :
Default suffix :
FM1:DEVN 15KHZ;INC 1KHZ;EXTDC
Set FM modulation oscillator frequency (short form)
Set FM modulation oscillator frequency
Set FM modulation oscillator frequency step size
Decimal Numeric Program Data
Any one of: GHZ, MHZ, KHZ or HZ
HZ
Go UP one step
Go DOWN one step
Return to original setting
Transfer current value to be the new setting
Select sinusoidal waveform
Select triangle waveform
Select square waveform
None
None
None
3-12
Page 43
:PHASE
Allowed suffices :
Default suffix :
DCFMNL
Allowed suffices :
Default suffix :
FM? or FM1? or FM2?
FM:MODF? or FM1:MODF?
or FM2:MODF?
Set phase offset of FM2 relative to FM1
Data type :
Examples: FM2:MODF:VALUE 1.5KHZ;SIN
Data type :
Example: DCFMNL
Example: :FM1:DEVN 25000.0;INT;ON;INC 1000.0
Decimal Numeric Program Data
DEG
DEG
FM:MODF:PHASE 1.2DEG
Perform DC FM null operation (only for EXTDC mode)
None
None
None
Prepares message containing information on FM setting in one of the
following formats:
where: <src> is a program mnemonic representing the source of the
modulation signal and <status> is a program mnemonic indicating
whether the frequency modulation is locally ON or OFF
Prepares message containing information on FM modulation oscillator
setting in one of the following formats:
where: <shape> is a program mnemonic representing the waveform
shape
Example: :FM1:MODF:VALUE 5750.00;SIN;INC 1000.00
3-13
Page 44
Phase modulation
These commands enable you to select phase modulation either as a single modulation or as the sum
of two signals, to set the deviation rate in radians, and to switch the modulation on and off. You
can set the modulation oscillator frequency and select between sine, triangle and square waveforms.
Also the phase difference of modulation oscillator channel 2 relative to channel 1 can be offset in
degrees. Both deviation rate and modulation oscillator frequency can have their step sizes set and
then be stepped up or down. And after having adjusted the deviation rate or the modulation
oscillator frequency you can either return to the reference (rate or frequency) or make the current
value the new reference.
PM or PM1 or PM2
:DEVN
:INC
:<src>
:ON
:OFF
:UP
:DN
:RETN
:XFER
Data type :
Allowed suffix :
Data type :
Allowed suffices :
Default suffix :
Set Phase Modulation Deviation (short form)
Set Phase Modulation Deviation
Set Phase Modulation step size
Decimal Numeric Program Data
RAD
Select modulation source where <src> is any one of: INT, EXTAC,
EXTALC, or EXTDC
Turn PM ON (locally)
Turn PM OFF (locally)
Go UP one step
Go DOWN one step
Return to original setting
Transfer current value to be the new setting
None
None
None
:MODF
:VALUE
:INC
:UP
:DN
:RETN
:XFER
:SIN
:TRI
:SQR
:PHASE
Examples: PM:DEVN 2.38RAD;INT;ON
Data type :
Allowed suffices :
Default suffix :
Data type :
Allowed suffices :
Default suffix :
Examples: PM1:MODF:VALUE 10.5KHZ;SQR
PM1:DEVN 1.5RAD;INC 0.1RAD;EXTAC
Set PM modulation oscillator frequency (short form)
Set PM modulation oscillator frequency
Set PM modulation oscillator frequency step size
Decimal Numeric Program Data
Any one of: GHZ, MHZ, KHZ or HZ
HZ
Go UP one step
Go DOWN one step
Return to original setting
Transfer current value to be the new setting
Select sinusoidal waveform
Select triangle waveform
Select square waveform
None
None
None
Set phase offset of PM2 relative to PM1
PM2:MODF:PHASE 2.0DEG
3-14
Page 45
PM? or PM1? or PM2?
PM:MODF? or PM1:MODF?
or PM2:MODF?
Prepares message containing information on Phase Modulation setting
in one of the following formats:
where: <shape> is a program mnemonic representing the waveform
shape.
Example: :PM2:MODF:VALUE 2500.00;TRI;INC 500.00
3-15
Page 46
Amplitude modulation
These commands enable you to select amplitude modulation either as a single modulation or as the
sum of two signals, to set the AM depth as a percentage, and to switch the modulation on and off.
You can set the modulation oscillator frequency and select between sine, triangle and square
waveforms. Also the phase difference of modulation oscillator channel 2 relative to channel 1 can
be offset in degrees to a resolution of 0.1°. Both modulation depth and modulation oscillator
frequency can have their step sizes set and then be stepped up or down. And after having adjusted
the modulation depth or the modulation oscillator frequency you can either return to the reference
(depth or frequency) or make the current value the new reference.
AM o r AM1 or AM2
:DEPTH
:INC
Default suffix :
:<src>
:ON
:OFF
:UP
:DN
:RETN
:XFER
Default suffix :
:MODF
:VALUE Set AM modulation oscillator frequency
:INC Set AM modulation oscillator frequency step size
:UP Go UP one step
:DN Go DOWN one step
:RETN Return to original setting
:XFER Transfer current value to be the new setting
:SIN Select sinusoidal waveform
:TRI Select triangle waveform
:SQR Select square waveform
:PHASE Set phase offset of AM2 relative to AM1
Set AM Depth (short form)
Set AM Depth
Set AM step size
Data type :
Allowed suffices :
Data type :
Allowed suffices :
Examples:
Data type :
Allowed suffices : Any one of: GHZ, MHZ, KHZ or HZ
Default suffix : HZ
Data type :
Allowed suffices : None
Default suffix : None
Decimal Numeric Program Data
PCT
PCT
Select modulation source where <src> is any one of: INT, EXTAC,
EXTALC, or EXTDC
Turn AM ON (locally)
Turn AM OFF (locally)
Go UP one step
Go DOWN one step
Return to original setting
Transfer current value to be the new setting
None
None
None
AM:DEPTH 30.5PCT;EXTAC;ON
AM1:DEPTH 40PCT;INT;OFF
Set AM modulation oscillator frequency (short form)
Decimal Numeric Program Data
None
Examples: AM2:MODF:VALUE 15.5KHZ;TRI;INC 500HZ
AM:MODF:PHASE 5DEG
3-16
Page 47
AM? or AM1? or AM2?
AM:MODF? or AM1:MODF?
or AM2:MODF?
Prepares message containing information on Amplitude Modulation
setting in one of the following formats:
where: <shape> is a program mnemonic representing the waveform
shape
Example: :AM:MODF:VALUE 5000.00;TRI;INC 1000.00
3-17
Page 48
Pulse modulation
You can use these commands to switch the pulse modulation on and off when it is part of the
modulation mode. When ON is selected the carrier is modulated by the logic level applied to the
PULSE INPUT socket.
Pulse ON Logic level between 3.5 and 5 V
Pulse OFF Logic level between 0 and 1.0 V
Note: the
:PULSE:ON and :PULSE:OFF commands are invalid when used with Option 11
(fast pulse).
:PULSE? always returns :PULSE:ON when used with Option 11.
PULSE
:ON
:OFF
Data type :
Allowed suffices :
Default suffix :
Examples: PULSE:ON
PULSE?
Examples:
Examples:
[not used alone]
Turn Pulse modulation ON
Turn Pulse modulation OFF
None
None
None
PULSE:OFF
Prepares message containing information on Pulse Modulation setting in
the following format:
:PULSE:<status>
where: <status> is a program mnemonic indicating whether the
pulse modulation is ON or OFF
:PULSE:ON
:PULSE:OFF
:PULSE:ON
:PULSE:OFF
To enable pulse modulation:
Select any modulation mode together with pulse: for example,
Turn pulse modulation on —
:PULSE:ON (this command is valid for instruments that do not
:MODE AM,PULSE.
contain Option 11).
Turn the AM off by sending
:AM:OFF. This disables the AM but leaves pulse modulation
enabled.
To disable pulse modulation:
Turn pulse modulation off —
:PULSE:OFF (this command is valid for instruments that do not
contain Option 11) or set a new modulation mode without pulse (for example,
command is valid for all instruments.
:MODE:AM). This
3-18
Page 49
Memory stores
Carrier store
The non-volatile carrier frequency store has 100 locations numbered 0 to 99 for the storage of
carrier frequency only. This store can be used to apply a set of test conditions to a range of
frequencies. For example, if you wish to use the same modulation at a variety of frequencies you
can use the carrier store to set the instrument to each of the frequencies in turn. When a carrier
store is recalled it will only replace the current carrier frequency - all the other settings will remain
unchanged.
Full store
The non-volatile full store has 100 locations numbered 100 to 199 for the storage of instrument
settings. This store is used to store those parameters which currently affect the RF output; carrier
frequency, RF level, modulations in use, on/off and source information and the two modulation
oscillator frequencies in use.
A full store contains the following information:
Carrier frequency setting
Carrier frequency step size
RF level setting
RF level step size
All modulation settings
All modulation step sizes
Modulation mode and status
The active modulation frequencies
The modulation frequency step size
All sweep settings
RAM store
The volatile RAM store has 100 locations numbered from 200 to 299 for the full storage of
instrument settings. The parameters stored are the same as those for the full store. However, the
RAM store has no long term wear-out mechanism and is therefore recommended for use in ATE
programs where all the settings to be used in a test sequence are initially declared and then recalled.
This results in a reduction of the 488.2 message overhead.
