VISHAY S886T, S886TR Datasheet

S886T/S886TR
Vishay Telefunken
MOSMIC for TV–Tuner Prestage with 12 V Supply Voltage
MOSMIC - MOS Monolithic Integrated Circuit Electrostatic sensitive device.
Observe precautions for handling.
Applications
Low noise gain controlled input stages in UHF-and VHF- tuner with 12 V supply voltage.
Features
D
Integrated gate protection diodes
D
Low noise figure
D
High gain
D
Biasing network on chip
21
94 9279
43
S886T Marking: 982 Plastic case (SOT 143) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1
13 579
D
RFC
C block
V
DD
RF out
94 9296
C block
AGC
RF in
C block
D
Improved cross modulation at gain reduction
D
High AGC-range
D
SMD package
G2
G1
S
21
94 9278
95 10831
43
S886TR Marking: 82R Plastic case (SOT 143R) 1 = Source, 2 = Drain, 3 = Gate 2, 4 = Gate 1
Absolute Maximum Ratings
T
= 25_C, unless otherwise specified
amb
Parameter Test Conditions Symbol Value Unit Drain - source voltage V Drain current I Gate 1/Gate 2 - source peak current ±I Gate 1/Gate 2 - source voltage ±V Total power dissipation T
60 °C P
amb
G1/G2SM
G1/G2SM
Channel temperature T Storage temperature range T
DS
D
tot Ch stg
16 V 30 mA 10 mA
7.5 V 200 mW 150
–55 to +150
Maximum Thermal Resistance
T
= 25_C, unless otherwise specified
amb
Parameter T est Conditions Symbol Value Unit
Channel ambient on glass fibre printed board (25 x 20 x 1.5) mm
plated with 35mm Cu
Document Number 85057 Rev. 3, 20-Jan-99
3
R
thChA
www.vishay.de FaxBack +1-408-970-5600
450 K/W
° °
C C
1 (8)
S886T/S886TR
g
g
Vishay Telefunken
Electrical DC Characteristics
T
= 25_C, unless otherwise specified
amb
Parameter Test Conditions Symbol Min Typ Max Unit
Gate 1 - source breakdown voltage
Gate 2 - source breakdown voltage
Gate 1 - source +V leakage current
Gate 2 - source leakage current
Drain current VDS = 12 V, V Self-biased
operating current Gate 2 - source
cut-off voltage
Electrical AC Characteristics
±I
= 10 mA, V
G1S
±I
= 10 mA, V
G2S
= 6 V, V
G1S
–V
= 6 V, V
G1S
±V
= 6 V, V
G2S
VDS = 12 V, V
VDS = 12 V, V
= VDS = 0 ±V
G2S
= VDS = 0 ±V
G1S
= VDS = 0 +I
G2S
= VDS = 0 –I
G2S
= VDS = 0 ±I
G1S
= 0, V
G1S
= nc, V
G1S
= nc, ID = 200 mA V
G1S
= 6 V I
G2S
= 6 V I
G2S
(BR)G1SS
(BR)G2SS
G1SS G1SS G2SS
DSS DSP
G2S(OFF)
8 12 V
8 12 V
50 500mA
8 12 16 mA
1.0 V
60
m
120mA
20 nA
A
VDS = 12 V, V
= 6 V, f = 1 MHz , T
G2S
= 25_C, unless otherwise specified
amb
Parameter Test Conditions Symbol Min Typ Max Unit Forward transadmittance y Gate 1 input capacitance C Feedback capacitance C Output capacitance C Power gain GS = 2 mS, GL = 0.5 mS, f = 200 MHz G
GS = 3,3 mS, GL = 1 mS, f = 800 MHz G
AGC range VDS = 12 V, V
= 1 to 6 V, f = 800 MHz
G2S
25 30 35 mS
21s
2.3 2.7 pF 20 fF
0.9 pF 27 dB
45 dB
D
issg1
rss
oss
ps ps
G
ps
17.5 22 dB
Noise figure GS = 2 mS, GL = 0.5 mS, f = 200 MHz F 1 dB
GS = 3,3 mS, GL = 1 mS, f = 800 MHz F 1.3 dB
Caution for Gate 1 switch-off mode:
No external DC-voltage on Gate 1 in active mode! Switch-off at Gate 1 with V Using open collector switching transistor (inside of PLL), insert 10 kW collector resistor.
