Backlighting LED in ø 3 mm Tinted Non-Diffused Package
ColorTypeTechnologyAngle of Half Intensity
High efficiency redTLVH4200GaAsP on GaP85
Soft orangeTLVS4200GaAsP on GaP85
YellowTLVY4200GaAsP on GaP85
GreenTLVG4200GaP on GaP85
Pure greenTLVP4200GaP on GaP85
Description
The TLV.4200 series was developed for backlighting.
Due to its special shape the spatial distribution of the
radiation is qualified for backlighting.
To optimize the brightness of backlighting a custom–
built reflector (with scattering) is required. Uniform
illumination can be enhanced by covering the front of
the reflector with diffusor material.
This is a flexible solution for backlighting different
areas.
±
ö
°°°°°
Features
D
High light output
D
Wide viewing angle
D
Categorized for luminous flux
D
Tinted clear package
D
Low power dissipation
D
Low self heating
D
Rugged design
D
High reliability
Applications
Backlighting of display panels, LCD displays,
symbols on switches, keyboards, graphic boards and measuring scales
Illumination of large areas e.g. dot matrix displays
96 11664
Document Number 83057
Rev. A1, 04-Feb-99
www.vishay .de • FaxBack +1-408-970-5600
1 (10)
TLV.42..
Vishay Telefunken
Absolute Maximum Ratings
T
= 25_C, unless otherwise specified
amb
TLVH4200 ,TLVS4200 ,TLVY4200 ,TLVG4200 ,TLVP4200
ParameterTest ConditionsSymbolValueUnit
Reverse voltageV
DC forward currentT
Surge forward currenttp x 10 msI
Power dissipationT
Junction temperatureT
Operating temperature rangeT
Storage temperature rangeT
Soldering temperaturet x 5 s, 2 mm from bodyT
Thermal resistance junction/ambientR
Optical and Electrical Characteristics
T
= 25_C, unless otherwise specified
amb
High efficiency red (TLVH4200 )
≤ 60°CI
amb
≤ 60°CP
amb
R
F
FSM
V
amb
stg
sd
thJA
6V
30mA
1A
100mW
j
100
–20 to +100
–55 to +100
260
°
C
°
C
°
C
°
C
400K/W
ParameterTest ConditionsTypeSymbolMinTypMaxUnit
Luminous fluxIF = 15 mA
Dominant wavelengthIF = 10 mA
Peak wavelengthIF = 10 mA
Figure 1 Power Dissipation vs. Ambient Temperature
60
50
40
30
10000
T
amb
1000
tp/T=0.01
100
1
10
F
I – Forward Current ( mA )
1
0.010.1110
95 10047
0.5
t
p
0.02
0.2
– Pulse Length ( ms )
0.1
Figure 3 Forward Current vs. Pulse Length
v
0.05
65°C
100
20
F
I – Forward Current ( mA )
10
95 10905
0
020406080
T
– Ambient Temperature ( °C )
amb
100
Figure 2 Forward Current vs. Ambient Temperature
v rel
I – Relative Luminous Intensity
0.40.200.20.4
0.6
0.81.0
96 11608
Figure 4 Rel. Luminous Intensity vs. Angular Displacement
0°30°10°20°40°
0.6
0.8
1.0
50°
60°
70°
80°
www.vishay .de • FaxBack +1-408-970-5600Document Number 83057
4 (10)
Rev. A1, 04-Feb-99
TLV.42..
Vishay Telefunken
1000
High Efficiency Red
100
tp/T=0.001
t
=10ms
10
1
F
I – Forward Current ( mA )
p
0.1
02468
95 10026V
– Forward Voltage ( V )
F
10
Figure 5 Forward Current vs. Forward Voltage
1.6
High Efficiency Red
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
95 10472
IF=10mA
0
0
20406080
T
– Ambient Temperature ( °C )
amb
100
Figure 6 Rel. Luminous Flux vs. Ambient Temperature
10
High Efficiency Red
1
0.1
– Relative Luminous Flux
v rel
F
0.01
100
95 10474
110
I
– Forward Current ( mA )
F
Figure 8 Relative Luminous Flux vs. Forward Current
1.2
High Efficiency Red
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
0
690
95 10040
590610630650670
l
– Wavelength ( nm )
Figure 9 Relative Luminous Intensity vs. Wavelength
2.4
High Efficiency Red
2.0
1.6
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
0
102050100200
95 10473
0.50.2 0.10.050.021
Figure 7 Rel. Luminous Flux vs.
Forw. Current/Duty Cycle
Document Number 83057
Rev. A1, 04-Feb-99
500
I
F
(mA)
/T
t
p
100
Soft Orange
10
1
F
I – Forward Current ( mA )
0.1
01234
V
95 9990
– Forward Voltage ( V )
F
Figure 10 Forward Current vs. Forward Voltage
www.vishay .de • FaxBack +1-408-970-5600
5
5 (10)
TLV.42..