Memory - store
STO
:MEM
:CFRQ
:FULL
:RAM
Store 0-299 (short form)
Store 0-299
Carrier Freq Store 0-99
Full Store 100-199
RAM Store 200-299
Data type :
Allowed suffices :
Default suffix :
Examples: STO:FULL 112
Decimal Numeric Program Data
None
None
STO:CFRQ 83
3-19
Page 50
Memory-recall
There are three types of recall: carrier, full and RAM. Both carrier and full stores are non-volatile.
The contents of the RAM store are lost when the instrument is switched off.
Carrier recall
The non-volatile carrier frequency store has 100 locations numbered 0 to 99 for carrier frequency
only. These can be recalled and used in conjunction with full recall to apply a set of test conditions
to a range of frequencies.
Full recall
The non-volatile full store has 100 locations numbered 100 to 199 for the storage of instrument
settings. These stores may be recalled and used to reset the instrument's parameters to those which
affect the RF output: carrier frequency, RF level, modulations in use, on/off and source information
and the two modulation oscillator frequencies in use.
RAM recall
The volatile RAM store has locations numbered 200 to 299 for the full storage of instrument
settings. The parameters that are recalled are the same as those for full recall.
Recalling default settings
For a list of the default settings see Table 3-1.
Memory-recall
To recall the factory default settings, press the RCL 999.
RCL
:MEM
:CFRQ
:FULL
:RAM
Allowed suffices :
:UP
:DN
Allowed suffices :
RCL?
Recall Store 0-299 (short form)
Recall Store 0-299
Recall Carrier Freq Store 0-99
Recall Full Store 100-199
Recall RAM Store 200-299
Data type :
Default suffix :
Data type :
Default suffix :
Examples: RCL:FULL 125
Decimal Numeric Program Data
None
None
Step up through stores. Use this command for memory sequencing
Step down through stores. Use this command for memory sequencing
None
None
None
RCL:UP
Prepares message containing information on last memory store that was
recalled in the following format:
:RCL:MEM <nr1>
Examples: :RCL:MEM 126
3-20
Page 51
Memory - erase
ERASE
:CFRQ
:FULL
:RAM
:ALL
Memory - sequencing
These commands enable you to step through the memory stores in a sequence. For triggering, refer
to 'Memory-triggering' below.
MSEQ
:MODE
Data type :
Allowed suffices :
Default suffix :
Examples: ERASE:FULL
Data type :
Allowed suffices :
Default suffix :
[not used alone]
Erase all Carrier Freq Stores (0-99)
Erase all Full Stores (100-199)
Erase all RAM Stores (200-299)
Stores (0-299)
Erase all
None
None
None
ERASE:ALL
[not used alone]
Select sequencing mode of operation. When a sequence is selected, the
user can step through the sequence using the RCL:UP and RCL:DN
commands. The sequence modes are SEQ1 to SEQ9, and the
sequencing can be disabled with the OFF parameter.
Character Program Data
None
None
:SEQ1...:SEQ9
:START
:STOP
MSEQ?
MSEQ:SEQ1?
.....
MSEQ:SEQ9?
Examples: MSEQ:MODE OFF
Data type :
Allowed suffices :
Default suffix :
Example: MSEQ:SEQ2:START 50;STOP 70
Examples: :MSEQ:MODE SEQ4
MSEQ:MODE SEQ2
Set the memory store for the start of the sequencing loop
Set the memory store for the end of the sequencing loop
Decimal Numeric Program Data
None
None
Prepares message containing information on the current memory
sequencing mode in the following format:
:MSEQ:MODE <mode>
where: <mode> is character program data indicating the sequence
mode selection
:MSEQ:MODE OFF
Prepares message containing information on the start and stop settings
of the given memory sequence in the following format:
:MSEQ:SEQn:START <nr1>;STOP <nr1>
where n is between 1 and 9 inclusive
Example: :MSEQ:SEQ4:START 120;STOP 155
3-21
Page 52
Memory - triggering
For external triggering methods, refer to 'Trigger source' at the end of this section.
MTRIG
:ON
:OFF
MTRIG?
Memory - protection
These commands enable you to either write protect a block of stores (or a single store) to prevent
accidental overwriting or to unprotect it. For a single store set both start and stop numbers the
same. Note that any protection applied to RAM will be lost once the instrument has been switched
off.
Data type :
Allowed suffices :
Default suffix :
Examples: MTRIG:ON
Example: :MTRIG:ON
Enables memory recall triggering to be activated by *TRG command or
by external triggering
Disable memory recall triggering
None
None
None
MTRIG:OFF
Prepares message containing information on memory triggering state in the
following format:
:MTRIG:<status>
where: <status> is a program mnemonic indicating whether the
memory recall triggering is enabled (:ON) or disabled (:OFF)
MPROT
:START
:STOP
:ON
:OFF
[not used alone]
Set the start of the memory block which is to be protected/unprotected
Set the end of the memory block which is to be protected/unprotected
Data type :
Allowed suffices :
Default suffix :
Data type :
Allowed suffices :
Default suffix :
Examples: MPROT:START 100;STOP 150
Decimal Numeric Program Data
None
None
Set memory protection ON for the selected memory block
Set memory protection OFF (i.e. unprotected) for the selected memory
block
None
None
None
MPROT:ON
3-22
Page 53
Sweep operation
These commands allow you to configure the instrument as a swept carrier signal generator where
you define the start and stop frequencies, the step size and time per step. (Note that these
commands also appear under 'Carrier frequency'.) To make these commands operational they must
first be enabled by the CFRQ:MODE SWEPT command. For triggering methods, refer to 'Trigger
source' at the end of this section.
Sweeps may be linear or logarithmic. For linear sweeps set the step size in the range 1 Hz to the
instrument maximum frequency to a resolution of 1 Hz. For logarithmic sweeps set the step size in
the range of 0.01% to 50.00% to a resolution of 0.01%.
To make these commands operational they must first be enabled by the CFRQ:MODE SWEPT
command. These commands enable you to select the sweep mode between single shot and
continuous sweep and between linear and logarithmic sweep. You can also select the triggering
mode from the following:
OFF Disable the trigger.
START The first trigger input causes the carrier sweep to commence sweeping. Any other
trigger inputs whilst sweeping are ignored. Only at the end of each sweep is the trigger latch
reset ready for the next input.
STARTSTOP The first trigger input starts the carrier sweep and the following trigger input
pauses it, so that the user can investigate a particular point of interest. The next trigger input
continues the sweep from where it was paused. At the start of each sweep the trigger latch is
reset ready for the next input.
STEP Each trigger input steps the sweep on by one frequency step. The trigger latch is reset
after each step ready for the next step.
SWEEP
:MODE
:TYPE
:TRIG
SWEEP?
[not used alone]
Select Mode of operation for Sweep generator (single or continuous)
Data type :
Allowed suffices :
Default suffix :
Example: SWEEP:MODE SNGL
Data type :
Allowed suffices :
Default suffix :
Example: SWEEP:TYPE LOG
Data type :
Allowed suffices :
Default suffix :
Example: SWEEP:TRIG STARTSTOP
Character Program Data (either SNGL or CONT)
None
None
Select type of sweep (linear or logarithmic)
Character Program Data (LIN or LOG)
None
None
Character Program Data (any one of OFF, START, STARTSTOP,
STEP)
None
None
Prepares message containing information on Sweep Mode type and
trigger in the following format:
:SWEEP:MODE <mode>;TYPE<type>;TRIG<trig>
where: <mode> is character program data indicating the sweep
mode selected, <type> is character program data indicating
type selected, and <trig> is character program data indicating
the trigger type selected
Example: :SWEEP:MODE CONT;TYPE LOG;TRIG STEP
3-24
Page 55
Sweep control
To make these commands operational they must first be enabled by the CFRQ:MODE SWEPT
command. These commands enable you to start the sweep in the selected increments from the
chosen reference frequency, pause the sweep, step the sweep up or down from the paused position,
and continue the sweep. At any time when the sweep is stopped you can either return to the
reference frequency or transfer the current frequency as the new reference frequency.
SWEEP
:GO
:HALT
:CONT
:RESET
:RETN
:XFER
:UP
:DN
Data type :
Allowed suffices :
Default suffix :
Examples: SWEEP:GO
[not used alone]
Commence Sweep
Pause Sweep
Continue Sweep
Reset sweep to Start Value
Return to original setting
Transfer current value as the new setting
Go UP one sweep step while paused
Go DOWN one sweep step while paused
None
None
None
SWEEP:RESET
3-25
Page 56
Trigger source
These commands enable you to disable the trigger, select the trigger source from one of the eight
VXI backplane triggers or to select an external trigger. For external triggering, connect a TTL
trigger signal to the TRIGGER INPUT connector. Ensure however, that this socket is not disabled
for your application by a higher priority mode having been selected. The order of priority is as
follows:
All three modes of operation may be enabled at the same time, but only one mode will be active,
the one with the highest priority. Therefore ensure that, for example, FSK and memory sequencing
are not enabled when selecting sweep triggering otherwise the triggering will have no effect.
Trigger source selection is as follows:
FSK logic input
Memory sequencing
Sweep trigger
Sources
TRIGGER
:SOURCE
Data type :
Allowed suffices :
Default suffix :
Example: TRIGGER:SOURCE EXTERNAL
TRIGGER:SOURCE?
Examples: :TRIGGER:SOURCE EXTERNAL
Select trigger source.
Character Program Data (HOLD, IMMEDIATE, TTLTRG0, TTLTRG1,
TTLTRG2, TTLTRG3, TTLTRG4, TTLTRG5, TTLTRG6, TTLTRG7,
BUS, EXTERNAL). HOLD means no trigger.
None
None
Prepares message containing information on Trigger Source setting in
the following format:
:TRIGGER:SOURCE <source>
where <source> is character program data defining the trigger
source.
