VISHAY TLV.42 Technical data

查询TLV.42..供应商
TLV.42..
Vishay Telefunken
Backlighting LED in ø 3 mm Tinted Non-Diffused Package
High efficiency red TLVH4200 GaAsP on GaP 85 Soft orange TLVS4200 GaAsP on GaP 85 Yellow TLVY4200 GaAsP on GaP 85 Green TLVG4200 GaP on GaP 85 Pure green TLVP4200 GaP on GaP 85
Description
The TLV.4200 series was developed for backlighting. Due to its special shape the spatial distribution of the radiation is qualified for backlighting. To optimize the brightness of backlighting a custom– built reflector (with scattering) is required. Uniform illumination can be enhanced by covering the front of the reflector with diffusor material. This is a flexible solution for backlighting different areas.
±
ö
° ° ° ° °
Features
D
High light output
D
Wide viewing angle
D
Categorized for luminous flux
D
Tinted clear package
D
Low power dissipation
D
Low self heating
D
Rugged design
D
High reliability
Applications
Backlighting of display panels, LCD displays, symbols on switches, keyboards, graphic boards and measuring scales Illumination of large areas e.g. dot matrix displays
96 11664
Document Number 83057 Rev. A1, 04-Feb-99
www.vishay .de FaxBack +1-408-970-5600
1 (10)
TLV.42..
Vishay Telefunken
Absolute Maximum Ratings
T
= 25_C, unless otherwise specified
amb
TLVH4200 ,TLVS4200 ,TLVY4200 ,TLVG4200 ,TLVP4200
Parameter Test Conditions Symbol Value Unit Reverse voltage V DC forward current T Surge forward current tp x 10 ms I Power dissipation T Junction temperature T Operating temperature range T Storage temperature range T Soldering temperature t x 5 s, 2 mm from body T Thermal resistance junction/ambient R
Optical and Electrical Characteristics
T
= 25_C, unless otherwise specified
amb
High efficiency red (TLVH4200 )
60°C I
amb
60°C P
amb
R
F
FSM
V
amb
stg
sd
thJA
6 V
30 mA
1 A
100 mW
j
100 –20 to +100 –55 to +100
260
°
C
°
C
°
C
°
C
400 K/W
Parameter Test Conditions Type Symbol Min Typ Max Unit Luminous flux IF = 15 mA Dominant wavelength IF = 10 mA Peak wavelength IF = 10 mA
f
V
l
d
l
p
10 25 mlm
612 625 nm
635 nm Angle of half intensity IF = 10 mA ϕ ±85 deg Forward voltage IF = 20 mA V Reverse voltage IR = 10 mA V Junction capacitance VR = 0, f = 1 MHz C
F R
j
2.4 3 V
6 15 V
50 pF
Soft orange (TLVS4200 )
Parameter Test Conditions Type Symbol Min Typ Max Unit Luminous flux IF = 15 mA Dominant wavelength IF = 10 mA Peak wavelength IF = 10 mA
f
V
l
d
l
p
10 25 mlm
598 611 nm
605 nm Angle of half intensity IF = 10 mA ϕ ±85 deg Forward voltage IF = 20 mA V Reverse voltage IR = 10 mA V Junction capacitance VR = 0, f = 1 MHz C
F R
j
2.4 3 V
6 15 V
50 pF
www.vishay .de FaxBack +1-408-970-5600 Document Number 83057 2 (10)
Rev. A1, 04-Feb-99
TLV.42..
Vishay Telefunken
Yellow (TLVY4200 )
Parameter Test Conditions Type Symbol Min Typ Max Unit Luminous flux IF = 15 mA Dominant wavelength IF = 10 mA Peak wavelength IF = 10 mA Angle of half intensity IF = 10 mA ϕ ±85 deg Forward voltage IF = 20 mA V Reverse voltage IR = 10 mA V Junction capacitance VR = 0, f = 1 MHz C
Green (TLVG4200 )
Parameter Test Conditions Type Symbol Min Typ Max Unit Luminous flux IF = 15 mA Dominant wavelength IF = 10 mA Peak wavelength IF = 10 mA Angle of half intensity IF = 10 mA ϕ ±85 deg Forward voltage IF = 20 mA V Reverse voltage IR = 10 mA V Junction capacitance VR = 0, f = 1 MHz C
f
V
l
d
l
p
F R
f
V
l
d
l
p
F R
10 20 mlm
581 594 nm
585 nm
2.4 3 V
6 15 V
j
50 pF
10 30 mlm
562 575 nm
565 nm
2.4 3 V
6 15 V
j
50 pF
Pure green (TLVP4200 )
Parameter Test Conditions Type Symbol Min Typ Max Unit Luminous flux IF = 15 mA Dominant wavelength IF = 10 mA Peak wavelength IF = 10 mA
f
V
l
d
l
p
4 10 mlm
555 565 nm
555 nm Angle of half intensity IF = 10 mA ϕ ±85 deg Forward voltage IF = 20 mA V Reverse voltage IR = 10 mA V Junction capacitance VR = 0, f = 1 MHz C
F R
j
2.4 3 V
6 15 V
50 pF
Document Number 83057 Rev. A1, 04-Feb-99
www.vishay .de FaxBack +1-408-970-5600
3 (10)
TLV.42..