< 0.7 V is feasible.
G1S
www.vishay.de FaxBack +1-408-970-5600 2 (8)
Document Number 85057
Rev. 3, 20-Jan-99
Common Source S–Parameters
S886T/S886TR
Vishay Telefunken
VDS = 12 V , V
f/MHz
50 –0.02 –4.8 10.29 174.4 –61.79 87.6 –0.35 –1.9 100 –0.05 –9.3 10.20 168.1 –55.74 84.8 –0.38 –3.7 150 –0.14 –13.8 10.10 161.6 –52.32 81.5 –0.40 –5.5 200 –0.23 –18.2 9.97 155.4 –50.05 79.2 –0.43 –7.3 250 –0.35 –22.5 9.78 148.7 –48.45 76.3 –0.45 –9.1 300 –0.48 –26.6 9.64 143.2 –47.20 74.5 –0.47 –10.5 350 –0.63 –30.8 9.40 137.5 –46.23 72.5 –0.51 –12.2 400 –0.80 –34.7 9.24 132.0 –45.57 71.2 –0.55 –13.8 450 –0.95 –38.4 8.95 126.1 –45.19 69.4 –0.60 –15.3 500 –1.15 –42.2 8.74 121.1 –44.92 68.7 –0.63 –17.1 550 –1.31 –45.7 8.54 116.4 –44.76 69.0 –0.67 –18.4 600 –1.46 –49.3 8.31 111.2 –44.58 70.8 –0.69 –19.9 650 –1.62 ––52.4 8.07 106.6 –44.57 72.3 –0.72 –21.6 700 –1.81 –56.0 7.85 101.9 –44.75 73.4 –0.75 –22.7 750 –1.95 –58.9 7.67 97.3 –45.03 76.3 –0.77 –24.6 800 –2.11 –62.0 7.47 92.7 –45.27 81.0 –0.79 –25.8 850 –2.26 –65.3 7.28 87.8 –45.52 86.6 –0.81 –27.5 900 –2.37 –68.2 7.08 83.3 –45.41 94.9 –0.83 –29.1 950 –2.49 –71.5 6.94 79.3 –44.79 103.7 –0.85 –31.0
1000 –2.62 –74.5 6.71 74.6 –44.21 107.4 –0.87 –32.3 1050 –2.76 –77.5 6.62 70.9 –43.95 113.3 –0.89 –33.9 1100 –2.90 –80.2 6.44 66.0 –43.64 120.8 –0.90 –35.3 1150 –2.98 –83.2 6.34 62.2 –42.73 128.9 –0.87 –37.2 1200 –3.07 –86.0 6.17 57.3 –41.82 135.7 –0.85 –38.8 1250 –3.14 –88.8 6.11 53.6 –40.68 142.1 –0.80 –40.4 1300 –3.24 –91.6 6.00 48.8 –39.80 146.1 –0.76 –42.4
= 6 V , Z0 = 50 W,T
G2S
S11 S21 S12 S22
LOG MAG
dB deg dB deg dB deg dB deg
ANG
= 25_C, unless otherwise specified
amb
LOG MAG
ANG
LOG MAG
ANG
LOG
MAG
ANG
Document Number 85057 Rev. 3, 20-Jan-99
www.vishay.de FaxBack +1-408-970-5600
3 (8)
S886T/S886TR
Vishay Telefunken
Typical Characteristics (T
250
200
150
100
50
tot
P – Total Power Dissipation ( mW )
0
0 25 50 75 100
T
95 10777
– Ambient Temperature ( °C )
amb
Figure 1. Total Power Dissipation vs.