:TRIGGER:SOURCE TTLTRG3
BUS: The trigger is generated over the GPIB or VXI interface. The group execute
trigger (GET) provides the trigger over IEEE 488.1
HOLD: Selecting this means the event detection is disabled.
IMMEDIATE: No waiting for an event to occur.
TTLTRG 0-7: The VXI backplane TTLTRG triggers provide the source.
EXTERNAL: An external trigger is provided via the TRIGGER INPUT socket.
3-26
Page 57
Attenuator hold
The ATTEN:LOCK command allows you to reduce the RF level by at least another 10 dB without
the step attenuator operating.
Miscellaneous commands
ATTEN
:LOCK
:UNLOCK
Data type :
Allowed suffices :
Default suffix :
Example: ATTEN:LOCK
ATTEN?
Example: :ATTEN:LOCK
[not used alone]
Lock the Attenuators
Unlock the Attenuators
None
None
None
Prepares message containing information on whether the Attenuators are
locked or unlocked in the following format:
:ATTEN:<status>
where <status> is a program mnemonic indicating whether the
attenuators are locked or unlocked.
Table 3-2 below applies to software versions 1.03 onwards. Maximum level with attenuator lock
on will reduce if AM or pulse modulation is applied. Any user programmed limits for RF level or
offsets will also affect the attenuator lock ranges.
Table 3-2 Attenuator lock ranges
RF level
setting (dBm)
Atten. lock
(min. dBm)
Atten. lock
(max. dBm)
from to
+26.0 +18.0 +7 +25
+17.9 +7.1
+7.0 +7.0
+6.9 -4.0
−4.1 −15.0 −26
−15.1 −26.0 −37 −9
−26.1 −37.0 −48 −20
−37.1 −48.0 −59 −31
−48.1 −59.0 −70 −42
−59.1 −70.0 −81 −53
−70.1 −81.0 −82 −54
−81.1 −92.0 −103 −75
−92.1 −103.0 −114 −86
−103.1 −114.0 −125 −97
−114.1 −125.0 −136 −108
−125.1 −136.0 −137 −119
−136.1 −137.0 −137 −130
−4
−4
−15
+24
+13
+13
+2
3-27
Page 58
Power-up options
These commands allow you to select between powering up with the factory settings (given in Table
3-1) or with the settings of your choice stored in one of the full memory locations (range 100 to
199) or carrier frequency memory locations (range 0 to 99).
STATUS BYTE
POWUP
:MODE
Allowed suffices :
Default suffix :
:MEM
Allowed suffices :
Default suffix :
POWUP?
Reverse power protection
Accidental application of power to the RF OUT socket trips the reverse power protection circuit.
The following commands enable you to detect when the protection circuit has been tripped, reset
the protection (after you have removed the source from the socket), and find out how many times
the circuit has tripped.
RPP
:RESET
Allowed suffices :
Default suffix :
[not used alone]
Select the power up mode. The instrument can power up in either the
factory preset mode or from a selected memory
Data type :
Data type :
Example: POWUP:MODE MEMORY
Example: :POWUP:MODE MEMORY;MEM 135
Data type :
Character program data (FACTORY or MEMORY)
None
None
Set the memory location for a memory power up
Decimal Numeric Program Data
None
None
POWUP:MEM 172
Prepares message containing information on the instrument power up
selection in the following format:
Reset reverse power protection trip (short form)
Reset RPP trip
None
None
None
Example: RPP:RESET
RPP:TRIPPED?
Example: 1
RPP:COUNT?
Example: 3
Prepares message containing information on whether the RPP circuit is
currently tripped in the following format:
<nr1>
(0 = not tripped, 1 = tripped)
Prepares message containing information on the number of times the
RPP circuit has tripped in the following format:
<nr1>
Note that the protection circuit may be activated when the generator is set to a high level and the
RF OUT socket has no terminating load.
3-28
Page 59
Operating hours
These commands enable you to find out either the total operating hours or the elapsed operating
hours since the last reset, as well as to reset the elapsed time to zero.
ELAPSED
:RESET Reset elapsed operating hours to zero
STATUS BYTE
Data type : None
Allowed suffices : None
Default suffix : None
Example:
ELAPSED?
Example:
OPER? Prepares message containing information on total operating hours in the
Example:
Frequency standard selection
These commands enable you to select a 10 MHz output to provide a standard for use with
associated equipment, as well as enabling you to select a standard (either external or internal) for
use by the instrument. When an external standard is selected, the internal TCXO is locked to the
external standard using a phase locked loop. In this case, you can select between direct and
indirect. When direct is selected the internal standard for the RF tray is provided directly from the
external standard. When indirect is selected this standard is provided from the TCXO locked to
the external standard. You should select direct if your provided standard is better than that fitted in
the instrument.
FSTD Select internal or external frequency standard
Data type :
Allowed suffices : None
Default suffix : None
ELAPSED:RESET
Prepares message containing information on elapsed operating hours
since last reset in the following format:
<nr2>
454.50
following format:
<nr2>
1453.00
Character program data (any one of INT, EXT10DIR, EXT1IND,
EXT10IND or INT10OUT)
FSTD?
Reading error messages
This command enables the error messages to be read off the error queue in the order that they
occurred.
ERROR?
Examples:
Example:
Example: 100,"Carrier Limit"
FSTD INT
FSTD EXT10IND
Prepares message containing information on frequency standard
selection in the format:
:FSTD <char>
:FSTD EXT10IND
Prepares message relating to the next error in the error queue in the
following format:
<nr1>, <string>
Where <string> is a descriptive error message. The numeric value
returned is either that of the next error number or 0 if the queue is empty
or 399 if the queue is full
3-29
Page 60
Status byte
The Status Byte provides information about events and conditions within the instrument. It may be
read by a conventional Serial Poll or its value obtained as a response to the *STB? query. Bits 0 to
5 and bit 7 are each single bit Summary Messages which may be of two types (or not used at all).
(i) Queue Status - a '1' indicates that an associated Queue is non-empty and has data available to
be read.
(ii) Status Register Summary - reports the occurrence of an enabled event monitored by a Status
Register Structure.
The Service Request Enable Register determines which of the bits can generate an SRQ. This
register may be set by *SRE or read by *SRE? If the bitwise -AND of the Status Byte and the
Enable Register is non-zero the Flag Master Summary Status (<mss>) is True. Bit 6 of the Status
Byte value read by *STB? holds <mss>. However bit 6 of the Status Byte when Serial Polled is
the Request For Service bit used to determine which device on the Bus has asserted SRQ, and is
cleared by a Serial Poll.
The IEEE 488.2 Standard defines bit 4 as Message Available (<mav>), the Queue Summary for the
Output Buffer, indicating whether any part of a Response Messages is available to be read. Bit 5 is
the Event Summary Bit (<esb>), the Summary Message from the Standard Event Status Register.
With this instrument, bit 7 is a Queue Summary for the Error Queue. Bits 1, 2, and 3 are Status
summaries for the Instrument Status, Coupling Status and Hardware Status Registers. Bit 0 is
unused.
3-30
Page 61
STATUS BYTE
Status data structure - register model
Below is a generalized model of the Register Set which funnels the monitored data into a single
summary bit to set the appropriate bit in the Status Byte.
Device Status continuously monitored by Condition Register
Condition
Register
Transition
Filter #
Event
Register
OR
d
d
d
d
n
n
n
n-1
d
n-1
d
n-1
dddd
3120
d
3120
d
3210
d
d
d
d
d
d
&
&
&
&
&
&
Notes
Event
Enable
d
d
n
n-1
dddd
3120
Register
Summary Message
C0072
The Device Status is continuously monitored by the Condition Register. If a Query to read a
Condition Register is provided, the Response represents the Status of the instrument at the moment
the Response is generated. A Condition Register cannot be written to.
The Transition Filter determines which transition of the Condition Register data bits will set
the corresponding bit in the Event Register. Either positive-going, negative-going or both
transitions can set bits in an Event Register. But with this instrument the Transition Filters
are pre-set as either Positive or Negative, as described in the following pages.
The bits in an Event Register are "latched". Once set they remain set, regardless of
subsequent changes in the associated condition bit until the Event Register is cleared by being
read or by the *CLS common command. Once cleared, an Event Register bit will only be set
again if the appropriate change in the Condition bit occurs.
The Event Enable Register may be both written to and read from. It is bitwise AND-ed with
the Event Register and if the result is non-zero the Summary Message is true, otherwise the
Summary Message is false. Enable Registers are not affected by *CLS but are however clear
at power-on.
3-31
Page 62
Standard event registers
This register is defined by IEEE 488.2 and each bit has the meaning shown below:-
STATUS BYTE
Register
Read/Write
Commands
*ESR?
Condition
Register
Transition
Filter #
Status
Register
OR
d
7
<pon>
<pon>
<pon>
&
d
6
<urq>
<urq>
<urq>
&
d
<cme>
<cme>
<cme>
&
d
4
<exe>
<exe>
<exe>
&
d
35
<dde>
<dde>
<dde>
&
d
2
<qye>
<qye>
<qye>
d
1
<rqc>
<rqc>
<rqc>
d
0
<opc>
<opc>
<opc>
&
&
Enable
Register
*ESE
*ESE?
<esb>
e
7
e
6
e
5
e
43
e
e
2
e
1
# Positive transition sets status.
<pon> power on
<urq> user request - not implemented in this product
<cme> command error
<exe> execution error
<dde> device dependent error
<qye> query error
<rqc> request control - not implemented in this product
<opc> operation complete - set in response to the *OPC command for
synchronization.
<esb> standard event register summary bit
&
e
0
C0069
3-32
Page 63
Hardware event registers
This is a device dependent register and the bits have meanings as shown in the list at the bottom of
the page.