Vishay Telefunken
Typical Characteristics (T
125
100
75
50
V
25
P – Power Dissipation ( mW )
0
020406080
T
95 10904
– Ambient Temperature ( °C )
amb
= 25_C, unless otherwise specified)
amb
100
Figure 1 Power Dissipation vs. Ambient Temperature
60
50
40
30
10000
T
amb
1000
tp/T=0.01
100
1
10
F
I – Forward Current ( mA )
1
0.01 0.1 1 10
95 10047
0.5
t
p
0.02
0.2
– Pulse Length ( ms )
0.1
Figure 3 Forward Current vs. Pulse Length
v
0.05
65°C
100
20
F
I – Forward Current ( mA )
10
95 10905
0
020406080
T
– Ambient Temperature ( °C )
amb
100
Figure 2 Forward Current vs. Ambient Temperature
v rel
I – Relative Luminous Intensity
0.4 0.2 0 0.2 0.4
0.6
0.81.0
96 11608
Figure 4 Rel. Luminous Intensity vs. Angular Displacement
0° 30°10° 20° 40°
0.6
0.8
1.0
50°
60°
70°
80°
www.vishay .de FaxBack +1-408-970-5600 Document Number 83057 4 (10)
Rev. A1, 04-Feb-99
TLV.42..
Vishay Telefunken
1000
High Efficiency Red
100
tp/T=0.001 t
=10ms
10
1
F
I – Forward Current ( mA )
p
0.1 02468
95 10026 V
– Forward Voltage ( V )
F
10
Figure 5 Forward Current vs. Forward Voltage
1.6
High Efficiency Red
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
95 10472
IF=10mA
0
0
20 40 60 80
T
– Ambient Temperature ( °C )
amb
100
Figure 6 Rel. Luminous Flux vs. Ambient Temperature
10
High Efficiency Red
1
0.1
– Relative Luminous Flux
v rel
F
0.01 100
95 10474
110
I
– Forward Current ( mA )
F
Figure 8 Relative Luminous Flux vs. Forward Current
1.2 High Efficiency Red
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
0
690
95 10040
590 610 630 650 670
l
– Wavelength ( nm )
Figure 9 Relative Luminous Intensity vs. Wavelength
2.4 High Efficiency Red
2.0
1.6
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
0
10 20 50 100 200
95 10473
0.5 0.2 0.1 0.05 0.021
Figure 7 Rel. Luminous Flux vs.
Forw. Current/Duty Cycle
Document Number 83057 Rev. A1, 04-Feb-99
500
I
F
(mA)
/T
t
p
100
Soft Orange
10
1
F
I – Forward Current ( mA )
0.1 01234
V
95 9990
– Forward Voltage ( V )
F
Figure 10 Forward Current vs. Forward Voltage
www.vishay .de FaxBack +1-408-970-5600
5
5 (10)
TLV.42..
Vishay Telefunken
2.0 Soft Orange
1.6
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
0
020406080
96 11599 T
– Ambient Temperature ( °C )
amb
100
Figure 11 Rel. Luminous Flux vs. Ambient Temperature
2.4
Soft Orange
2.0
1.6
1.2
0.8
– Relative Luminous Flux
v rel
0.4
F
1.2 Soft Orange
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
0
670
95 10324
570 590 610 630 650
l
– Wavelength ( nm )
Figure 14 Relative Luminous Intensity vs. Wavelength
1000
Yellow
100
tp/T=0.001 t
=10ms
10
1
F
I – Forward Current ( mA )
p
0
(mA)
500
I
F
t
/T
p
96 11600
10 20 50 100 200
0.5 0.2 0.1 0.05 0.021
Figure 12 Rel. Luminous Flux vs.