Ambient Temperature
20
16
12
5V
D
I – Drain Current ( mA )
95 10778
8
4
0
02 4 6 8
VDS – Drain Source Voltage ( V )
4V
Figure 2. Drain Current vs. Drain Source Voltage
125
V
=6V
G2S
10
= 25_C unless otherwise specified)
amb
40
30
20
10
21s
y – Forward Transadmittance ( mS )
95 10780
0
01 2 3 4
V
– Gate 2 Source Voltage ( V )
G2S
150
Figure 4. Forward Transadmittance vs.
Gate 2 Source Voltage
4
3
2
3V
2V 1V
12
1
issg1
C – Gate 1 Input Capacitance ( pF )
0
01234567
V
– Gate 2 Source Voltage ( V )15968
G2S
Figure 5. Gate 1 Input Capacitance vs.
Gate 2 Source Voltage
VDS=12V f=200MHz
5
VDS=12V
f=200MHz
6
20
VDS=12V
16
12
8
D
I – Drain Current ( mA )
4
0
95 10779
01 2 3 4
V
– Gate 2 Source Voltage ( V )
G2S
5
Figure 3. Drain Current vs. Gate 2 Source Voltage
www.vishay.de FaxBack +1-408-970-5600 4 (8)
2
V
=6V
G2S
f=200MHz
1.5
1
0.5
oss
C – Output Capacitance ( pF )
95 11147
0
6 8 10 12
VDS – Drain Source Voltage ( V )
14
6
Figure 6. Output Capacitance vs. Drain Source Voltage
Document Number 85057
Rev. 3, 20-Jan-99
S886T/S886TR
Vishay Telefunken
20
0
–20
2
–40
21
S – Transducer Gain ( dB )
95 10782
–60
01 2 3 4
V
– Gate 2 Source Voltage ( V )
G2S
VDS=12V f=800MHz
5
6
Figure 7. Transducer Gain vs. Gate 2 Source Voltage
80
60
40
20
CM – Cross Modulation ( dB )
0
234 56
95 11148
V
– Gate 2 Source Voltage ( V )
G2S
VDS=12V f=800MHz
Figure 8. Cross Modulation vs. Gate 2 Source Voltage
Document Number 85057 Rev. 3, 20-Jan-99
www.vishay.de FaxBack +1-408-970-5600
5 (8)
S886T/S886TR
ÁÁ
Vishay Telefunken
VDS = 12 V, V
S
11
j0.5
j0.2
S
0
–j0.2
21
0.2
–j0.5
12 936
Figure 9. Input reflection coefficient
= 6 V , Z0 = 50
G2S
j
0.5
1
1300MHz
–j
2
800
–j2
j2
5
300
W
S
12
90°
120°
150°
j5
1300MHz
1
50
–j5
180°
–150°
–120° –60°
12 937
1050
550
50
–90°
Figure 11. Reverse transmission coefficient
S
22
60°
0.008 0.016
30°
0°
–30°
90°
60°
50
1.0 2.0
1300MHz
180°
–150°
12 938
800
1050
–120° –60°
550
300
–90°
Figure 10. Forward transmission coefficient
30°
–30°
j
j0.5
j0.2
0°
0
–j0.2
12 939
0.2
–j0.5
0.5
1
1300MHz
–j
j2
j5
2
5 50
800
–j2
1
300
–j5
Figure 12. Output reflection coefficient
www.vishay.de FaxBack +1-408-970-5600 6 (8)
Document Number 85057
Rev. 3, 20-Jan-99
Dimensions of S886T in mm
S886T/S886TR
Vishay Telefunken
Dimensions of S886TR in mm
96 12240
Document Number 85057 Rev. 3, 20-Jan-99
96 12239
www.vishay.de FaxBack +1-408-970-5600
7 (8)
S886T/S886TR
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. V arious national and international initiatives are pressing for an earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly , any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.de FaxBack +1-408-970-5600 8 (8)
Document Number 85057
Rev. 3, 20-Jan-99
Loading...