Condition
Register
HCR?
Transition
Register
Read/Write
Commands
HSR?
Filter #
Status
Register
STATUS BYTE
d
d
d
d
15
15
15
14
d
14
d
14
dddd
3120
d
3120
d
3210
d
d
d
d
d
d
&
&
OR
&
&
&
Enable
Register
HSE
HSE?
<hsb>
e
e
15
14
eeee
3120
# Positive transition sets status.
d0 reverse power protection tripped d8 filter unleveled
d1 fractional-n loop low d9 output unleveled
d2 fractional-n loop high d10 high power amplifier failed
d3 external standard missing d11 ALC too high
&
C0068
d4 external standard frequency too low d12 ALC too low
d5 external standard frequency too high d13 DSP not responding
d6 VCXO loop low d14 RF level uncalibrated
d7 VCXO loop high d15 not used
<hsb> hardware event register summary bit
3-33
Page 64
Coupling event registers
This is a device dependent register and the bits have meanings as shown in the list at the bottom of
the page.
Condition
Register
STATUS BYTE
CCR?
Register
Read/Write
Commands
CSR?
Transition
Filter #
Status
Register
OR
d
15
d
15
d
15
d
14
d
14
d
14
d
3
d
d
d
2
3
3
d
2
d
2
d
1
d
d
d
0
1
1
d
0
d
0
&
&
&
&
&
&
Enable
Register
CSE
CSE?
<csb>
ee
15
14
# Positive transition sets status.
ee
d0 RF level restricted by requested AM depth
d1 not used
d2 not used
d3 AM2 depth restricted by requested AM1 depth
d4 FM2 deviation restricted by requested FM1 deviation
d5 ΦM2 deviation restricted by requested ΦM1 deviation
d6 not used
d7 - d15 not used
<csb> coupling event register summary bit
ee
23
10
C1625
3-34
Page 65
Instrument event registers
This is a device dependent register and the bits have meanings as shown in the list at the bottom of
the page.
Condition
Register
STATUS BYTE
SCR?
Register
Read/Write
Commands
SSR?
OR
Transition
Filter #
Status
Register
dd
15
dd
1514
dd
1514
14
&
&
dd
54
dd
54
dd
54
dd
32
dd
23
dd23dd
dd
10
dd
10
10
&
&
Enable
Register
SSE
SSE?
ee
1514
<ssb>
Condition (SCR?)
d0 sweep in progress end of sweep
d1 not used not used
d2 selfcal in progress selfcal completed
d3 DC FM null in progress DC FM null completed
d4 - d15 not used not used
<ssb> instrument event register summary bit
ee
54
#
Negative
ee23ee
transition sets status.
Event Status (SSR?)
&
&
10
C2395
3-35
Page 66
Queue flag details
Input from all
Error Conditions
STATUS BYTE
➤
Status Byte & Enable Register non-zero
Error
From Standard Event Registers
Queue
Response Message
Response
to
ERROR?
88
Device Dependant Errors
Output
Queue
8
<erb>
<mss><mav>
<esb>
<hsb><ssb><csb>
dddddddd
37512640
-
Status Byte Register
Data from Output Queue
C0075
The <mav> status bit is set when one or more bytes are available to be read from the Output
Queue.
The <erb> status bit is set when one or more errors are present in the Error Queue. The ERROR?
query will place a nr1 and string response message in the Output Queue representing the error at
the head of the queue. If the queue is empty this message will be 0, "No error".
3-36
Page 67
STATUS BYTE
Status byte when read by *STB?
Register
Read
Command
*STB?
*SRE
*SRE?
Register
Read/Write
Commands
OR
d
7
<erb>
&
e
7
d
7
Status Byte Register
d
6
<mss><mav>
d
5
<esb>
d
4
&
&
e
6
d
e
5
6
d
e
4
5
d
4
Service Request Enable Register#
d
3
d
2
d
1
<hsb><ssb><csb>-
&
&
&
e
3
d
e
2
3
d
e
1
2
d
e
1
d
&
0
d
0
0
C0073
# Bit 6 in this register ignores data sent by *SRE and always returns 0 in response to
*SRE?
<rqs>, <esb> and <mav> are defined in IEEE 488.2
<erb> is a device defined queue summary bit indicating that the error queue is
non-empty.
<mss> is true when (Status Byte) AND (Enable register) > 0.
<esb> is the standard event register summary bit.
<mav> is 'message available' indicating that the output queue is non-empty.
<hsb> is 'hardware status' summary bit
<csb> is 'coupling status' summary bit
<ssb> is 'instrument status' summary bit
The Status Byte Register is Not cleared by the *STB? query.
3-37
Page 68
STATUS BYTE
Status byte when read by serial poll
d
7
d
6
Status Byte Register
d
5
d
4
d
3
d
2
d
1
d
0
<erb>
<mss><mav>
<esb>
<hsb><ssb><csb>
Service
Request
Generation
*SRE
*SRE?
Register
Read/Write
e
7
d
e
6
7
d
e
5
6
d
e
4
5
d
4
Service Request Enable Register#
e
3
d
e
2
3
d
e
1
d
2
1
Commands
# Bit 6 in this register ignores data sent by *SRE and always returns 0 in response to
*SRE?
e
-
d
0
0
C0074
<erb> is a device defined queue summary bit indicating that the error queue is
non-empty.
<rqs> is set by a request for service and is cleared by the poll.
<esb> is the standard event register summary bit.
<mav> is 'message available' indicating that the output queue is non-empty.
<hsb> is 'hardware status' summary bit
<csb> is 'coupling status' summary bit
<ssb> is 'instrument status' summary bit
<rqs>, <esb> and <mav> are defined in IEEE 488.2
<rqs> (request for service) will produce an SRQ at the controller. It is set by a change to
either the Status Byte or the Service Enable Register that results in a New Reason for
Service. It is cleared when <mss> goes FALSE (i.e. no reason for service) or by Serial
Poll.
3-38
Page 69
STATUS BYTE
Summary of status reporting commands and queries
*CLS Clears Status Registers and the Error Queue
*ESE<nrf> Writes to Standard Event Enable Register
*ESE? Reads from Standard Event Enable Register
*ESR? Reads from Standard Event Status Register
*SRE<nrf> Writes to Service Request Enable Register
*SRE? Reads from Service Request Enable Register
*STB? Reads from Status Byte Register
CCR? Reads from Coupling Condition Register
CSE<nrf> Writes to Coupling Status Enable Register
CSE? Reads from Coupling Status Enable Register
CSR? Reads from Coupling Status Register
HCR? Reads from Hardware Condition Register
HSE<nrf> Writes to Hardware Status Enable Register
HSE? Reads from Hardware Status Enable Register
HSR? Reads from Hardware Status Register
SCR? Reads from Instrument Condition Register
SSE<nrf> Writes to Instrument State Enable Register
SSE? Reads from Instrument State Enable Register
SSR? Reads from Instrument State Status Register
<nrf> Decimal Numeric Program Data
All of the above queries respond with a nr1 numeric format.
3-39
Page 70
Error handling
Error messages are divided into four groups:
(1) Background errors - represent a condition of the instrument.
(2) Foreground errors - generally caused by the user.
(3) IEEE 488.2 errors - generated by incorrect programming.
(4) Fatal errors - caused by failure associated with the main RAM or the
Background errors:
These are generated due to an incorrect operating condition within the instrument. These errors are
generated automatically to warn the operator. For example if the reverse power protection circuit
should trip error 500 (RPP tripped) will be placed in the error queue. Background errors are listed
in Table 3-3.
Error messages
PROM. These errors may or may not be displayed according
to the severity of the failure or corruption.
Foreground errors:
These are typically generated when an entered parameter value is outside the valid range or for
some other invalid operation. For example trying to set the carrier frequency above or below the
specified range will put error 100 (Carrier limit) into the error queue. Foreground errors are listed
in Table 3-4.
Error queue
When an error occurs the error number is put into the error queue. The error at the head of the
queue is only cleared by the ERROR? query, which returns that error, or by the *CLS command
which clears the whole error queue. IEEE 488.2 errors are listed in Table 3-5.
The queue holds a maximum of 64 error message error numbers. If an error occurs while the queue
is full the last error number is replaced with 399 to indicate that the queue is full. The ERROR?
query returns a value of 399 for queue full and 0 for queue empty.
When an error number is written into the queue, a bit (<erb>) in the status byte register is set, and
an appropriate bit in the standard event register is also set (one of <cme>, <exe>, <dde> or <qye>).
These errors will also generate a VXI controller interrupt for the event 'Request True' if the
appropriate interface settings have been set up. Many background errors are also reported in the
Hardware and Coupling Status Registers.
3-40
Page 71
ERROR MESSAGES
Table 3-3 Background errors (500 - 599) in priority order
- - - 591 ftl Main PROM faulty
590 ftl Main RAM faulty - - -
- - - - - -
- - - - - -
- - - - - -
500 dde RPP tripped 501 dde Fractional-N loop low
502 dde Fractional-N loop high 503 dde Ext standard missing
504 dde External std frequency low 505 dde External std frequency high
452 qye Query DEADLOCK 453 qye Query lost after arbitrary char
- - - - - -
- - - - - -
- - - - - -
3-43
Page 74
TECHNICAL DESCRIPTION
Introduction
The 3002 VXI Signal Generator is a VXI module which covers a wide range of frequencies from
9 kHz to 2.4 GHz. Output levels from -137 dBm to +25 dBm are available. These are C size, 2slot wide plug-in modules that require a VXI bus mainframe for operation.