Forw. Current/Duty Cycle
10
Soft Orange
1
0.1
– Relative Luminous Flux
v rel
F
0.01 100
96 11601
110
I
– Forward Current ( mA )
F
Figure 13 Relative Luminous Flux vs. Forward Current
0.1 02468
95 10030 V
– Forward Voltage ( V )
F
10
Figure 15 Rel. Luminous Flux vs. Ambient Temperature
1.6
Yellow
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
95 10475
0
IF=10mA
0
20 40 60 80
T
– Ambient Temperature ( °C )
amb
100
Figure 16 Rel. Luminous Flux vs. Ambient Temperature
www.vishay .de FaxBack +1-408-970-5600 Document Number 83057 6 (10)
Rev. A1, 04-Feb-99
TLV.42..
Vishay Telefunken
2.4 Yellow
2.0
1.6
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
0
10 20 50 100 200
95 10476
0.5 0.2 0.1 0.05 0.021
Figure 17 Rel. Luminous Flux vs.
Forw. Current/Duty Cycle
10
Yellow
1
500
I
F
(mA)
/T
t
p
1000
Green
100
10
tp/T=0.001 t
=10ms
1
F
I – Forward Current ( mA )
p
0.1 02468
95 10034 V
– Forward Voltage ( V )
F
Figure 20 Forward Current vs. Forward Voltage
1.6
Green
1.2
0.8
10
0.1
– Relative Luminous Flux
v rel
F
0.01 100
95 10477
110
I
– Forward Current ( mA )
F
Figure 18 Relative Luminous Flux vs. Forward Current
1.2 Yellow
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
0
650
95 10039
550 570 590 610 630
l
– Wavelength ( nm )
Figure 19 Relative Luminous Intensity vs. Wavelength
– Relative Luminous Flux
0.4
v rel
F
95 10478
0
IF=10mA
0
20 40 60 80
T
– Ambient Temperature ( °C )
amb
100
Figure 21 Rel. Luminous Flux vs. Ambient Temperature
2.4 Green
2.0
1.6
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
0
(mA)
500
I
F
t
/T
p
95 10479
10 20 50 100 200
0.5 0.2 0.1 0.05 0.021
Figure 22 Rel. Luminous Flux vs.
Forw. Current/Duty Cycle
Document Number 83057 Rev. A1, 04-Feb-99
www.vishay .de FaxBack +1-408-970-5600
7 (10)
TLV.42..
Vishay Telefunken
10
Green
1
0.1
– Relative Luminous Flux
v rel
F
0.01 100
95 10480
110
– Forward Current ( mA )
I
F
Figure 23 Relative Luminous Flux vs. Forward Current
1.2 Green
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
0
620
95 10038
520 540 560 580 600
l
– Wavelength ( nm )
Figure 24 Relative Luminous Intensity vs. Wavelength
2.0 Pure Green
1.6
1.2
0.8
– Relative Luminous Flux
0.4
v rel
F
0
020406080
96 11602 T
– Ambient Temperature ( °C )
amb
100
Figure 26 Rel. Luminous Flux vs. Ambient Temperature
2.4
Pure Green
2.0
1.6
1.2
0.8
– Relative Luminous Flux
v rel
0.4
F
0
(mA)
500
I
F
t
/T
p
96 11603
10 20 50 100 200
0.5 0.2 0.1 0.05 0.021
Figure 27 Rel. Luminous Flux vs.
Forw. Current/Duty Cycle
100
Pure Green
10
1
F
I – Forward Current ( mA )
0.1 01234
V
95 9988
– Forward Voltage ( V )
F
Figure 25 Forward Current vs. Forward Voltage
5
10
Pure Green
1
0.1
– Relative Luminous Flux
v rel
F
0.01 100
96 11604
110
I
– Forward Current ( mA )
F
Figure 28 Relative Luminous Flux vs. Forward Current
www.vishay .de FaxBack +1-408-970-5600 Document Number 83057 8 (10)
Rev. A1, 04-Feb-99
1.2 Pure Green
1.0
0.8
0.6
0.4
0.2
v rel
I – Relative Luminous Intensity
95 10325
0
500 520 540 560 580
l
– Wavelength ( nm )
600
Figure 29 Relative Luminous Intensity vs. Wavelength
Dimensions in mm
TLV.42..
Vishay Telefunken
Document Number 83057 Rev. A1, 04-Feb-99
9510954
www.vishay .de FaxBack +1-408-970-5600
9 (10)
TLV.42..
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. V arious national and international initiatives are pressing for an earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly , any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay .de FaxBack +1-408-970-5600 Document Number 83057 10 (10)
Rev. A1, 04-Feb-99
Loading...