Vishay Telefunken
2.0
Soft Orange
1.6
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
0
020406080
96 11599T
– Ambient Temperature ( °C )
amb
100
Figure 11 Rel. Luminous Flux vs. Ambient Temperature
2.4
Soft Orange
2.0
1.6
1.2
0.8
– Relative Luminous Flux
v rel
0.4
F
1.2
Soft Orange
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
0
670
95 10324
570590610630650
l
– Wavelength ( nm )
Figure 14 Relative Luminous Intensity vs. Wavelength
1000
Yellow
100
tp/T=0.001
t
=10ms
10
1
F
I – Forward Current ( mA )
p
0
(mA)
500
I
F
t
/T
p
96 11600
102050100200
0.50.2 0.10.050.021
Figure 12 Rel. Luminous Flux vs.
Forw. Current/Duty Cycle
10
Soft Orange
1
0.1
– Relative Luminous Flux
v rel
F
0.01
100
96 11601
110
I
– Forward Current ( mA )
F
Figure 13 Relative Luminous Flux vs. Forward Current
0.1
02468
95 10030V
– Forward Voltage ( V )
F
10
Figure 15 Rel. Luminous Flux vs. Ambient Temperature
1.6
Yellow
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
95 10475
0
IF=10mA
0
20406080
T
– Ambient Temperature ( °C )
amb
100
Figure 16 Rel. Luminous Flux vs. Ambient Temperature
www.vishay .de • FaxBack +1-408-970-5600Document Number 83057
6 (10)
Rev. A1, 04-Feb-99
TLV.42..
Vishay Telefunken
2.4
Yellow
2.0
1.6
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
0
102050100200
95 10476
0.50.2 0.10.050.021
Figure 17 Rel. Luminous Flux vs.
Forw. Current/Duty Cycle
10
Yellow
1
500
I
F
(mA)
/T
t
p
1000
Green
100
10
tp/T=0.001
t
=10ms
1
F
I – Forward Current ( mA )
p
0.1
02468
95 10034V
– Forward Voltage ( V )
F
Figure 20 Forward Current vs. Forward Voltage
1.6
Green
1.2
0.8
10
0.1
– Relative Luminous Flux
v rel
F
0.01
100
95 10477
110
I
– Forward Current ( mA )
F
Figure 18 Relative Luminous Flux vs. Forward Current
1.2
Yellow
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
0
650
95 10039
550570590610630
l
– Wavelength ( nm )
Figure 19 Relative Luminous Intensity vs. Wavelength
– Relative Luminous Flux
0.4
v rel
F
95 10478
0
IF=10mA
0
20406080
T
– Ambient Temperature ( °C )
amb
100
Figure 21 Rel. Luminous Flux vs. Ambient Temperature
2.4
Green
2.0
1.6
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
0
(mA)
500
I
F
t
/T
p
95 10479
102050100200
0.50.2 0.10.050.021
Figure 22 Rel. Luminous Flux vs.
Forw. Current/Duty Cycle
Document Number 83057
Rev. A1, 04-Feb-99
www.vishay .de • FaxBack +1-408-970-5600
7 (10)
TLV.42..
Vishay Telefunken
10
Green
1
0.1
– Relative Luminous Flux
v rel
F
0.01
100
95 10480
110
– Forward Current ( mA )
I
F
Figure 23 Relative Luminous Flux vs. Forward Current
1.2
Green
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
0
620
95 10038
520540560580600
l
– Wavelength ( nm )
Figure 24 Relative Luminous Intensity vs. Wavelength
2.0
Pure Green
1.6
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
0
020406080
96 11602T
– Ambient Temperature ( °C )
amb
100
Figure 26 Rel. Luminous Flux vs. Ambient Temperature
2.4
Pure Green
2.0
1.6
1.2
0.8
– Relative Luminous Flux
v rel
0.4
F
0
(mA)
500
I
F
t
/T
p
96 11603
102050100200
0.50.2 0.10.050.021
Figure 27 Rel. Luminous Flux vs.
Forw. Current/Duty Cycle
100
Pure Green
10
1
F
I – Forward Current ( mA )
0.1
01234
V
95 9988
– Forward Voltage ( V )
F
Figure 25 Forward Current vs. Forward Voltage
5
10
Pure Green
1
0.1
– Relative Luminous Flux
v rel
F
0.01
100
96 11604
110
I
– Forward Current ( mA )
F
Figure 28 Relative Luminous Flux vs. Forward Current
www.vishay .de • FaxBack +1-408-970-5600Document Number 83057
8 (10)
Rev. A1, 04-Feb-99
1.2
Pure Green
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
95 10325
0
500520540560580
l
– Wavelength ( nm )
600
Figure 29 Relative Luminous Intensity vs. Wavelength
Dimensions in mm
TLV.42..
Vishay Telefunken
Document Number 83057
Rev. A1, 04-Feb-99
9510954
www.vishay .de • FaxBack +1-408-970-5600
9 (10)
TLV.42..
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. V arious national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly , any claim of personal damage, injury or death associated with such unintended or unauthorized use.