The simplified block schematic diagram for the instrument is shown in Fig. 4-1.
Modulation
The carrier frequency can be frequency, phase or amplitude modulated from internal or external
sources. The internal source can be the sum of two signals and used in combination with an
external source connected to the front panel EXT MOD INPUT connector.
Frequency generation
A voltage controlled oscillator (VCO) covering the frequency range 400 to 533 MHz is phase
locked to a 10 MHz temperature controlled crystal oscillator using a fractional-N synthesizer
system. Additional frequency coverage is achieved by means of frequency division and
multiplication. Low frequencies are generated by a beat frequency oscillator (BFO) system.
Chapter 4
Control
Internal control of the instrument is achieved by a microprocessor which receives data and sends
instructions via an internal 8-bit data bus to the signal processing circuits.
4-1
Page 75
PULSE
INPUT
n
¸2
¸2
HARMONIC
FILTERS
MOD
10MHz-
2.4GHz
AM
LEVEL
MOD
PULSE
MOD
STEP
ATTENUATOR
11dB
REVERSE
POWER
PROTECT
9kHz-2.4GHz
RF OUT
x3,4,5
HARMONICS
400 TO
533 MHz
VCO
FRAC
N
SYNTH
1.2-2.4GHz
5MHz
FM/ MF
VCXO
LOOP
100MHz
STEP
ATTENUATOR
10dB
BFO
RF
LEVEL
DAC
10MHz
DEV'N
DAC
AM
DEPTH
DAC
F MOD
CONV
STD
SELECT
FREQ STD
I/O
1or10MHzin
10 MHz out
AM
FM
Fig. 4-1 Block schematic diagram
MUX
10 MHz
TCXO
9kHz-
10MHz
INT MOD
SOURCE
DAC
0.01Hz to
20kHz
LF
OUTPUT
ALC
TRIGGER
CONTROL
INTERFACE
EXT MOD
INPUT
TRIGGER
INPUT
VXI
VXI
C2871
4-2
Page 76
Introduction
The test procedures in this chapter enable you to verify that the electrical performance of the signal
generator complies with the Performance Data given in Chapter 1. For convenience, the test
equipment and specification for each test are summarized before the test procedure.
Apart from the UUT, (Unit Under Test), no specific set-up procedures will be included for the test
equipment unless the measurement is dependent on specific instrument settings or special
measurement techniques.
Test precautions
To ensure minimum errors and uncertainties when making measurements, it is important to observe
the following precautions:
(1) Always use recently calibrated test equipment, with any correction figures taken into account,
so as to establish a known traceable limit of performance uncertainty. This uncertainty must
be allowed for in determining the accuracy of measurements.
(2) A common external frequency standard, with an accuracy of ±1 part in 10
any frequency controlled test equipment.
(3) Use the shortest possible connecting leads.
(4) Some areas of the specification which are labeled typical rather than having clearly defined
limits are not tested.
Chapter 5
ACCEPTANCE TESTING
9
should be used for
5-1
Page 77
Recommended test equipment
The test equipment recommended for acceptance testing is shown below. Alternative equipment
may be used provided it complies with the stated minimum specification.
Recommended test equipment
Description Minimum specification Example
Power meter
Measuring receiver
Signal generator +8 dBm from 32.5 MHz to 2.43 GHz IFR 2041
Frequency counter 10 Hz to 2.4 GHz Agilent 53181A
Audio analyzer Capable of measuring THD of 0.01% from 100 Hz
Spectrum analyzer DC to 7.2 GHz, 3 Hz resolution bandwidth Anritsu MS2602A
Modulation meter
Function generator
Digital voltmeter DC voltage measurement Solartron 7150+
50 Ω load
(termination)
Oscilloscope 100 MHz bandwidth Tektronix TDS 220
Personal Computer with Microsoft Windows version 3.1 (or greater) installed and fitted with
National Instruments PCIIA GPIB Interface Card
Vero 203-304014B VXI Mainframe
Racal 1260-00C GPIB Slot 0
IFR 3002 executable Soft Front Panel, part number 59000-286
±0.1 dB from 9 kHz to 2.4 GHz
0 dBm to −127 dBm; 2.5 MHz to 2.4 GHz Capable
of measuring residual FM less than 2 Hz and SSB
phase noise <−124 dBc/Hz at 20 kHz offset from a
1 GHz carrier
to 20 kHz
AM, FM and ΦM 50 kHz to 2.4 GHz, Accuracy ±1%
at 1 kHz modulation frequency
DC to 100 kHz sine, ±0.6 dB flatness, 100 kHz
square wave
1 W, 50 Ω nominal impedance, DC to 2.4 GHz
IFR 6960B with
6932 sensor
Agilent 8902A with
option 037 * and
11722A sensor and
11793A down
converter
with option 030
Rohde & Schwarz
UPA3
IFR 2305 plus
distortion option **
Agilent 3325B
Lucas Weinschel
M1404N
* Option 037 is necessary to measure SSB phase noise.
** The distortion option of the 2305 Modulation Meter allows modulation distortion tests to be
carried out with greater ease. If a 2305 with the distortion option is not available, the audio
analyzer may be connected to the modulation meter LF output and set to measure distortion.
Executable soft front panel software
The acceptance test procedures use the supplied executable soft front panel as the user interface for
the 3002 VXI Signal Generator.
5-2
Page 78
RF output
Specification
Range
Accuracy
TEST PROCEDURES
Each test procedure relies on the UUT being set to its power-up conditions. Reset the UUT after
each test procedure by setting:
Store/Recall Address 999
Recall
At the end of this chapter are a set of results tables which give all the test points for each of the
tests. These tables should be photocopied and used to record the results of all the measurements
taken.
−137 dBm to +25 dBm (+19 dBm above 1.2 GHz).
When AM is selected, the maximum RF output level decreases linearly with increasing
AM depths to +19 dBm (+13 dBm above 1.2 GHz) at 99% depth.
VSWR
Output impedance
Test equipment
Description Minimum specification Example
Power meter
Measuring
receiver
Signal generator +8 dBm from 32.5 MHz to 2.43 GHz IFR 2041
Accuracy over temperature range 17°C to 27°C
9 kHz to 1.2 GHz 1.2 GHz to 2.4 GHz
>−127 dBm
Temperature coeff. over temperature range 0°C to 55°C
9 kHz to 1.2 GHz 1.2 GHz to 2.4 GHz
For output levels less than −5 dBm output VSWR is less than 1.3:1 for carrier
frequencies up to 1.2 GHz and less than 1.5:1 for carrier frequencies up to 2.4 GHz.
50 Ω SMA female connector to MIL 390123D.
±0.1 dB from 9 kHz to 2.4 GHz
0 dBm to −127 dBm; 2.5 MHz to 2.4 GHz
±1.0 dB ±2.0 dB
<±0.02 dB/°C <±0.04 dB/°C
IFR 6960B and
6932
Agilent 8902A
with 11722A
sensor and
11793A down
converter
5-3
Page 79
RF level frequency response
Test procedure
UUT
RF OUT
6932
SENSOR
INPUT
6960B
RF power meter
Power
sensor
C2558
Fig. 5-1 RF output test set-up
(1) Perform AUTO ZERO and AUTO CAL on the power meter.
(2) Connect the test equipment as shown in Fig. 5-1.
(3) On the UUT set:
Carr Freq 30 kHz
RF Level 0 dBm
(4) Record the output level measured by the power meter against each of the carrier frequencies
shown in Table 5-1 checking that the results are within specification.
(5) Set the UUT RF level to +7 dBm and repeat (4) using Table 5-2.
(6) Set the UUT RF level to +25 dBm and repeat (4) using Table 5-3, decreasing the RF level to
+19 dBm when testing at carrier frequencies above 1.2 GHz.
ALC linearity
Test procedure
(1) Perform AUTO ZERO and AUTO CAL on the power meter.
(2) Connect the test equipment as shown in Fig. 5-1.
(3) On the UUT set:
(4) Record the output level measured by the power meter against each of the steps shown in
(5) Set the UUT carrier frequency to 950 MHz and repeat (4) using Table 5-5.
(6) Set the UUT carrier frequency to 1200 MHz and repeat (4) using Table 5-6.
(7) Set the UUT carrier frequency to 1900 MHz and repeat (4) using Table 5-7.
(8) Set the UUT carrier frequency to 2400 MHz and repeat (4) using Table 5-8.
Carr Freq 2.5 MHz
RF Level −4 dBm
Table 5-4 checking that the results are within specification.
5-4
Page 80
Attenuator accuracy
Test procedure
Signal generator
UUT
RF
OUT
RF
LO
RF OUTPUT
Down converter
Frequency offset
mode connection
Sensor
Measuring
receiver
Fig. 5-2 RF output test set-up
(1) Connect the test equipment as shown in Fig. 5-2.
(2) On the UUT set:
Carr freq 2.6 MHz
RF Level −4 dBm
Set ∆ 11 ENTER
(3) Tune the receiver to 2.6 MHz and record the output level measured in Table 5-9 checking
that the result is within specification.
C2559
(4) Set the UUT RF level to −4.1 dBm. Measure the received level and record the result in
Table 5-9, checking that the result is within specification.
(5) Decrement the UUT, using the ß icon, in 11 dB steps down to an RF level of −103.1 dBm
measuring the received level at each step shown in Table 5-9 checking that the results are
within specification.
(6) Set the UUT to carrier frequency 480.1 MHz and repeat (2) to (5) using Table 5-10.
(7) Set the UUT to carrier frequency 1199 MHz and repeat (2) to (5) using Table 5-11.
The down converter will automatically be enabled when testing frequencies above
1300 MHz.
(8) Set the local oscillator to +8 dBm at a carrier frequency of 62 MHz less than the test
frequency (i.e. 1813.1 MHz).
(9) On the receiver, enter the local oscillator frequency followed by the test frequency.
(10) Set the UUT to carrier frequency 1875.1 MHz and repeat (2) to (5) using Table 5-12.
(11) Set the UUT to carrier frequency 2399 MHz and repeat (2) to (5) using Table 5-13.
5-5
Page 81
Carrier frequency accuracy
This check provides a conventional method of checking the signal generator frequency locking
circuitry. It will confirm correct operation of phase locked loops and dividers. Overall accuracy is
determined by the instrument’s internal reference standard.
Specification
Range 9 kHz to 2.4 GHz.
Resolution 1 Hz.
Accuracy Equal to the frequency standard accuracy.
Test equipment
Description Minimum specification Example
Frequency
counter
Test procedure
UUT
9 kHz to 2.4 GHz Agilent 53181A
with option 030
Counter
INPUT
RF
OUT
Fig. 5-3 Carrier frequency accuracy test set-up
C5356
(1) Connect the test equipment as shown in Fig. 5-3.
(2) Connect the internal frequency standard from the UUT to the external standard input on the
counter.
(3) On the UUT set:
Carr Freq 9 kHz
RF Level 0 dBm
(4) Record the frequency measured by the counter against each of the carrier frequencies shown
in Table 5-14. (Since the two instruments’ frequencies are locked together, the limit is
±1 digit on the counter display.)
(5) At 1200 MHz disconnect the UUT internal frequency standard from the counter and instead
apply the external reference. Check the result against the limits.
The test limits quoted are for guidance and assume that the internal frequency standard has
recently been adjusted. Aging and stability have to be considered when establishing the real
test limits (see 'Performance data' in Chapter 1).
5-6
Page 82
Spectral purity
Specification
Harmonics
Non-harmonics (offsets >
3 kHz)
Residual FM (FM off) Less than 4.5 Hz RMS in a 300 Hz to 3.4 kHz bandwidth at a carrier frequency of
SSB phase noise
Test equipment
Description Minimum specification Example
Typically better than −30 dBc for levels up to +7 dBm,
typically better than −25 dBc for levels 6 dB below the maximum specified output.
Better than −70 dBc for carrier frequencies up to 1 GHz,
better than −64 dBc for carrier frequencies above 1 GHz,
better than −60 dBc for carrier frequencies above 2 GHz.
1 GHz.
Better than −124 dBc/Hz at 20 kHz offset from a 470 MHz carrier.
Typically −121 dBc/Hz at 20 kHz offset from a 1 GHz carrier.
Harmonics
Test procedure
Spectrum
analyzer
Measuring
receiver
Signal generator +8 dBm from 32.5 MHz to 2.43 GHz IFR 2041
DC to 7.2 GHz frequency coverage Anritsu MS2602A
0 dBm to −127 dBm; 2.5 MHz to 2.4 GHz Capable
of measuring residual FM less than 2 Hz and SSB
phase noise <−124 dBc/Hz at 20 kHz offset from a
1 GHz carrier
Agilent 8902A
with option 037
UUT
RF OUT
Spectrum analyzer
Fig. 5-4 Carrier harmonics and non-harmonics test set-up
(1) Press CAL on the spectrum analyzer.
(2) Connect the test equipment as shown in Fig. 5-4.
(3) On the UUT set:
Carr Freq 10 kHz
RF Level −4 dBm
5-7
RF INPUT
C5357
Page 83
(4) Measure the level of the second and third harmonics on the spectrum analyzer at each of the
carrier frequencies shown in Table 5-15 checking that the results are within specification.
(5) Set the UUT RF level to +7 dBm and repeat (4) using Table 5-16.
(6) Set the UUT RF level to +13 dBm and repeat (4) using Table 5-17.
(7) Set the UUT RF level to +19 dBm and repeat (4) up to 1.2 GHz using Table 5-18.
Non-harmonics
Test procedure
(1) Press CAL on the spectrum analyzer.
(2) Connect the test equipment as shown in Fig. 5-4.
(3) On the UUT set:
Carr Freq 1201 MHz
RF Level 0 dB
(4) Measure the level of the non-harmonics on the spectrum analyzer at each of the carrier
frequencies shown in Table 5-19 checking that the results are within specification.
Residual FM
Test procedure
(1) Connect the test equipment as shown in Fig. 5-5.
(2) On the UUT set:
Carr Freq 1 [GHz]
RF Level 0 dBm
(3) On the measuring receiver select FM, 300 Hz high-pass filter, 3.4 kHz low-pass filter and
enable averaging.
(4) Measure the residual FM checking that the result is within the specification shown in
Table 5-20.
UUT
RF OUT
RF INPUT
Fig. 5-5 Residual FM test set-up
Measuring
receiver
C2562
5-8
Page 84
SSB phase noise
Test procedure
UUT
RF OUT
RFLO
Measuring
Signal generator
RF OUTPUT
receiver
C2563
Fig. 5-6 SSB phase noise test set-up
(1) Connect the test equipment as shown in Fig. 5-6.
(2) On the UUT set:
Carr Freq 470 MHz
RF Level 0 dBm
(3) On the measuring receiver:
Tune the receiver to 470 MHz.
Select 24.0 SPCL to enter selective power measurement mode.
Select 23.1 SPCL to set the LO to external.
(4) Set the signal generator to a carrier frequency of 470.455 MHz, RF level 0 dBm.
(5) On the measuring receiver:
Select 24.5 SPCL to establish the IF reference value (in volts).
Select 24.6 SPCL to set the reference to 0 dBm.
(6) Fine tune the signal generator frequency until a maximum value is displayed on the measuring
receiver.
(7) Offset the signal generator by 20 kHz.
(8) On the measuring receiver:
Select 24.7 SPCL to normalize the measurement for a 1 Hz bandwidth.
(9) Offset the signal generator by 20 kHz.
(10) Measure the level on the receiver (the SSB phase noise in a 1 Hz bandwidth) checking that
the result is within the specification shown in Table 5-21.
5-9
Page 85
Internal FM
Specification
Deviation range
Resolution 3 digits or 1 Hz.
Accuracy ±5% at 1 kHz modulation rate.
Bandwidth (1 dB) DC to 100 kHz (DC coupled),
Carrier frequency offset Less than 1% of the set frequency deviation when DC coupled.
Distortion Less than 3% at 1 kHz rate for deviations up to 100 kHz.
FSK
Test equipment
0 to 100 kHz.
10 Hz to 100 kHz (AC coupled),
20 Hz to 100 kHz (AC coupled with ALC).
Typically <0.5% at 1 kHz rate for deviations up to 10 kHz.
2 level or 4 level FSK.
Note that 4 FSK is not available with Option 11 Fast Pulse fitted.
Description Minimum specification Example
Modulation meter
DVM DC voltage measurement Solartron 7150+
50 Ω load
(termination)
Audio analyzer Capable of measuring THD of 0.01% from 100 Hz
Function
generator
FM deviation and distortion
Test procedure
UUT
RF OUT
FM accuracy ±1% at 1 kHz modulation frequency
1 W, 50 Ω nominal impedance, DC to 2.4 GHz
to 20 kHz
DC to 100 kHz sine, ±0.6 dB flatness
Modulation meter
RF INPUT
IFR 2305 with
distortion option
Lucas Weinschel
M1404N
Rohde &
Schwarz UPA3
Agilent 3325B
2305
Fig. 5-7 Internal modulation and modulation distortion test set-up
5-10
C2564
Page 86
(1) Connect the test equipment as shown in Fig. 5-7.
(2) On the UUT set:
Carr Freq 10 MHz
RF Level 0 dBm
FM1 Level 100 kHz
Mod On
Source On
(3) On the modulation meter select CAL, FM, 50 Hz Þ 15 kHz filter.
(4) Measure the FM accuracy and distortion at the carrier frequencies shown in Table 5-22
checking that the results are within specification.
FM scale shape
Test procedure
(1) Connect the test equipment as shown in Fig. 5-7.
(2) On the UUT set:
Carr Freq 15 MHz
RF Level 0 dBm
FM1 Level 100 kHz
Mod On
Source On
(3) On the modulation meter select CAL, FM, 50 Hz Þ 15 kHz filter.
(4) Measure the FM accuracy at the deviations shown in Table 5-23 checking that the results are
within specification.
5-11
Page 87
Carrier error
Test procedure
(1) Connect the test equipment as shown in Fig. 5-7.
(2) On the UUT set:
(3) On the modulation meter select CARRIER ERROR. The FREQUENCY display will read
(4) On the UUT set:
(5) On the modulation meter measure the carrier frequency error displayed in the FREQUENCY
Carr Freq 1200 MHz
RF Level 0 dBm
0.00 kHz.
Mod Mode FM External
FM1 Level 100 kHz
Source On
Mod On
DC coupling
Null DCFM
window checking that the result is within the specification shown in Table 5-24.
External FM frequency response (ALC off, DC coupled)
Test procedure
UUT
Function generator
30 Hz to 100 kHz
(1) Connect the test equipment as shown in Fig. 5-8.
(2) On the UUT set:
Carr Freq 15 MHz
RF Level 0 dBm
Mod Mode FM External
FM1 Level 50 kHz
Source On
Mod On
DC coupling
(3) Set the function generator to give 1V RMS, 1 kHz sine wave.
EXT MOD
OUTPUT
Temporary
connection
DVM
INPUT
50
Ω
load
Fig. 5-8 External modulation and modulation distortion test set-up
RF
OUT
RF
INPUT
2305
Modulation meter
Audio analyzer
OUTPUT
INPUT
LF
C2565
(4) On the modulation meter select CAL, FM, 10 Hz Þ 300 kHz filter.
5-12
Page 88
(5) On the modulation meter check that the FM reading is between 47.5 kHz and 52.5 kHz, then
(6) Set the function generator to each of the frequencies shown in Table 5-25 checking that the
(7) At those frequencies indicated in Table 5-25, set the modulation meter LF output control to
0 Hz (DC)
To measure the FM deviation at DC, it will be necessary to use the DC offset facility on the
function generator proceeding as follows:
(8) Set the function generator to +1.4142 V DC (temporarily connect the function generator
(9) Press CARRIER ERROR on the modulation meter.
(10) Set the function generator to −1.4142 V DC (temporarily connect the function generator
(11) Measure the frequency indicated on the modulation meter carrier frequency window.
(12) Reset the function generator to 1V RMS, 1 kHz sine wave and measure the FM deviation.
(13) Using the following formula, calculate the change in response checking that the result is
set a reference using the relative function.
relative readings on the modulation meter are within specification.
mid-position and measure the AF distortion on the audio analyzer, checking that the results
are within specification.
output to the DVM and set this voltage as close as possible to +1.4142 V).
output to the DVM and set this voltage as close as possible to −1.4142 V).
FM1 _____
FM2 _____
within the specification shown against 0 Hz in Table 5-25.
log20
External FM frequency response (ALC on)
Test procedure
(1) Connect the test equipment as shown in Fig. 5-8.
(2) On the UUT set:
Carr Freq 15 MHz
RF Level 0 dBm
Mod Mode FM External
FM1 Level 10 kHz
Source On
Mod On
ALC coupling
(3) Set the function generator to give 0.75 V RMS, 1 kHz sine wave.
(4) On the modulation meter select CAL, FM, 10 Hz
(5) On the modulation meter check that the FM reading is between 9.5 kHz and 10.5 kHz, then
set a reference using the relative function.
(6) Set the function generator to each of the frequencies shown in Table 5-26 checking that the
relative readings on the modulation meter are within specification.
(7) Set the function generator to 1.25 V RMS and repeat (4) to (6) using Table 5-27, also
measuring the AF distortion on the audio analyzer at those frequencies indicated.
10
2FM2
ì
í
î
ü
ý
FM1
þ
Þ 300 kHz filter.
5-13
Page 89
Phase modulation
Specification
Deviation 0 to 10 radians.
Resolution 3 digits or 0.01 radians.
Accuracy at 1 kHz ±5% of indicated deviation excluding residual phase modulation.
Bandwidth (3 dB) 100 Hz to 10 kHz.
Distortion Less than 3% at 10 radians at 1 kHz modulation rate. Typically <0.5% for deviations up
Test equipment
Description Minimum specification Example
to 1 radian at 1 kHz.
Modulation meter
Phase modulation
Test procedure
(1) Connect the test equipment as shown in Fig. 5-7.
(2) On the UUT set:
Carr Freq 10.5 MHz
RF Level 0 dBm
Source On
Mod Mode PM Internal
PM1 Level 10 rad
(3) On the modulation meter, select CAL,
(4) Measure the
shown in Table 5-28.
ΦM accuracy and distortion checking that the results are within the specification
Phase modulation flatness
Test procedure
For this test, the phase modulation figures are calculated from readings taken with the modulation
meter set to FM. No allowances need to be made for the modulation source frequency accuracy
since it is derived from the reference oscillator in the UUT.
(1) Connect the test equipment as shown in Fig. 5-7.
(2) On the UUT set:
Carr Freq 15 MHz
RF Level 0 dBm
Mod Mode PM Internal
Source On
Mod On
PM1 Level 10 rad
ΦM and FM accuracy ±2% at 1 kHz modulation
frequency
ΦM.
IFR 2305 with
distortion option
(3) On the modulation meter, select CAL, FM, 50 Hz
Þ 15 kHz LF filter.
(4) Measure the deviation on the modulation meter and calculate the phase modulation using the
formula:
ì
=Φ
M
í
î
ü
(Hz) dev FM
ý
(Hz) freq mod
þ
(5) On the UUT set mod source to each of the frequencies shown in Table 5-29, measure the
deviation on the modulation meter and calculate the phase modulation for each step using the
formula in (4).
5-14
Page 90
(6) Using the figure recorded in (4) as a reference, calculate the change in response at each
modulation frequency using the formula:
Check that the results are within the specifications shown in Table 5-29.
Amplitude modulation
Specification
Range 0 to 99.9%.
Resolution 0.1%.
Accuracy For carrier frequencies less than 500 MHz (usable to 2 GHz): ±5% of set depth at 1 kHz
Bandwidth (1 dB) DC to 30 kHz (DC coupled),
Distortion Less than 2.5% at 1 kHz rate for modulation depths up to 80%,
ì
log20
í
10
î
rate at +17°C to 27°C ambient temperature.
Temperature coefficient <0.02% per °C.
10 Hz to 30 kHz (AC coupled),
20 Hz to 30 kHz (AC coupled with ALC).
Less than 1.5% at 1 kHz rate for modulation depths up to 30%.
ü
)5(in recorded Figure
ý
)4(in recorded Figure
þ
Test equipment
Description Minimum specification Example
Modulation meter
DVM DC voltage measurement Solartron 7150+
50 Ω load
(termination)
Audio analyzer Capable of measuring THD of 0.01% from 100 Hz
Function
generator
AM depth and distortion
Test procedure
(1) Connect the test equipment as shown in Fig. 5-7.
(2) On the UUT set:
Carr Freq 1.5 MHz
RF Level −4 dBm
Mod Mode AM Internal
Source On
Mod On
AM1 Level 30%
AM accuracy ±1% at 1 kHz modulation frequency
1 W 50 Ω nominal impedance, DC to 2.4 GHz
to 20 kHz
DC to 30 kHz sine, ±0.6 dB flatness
IFR 2305 with
distortion option
Lucas Weinschel
M1404N
Rohde &
Schwarz UPA3
Agilent 3325B
(3) On the modulation meter, select CAL, AM, 300 Hz
Þ 3.4 kHz LF filter.
(4) Measure the AM accuracy and distortion at the frequencies shown in Table 5-30 checking
that the results are within specification.
(5) Set the UUT AM1 level to 80% and repeat (4).
(6) Set the UUT to RF level +7 dBm and repeat (2) to (5) using Table 5-31.
(7) Set the UUT to RF level +13 dBm and repeat (2) to (5) using Table 5-32.
5-15
Page 91
(8) Set the UUT to RF level +19 dBm and repeat (2) to (5) using Table 5-33.
AM scale shape
Test procedure
(1) Connect the test equipment as shown in Fig. 5-7.
(2) On the UUT set:
Carr Freq 100 MHz
RF Level 0 dBm
Mod Mode AM Internal
Source On
Mod On
AM1 Level 30%
(3) On the modulation meter, select CAL, AM, 300 Hz
(4) Measure the AM accuracy at the depths shown in Table 5-34 checking that the results are
within specification.
Þ 3.4 kHz LF filter.
External AM frequency response (ALC off, DC coupled)
Test procedure
100 Hz to 30 kHz
(1) Connect the test equipment as shown in Fig. 5-8.
(2) On the UUT set:
Carr Freq 400 MHz
RF Level −4 dBm
Mod Mode AM External
AM1 Level 80%
Source On
Mod On
DC coupling
(3) Set the function generator to give 1 V RMS, 1 kHz sine wave.
(4) On the modulation meter select CAL, AM, 10 Hz
(5) On the modulation meter check that the AM reading is between 76% and 84%, then set a
reference using the relative function.
(6) Record the absolute reading for use in the formula in (16) below.
(7) Set the function generator to each of the frequencies shown in Table 5-35 checking that the
relative readings on the modulation meter are within specification.
(8) Set the UUT RF level to +7 dBm and repeat (3) to (7) using Table 5-36.
(9) Set the UUT RF level to +13 dBm and repeat (3) to (7) using Table 5-37.
Þ 300 kHz filter.
5-16
Page 92
0 Hz (DC)
To measure the AM depth at DC, it will be necessary to use the DC offset facility on the function
generator proceeding as follows:
6960B
RF power meter
SENSOR
INPUT
Function generator
OUTPUT
Temporary
connection
EXT MOD
INPUT
50
Ω
load
UUT
RF
OUT
6912
Power
sensor
DVM
Fig. 5-9 0 Hz external AM and distortion test set-up
(9) Connect the test equipment as shown in Fig. 5-9.
(10) Set the function generator to +1.4142 V DC (temporarily connect the function generator
output to the DVM and set this voltage as close as possible to +1.4142 V).
(11) Measure the power on the power meter.
P1 _____
C2566
(12) Set the function generator to −1.4142 V DC (temporarily connect the function generator
output to the DVM and set this voltage as close as possible to −1.4142 V).
(13) Measure the power on the power meter.
P2 _____
(14) Subtract P2 from P1 (= x).
(15) Calculate the modulation depth using the formula:
(-x/20)
ì
10-1
ï
= AM(%)
í
ï
10+1
î
(-x/20)
ü
ï
ý
ï
þ
(16) Calculate the 0 Hz response relative to 1 kHz using the following formula, recording the
result in Table 5-35:
ì
log20
í
10
î
ü
)6(inrecordedFigure
ý
)15(inrecordedFigure
þ
(17) Set the UUT RF level to +7 dBm and repeat (10) to (16) using Table 5-36.
(18) Set the UUT RF level to +13 dBm and repeat (10) to (16) using Table 5-37.
5-17
Page 93
Pulse modulation
Does not apply to instruments fitted with Option 11 — refer to Annex A.
Specification
Carrier frequency range 32 MHz to 2.4 GHz, usable to 10 MHz.
RF level range Maximum guaranteed output is reduced to +20 dBm, +14 dBm above 1.2 GHz.
RF level accuracy When pulse modulation is enabled, adds ±0.5 dB to the RF level accuracy.
ON/OFF ratio Better than 45 dB below 1.2 GHz.
Rise and fall time
Test equipment
Description Minimum specification Example
Better than 40 dB above 1.2 GHz.
Less than 10 µs.
Power meter
Spectrum analyzer Frequency coverage 32 MHz to 2.4 GHz Anritsu MS2602A
Oscilloscope 100 MHz bandwidth Tektronix TDS 220
Function generator DC to 10 kHz square wave Agilent 3325B
±0.1 dB from 9 kHz to 2.4 GHz
Pulse modulation RF level frequency response
IFR 6960B and
6912
Test procedure
(1) Perform AUTO ZERO and AUTO CAL on the power meter.
(2) Connect the test equipment as shown in Fig. 5-10.
(3) On the UUT set:
Carr Freq 32 MHz
RF Level
Pulse ON
(4) Set the function generator to provide +5 V DC. The RF output will now be enabled.
(5) Record the output level measured by the power meter against each of the carrier frequencies
shown in Table 5-38 checking that the results are within specification.
(6) Set the UUT RF level to +4 dBm and repeat (5) using Table 5-39.
Fig. 5-10 Pulse modulation test set-up
−7 dBm
5-18
Page 94
(7) Set the UUT RF level to +14 dBm and repeat (5) using Table 5-40.
Pulse modulation on/off ratio
Function generator
UUT
RF
OUT
Test procedure
(1) Press CAL on the spectrum analyzer.
(2) Connect the test equipment as shown in Fig. 5-11.
(3) On the UUT set:
Carr Freq 32 MHz
RF Level 0 dBm
Pulse ON
(4) Set the function generator to provide +5 V DC. The RF output will now be enabled
(5) Tune the spectrum analyzer to the same frequency as the signal generator.
(6) Press PEAK FIND on the spectrum analyzer and note the output level.
(7) Apply a short circuit to the PULSE INPUT socket.
(8) Again note the output level measured by the spectrum analyzer.
(9) The difference between the levels recorded in (6) and (8) is the pulse mod on/off ratio.
Check that the ratio is within specification using Table 5-41.
(10) Repeat (5) to (9) for each of the frequencies shown in Table 5-41.
OUTPUT
PULSE
INPUT
Spectrum analyzer
RF INPUT
Fig. 5-11 Pulse modulation on/off ratio test set-up
C5358
5-19
Page 95
Pulse modulation rise and fall time
UUT
Function generator
Test procedure
(1) Connect the test equipment as shown in Fig. 5-12.
(2) On the UUT set:
Carr Freq 50 MHz
RF Level +7 dBm
Pulse ON
(3) Set the function generator to produce 10 kHz, 0 V to +5 V square wave.
(4) Adjust the oscilloscope controls such that the rise time of the envelope can be measured.
(5) Measure the rise time between the 10% to 90% points checking that it is within the
specification shown in Table 5-42.
(6) Repeat (4) to (5) for the fall time of the envelope.
RF
OUT
OUTPUT
PULSE
INPUT
Fig. 5-12 Pulse modulation rise and fall time test set-up
Oscilloscope
C2567
Modulation oscillator
Specification
Frequency range 0.01 Hz to 20 kHz.
Resolution 0.01 Hz for frequencies up to 100 Hz,
Frequency accuracy As frequency standard.
Distortion Less than 0.1% THD at 1 kHz.
Waveforms Sine to 20 kHz, triangle or square wave to 3 kHz.
Audio output The modulation oscillator signal is available on a front-panel BNC connector at a level of
Test equipment
Description Minimum specification Example
Frequency
counter
Audio analyzer Capable of measuring THD of 0.01% at 1 kHz Rohde &
0.1 Hz for frequencies up to 1 kHz,
1 Hz for frequencies up to 20 kHz.
2 V RMS EMF from a 600 Ω source impedance.
9 kHz to 2.4 GHz Agilent 53181A
with option 030
Schwarz UPA3
5-20
Page 96
Modulation oscillator frequencies
Test procedure
UUT
Counter
LF OUTPUT
Fig. 5-13 Modulation oscillator frequency test set-up
(1) Connect the test equipment as shown in Fig. 5-13.
(2) On the UUT set:
FM1 Freq 10 Hz
(3) Record the frequency measured by the counter against each of the modulation oscillator
frequencies shown in Table 5-43.
Modulation oscillator distortion and LF output flatness
Test procedure
UUT
INPUT
C5359
LF OUTPUT
Fig. 5-14 Modulation oscillator distortion test set-up
(1) Connect the test equipment as shown in Fig. 5-14.
(2) On the UUT set:
FM1 Freq 1 kHz
5-21
INPUT
Audio analyzer
C2569
Page 97
(3) Measure the distortion on the audio analyzer checking that the result is within the
specification shown in Table 5-44.
(4) Measure the absolute level on the audio analyzer (in dBm) and record this level as a
reference.
(5) Set the UUT mod source to each of the frequencies shown in Table 5-44. Subtract the level
measured on the audio analyzer at each frequency from that recorded in (4) checking that the
results are within specification.
External frequency standard input
Specification
External input Front-panel BNC connector accepts an input of 1 MHz or 10 MHz at 220 mV RMS to
1.8 V RMS into 1 kΩ.
Test equipment
Description Minimum specification Example
Signal generator 220 mV to 1.8 V RMS, 1 MHz to 10 MHz IFR 2041 or 2030
Test procedure
(1) Connect the test equipment as shown in Fig. 5-15.
(2) On the UUT set:
Freq Std External 1 Direct
(3) Set the signal generator to RF level 220 mV EMF, carrier frequency 1 MHz.
(4) Using Table 5-45, check that no external standard error messages are displayed on the UUT.
(5) Set the signal generator to 1.8 V EMF and repeat (4).
(6) On the UUT set
Freq Std External 10 Indirect
(7) Set the signal generator to carrier frequency 10 MHz and repeat (4).
(8) Set the signal generator to 220 mV and repeat (4).
UUT
FREQ STD
I/O
Fig. 5-15 External standard test set-up.
Signal generator
RF OUTPUT
C2570
5-22
Page 98
ACCEPTANCE TEST RESULTS TABLES
For 3002 Signal Generator, serial number _ _ _ _ _ _ / _ _ _
Table 5-1 RF output at −4 dBm
Carrier frequency
(MHz)
RF level min.
(dBm)
Result (dBm) RF level max.
(dBm)
0.03
0.33
9
11
60
180
300
420
540
660
780
900
1020
1140
1200
1201
1260
1320
1380
1440
1500
1560
1620
1680
1740
1800
1860
1920
1980
2040
2100
2160
2220
2340
2400
−5
−5
−5
−5
−5
−5
−5
−5
−5
−5
−5
−5
−5
−5
−5
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
−6
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
_______
−3
−3
−3
−3
−3
−3
−3
−3
−3
−3
−3
−3
−3
−3
−3
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
−2
5-23
Page 99
Table 5-2 RF output at +7 dBm
Carrier frequency
(MHz)
RF level min.
(dBm)
Result (dBm) RF level max.
(dBm)
0.03 +6 _______ +8
0.33 +6 _______ +8
9 +6 _______ +8
11 +6 _______ +8
60 +6 _______ +8
180 +6 _______ +8
300 +6 _______ +8
420 +6 _______ +8
540 +6 _______ +8
660 +6 _______ +8
780 +6 _______ +8
900 +6 _______ +8
1020 +6 _______ +8
1140 +6 _______ +8
1200 +6 _______ +8
1201 +5 _______ +9
1260 +5 _______ +9
1320 +5 _______ +9
1380 +5 _______ +9
1440 +5 _______ +9
1500 +5 _______ +9
1560 +5 _______ +9
1620 +5 _______ +9
1680 +5 _______ +9
1740 +5 _______ +9
1800 +5 _______ +9
1860 +5 _______ +9
1920 +5 _______ +9
1980 +5 _______ +9
2040 +5 _______ +9
2100 +5 _______ +9
2160 +5 _______ +9
2220 +5 _______ +9
2340 +5 _______ +9
2400 +5 _______ +9
5-24
Page 100
Table 5-3 RF output at +25 dBm
Carrier frequency
(MHz)
RF level min.
(dBm)
Result (dBm) RF level max.
(dBm)
0.03 +24 _______ +26
0.33 +24 _______ +26
9 +24 _______ +26
11 +24 _______ +26
60 +24 _______ +26
180 +24 _______ +26
300 +24 _______ +26
420 +24 _______ +26
540 +24 _______ +26
660 +24 _______ +26
780 +24 _______ +26
900 +24 _______ +26
1020 +24 _______ +26
1140 +24 _______ +26
1200 +24 _______ +26
+19 dBm
1201 +17 _______ +21
1260 +17 _______ +21
1320 +17 _______ +21
1380 +17 _______ +21
1440 +17 _______ +21
1500 +17 _______ +21
1560 +17 _______ +21
1620 +17 _______ +21
1680 +17 _______ +21
1740 +17 _______ +21
1800 +17 _______ +21
1860 +17 _______ +21
1920 +17 _______ +21
1980 +17 _______ +21
2040 +17 _______ +21
2100 +17 _______ +21
2160 +17 _______ +21
2220 +17 _______ +21
2340 +17 _______ +21
2400 +17 _______ +21
5-25
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.