Vishay IRFP460A, SiHFP460A Data Sheet

Power MOSFET
IRFP460A, SiHFP460A
Vishay Siliconix
PRODUCT SUMMARY
VDS (V) 500
R
(Ω)V
DS(on)
Q
(Max.) (nC) 105
g
Q
(nC) 26
gs
Q
(nC) 42
gd
Configuration Single
TO-247
= 10 V 0.27
GS
D
FEATURES
• Low Gate Charge Qg Results in Simple Drive Requirement
• Improved Gate, Avalanche and Dynamic dV/dt Ruggedness
• Fully Characterized Capacitance and Avalanche Voltage and Current
• Effective C
• Compliant to RoHS Directive 2002/95/EC
APPLICATIONS
• Switch Mode Power Supply (SMPS)
• Uninterruptable Power Supply
G
S
D
G
N-Channel MOSFET
S
• High Speed Power Switching
TYPICAL SMPS TOPOLOGIES
• Full Bridge
• PFC Boost
ORDERING INFORMATION
Package TO-247
Lead (Pb)-free
SnPb
IRFP460APbF SiHFP460A-E3 IRFP460A SiHFP460A
Specified
oss
Available
RoHS*
COMPLIANT
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER SYMBOL LIMIT UNIT
Drain-Source Voltage V
Gate-Source Voltage V
T
= 25 °C
Continuous Drain Current V
Pulsed Drain Current
a
at 10 V
GS
C
= 100 °C 13
C
DS
± 30
GS
I
D
IDM 80
Linear Derating Factor 2.2 W/°C
Single Pulse Avalanche Energy
Repetitive Avalanche Current
Repetitive Avalanche Energy
Maximum Power Dissipation T
Peak Diode Recovery dV/dt
b
a
a
= 25 °C P
c
C
Operating Junction and Storage Temperature Range T
E
AS
I
AR
E
AR
D
dV/dt 3.8 V/ns
, T
J
stg
Soldering Recommendations (Peak Temperature) for 10 s 300
Mounting Torque 6-32 or M3 screw
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Starting T c. I
SD
= 25 °C, L = 4.3 mH, Rg = 25 Ω, IAS = 20 A (see fig. 12).
J
20 A, dI/dt 125 A/µs, VDD VDS, TJ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91234 www.vishay.com S09-1284-Rev. B, 13-Jul-09 1
500
20
960 mJ
20 A
28 mJ
280 W
- 55 to + 150
d
10 lbf · in
1.1 N · m
V
AT
°C
IRFP460A, SiHFP460A
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER SYMBOL TYP. MAX. UNIT
Maximum Junction-to-Ambient R
Maximum Junction-to-Case (Drain) R
thJA
thCS
thJC
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Static
Drain-Source Breakdown Voltage V
Temperature Coefficient ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.61 -
V
DS
Gate-Source Threshold Voltage V
Gate-Source Leakage I
Zero Gate Voltage Drain Current I
Drain-Source On-State Resistance R
Forward Transconductance g
Dynamic
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Output Capacitance C
Effective Output Capacitance C
Total Gate Charge Q
Gate-Drain Charge Q
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current I
Pulsed Diode Forward Current
a
Body Diode Voltage V
Body Diode Reverse Recovery Time t
Body Diode Reverse Recovery Charge Q
Forward Turn-On Time t
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width 300 µs; duty cycle 2 %. c. C
eff. is a fixed capacitance that gives the same charging time as C
oss
DS
GS(th)
V
GSS
DSS
VGS = 10 V ID = 12 A
DS(on)
fs
iss
- 480 -
oss
-18-
rss
oss
eff. VDS = 0 V to 400 V
oss
g
--26
gs
--42
gd
d(on)
r
-45-
d(off)
-39-
f
S
I
SM
SD
rr
rr
on
V
V
GS
V
GS
R
MOSFET symbol showing the
integral reverse p - n junction diode
TJ = 25 °C, IF = 20 A, dI/dt = 100 A/µs
-40
0.24 -
°C/WCase-to-Sink, Flat, Greased Surface R
-0.45
VGS = 0 V, ID = 250 µA 500 - -
VDS = VGS, ID = 250 µA 2.0 - 4.0 V
= ± 30 V - - ± 100 nA
GS
VDS = 500 V, VGS = 0 V - - 25
= 400 V, VGS = 0 V, TJ = 125 °C - - 250
DS
VDS = 50 V, ID = 12 A
VGS = 0 V,
V
= 25 V,
DS
f = 1.0 MHz, see fig. 5
= 1.0 V, f = 1.0 MHz 4430
V
DS
= 0 V
V
= 400 V, f = 1.0 MHz 130
DS
b
b
c
--0.27Ω
11 - -
- 3100 -
140
- - 105
= 20 A, VDS = 400 V,
I
= 10 V
D
see fig. 6 and 13
b
-18-
V
= 250 V, ID = 20 A,
DD
= 4.3 Ω, RD = 13 Ω, see fig. 10
G
G
TJ = 25 °C, IS = 20A, VGS = 0 V
b
D
S
b
-55-
--20
--80
--1.8V
- 480 710 ns
b
-5.07.C
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
while VDS is rising from 0 % to 80 % VDS.
oss
V
V/°C
µA
S
pF
nC Gate-Source Charge Q
ns
A
www.vishay.com Document Number: 91234 2 S09-1284-Rev. B, 13-Jul-09
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
IRFP460A, SiHFP460A
Vishay Siliconix
, Drain-to-Source Current (A)
D
I
91234_01
2
10
10
To p
Bottom
V
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
4.5 V
GS
1
0.1
0.1
1
VDS, Drain-to-Source Voltage (V)
Fig. 1 - Typical Output Characteristics
2
10
10
To p
Bottom
V
15 V
10 V
8.0 V
7.0 V
6.0 V
5.5 V
5.0 V
4.5 V
GS
4.5 V
20 µs Pulse Width T
= 25 °C
C
10
2
10
150 °C
10
25 °C
1
, Drain-to-Source Current (A)
D
I
91234_03
0.1
5.0 6.0 7.0 8.0 9.04.0
V
Gate-to-Source Voltage (V)
,
GS
2
10
20 µs Pulse Width
= 50 V
V
DS
Fig. 3 - Typical Transfer Characteristics
3.0 I
= 20 A
D
V
= 10 V
GS
2.5
2.0
1.5
(Normalized)
1.0
0.5
, Drain-to-Source On Resistance
DS(on)
0.0
R
91234_04
- 60 - 40 - 20 0 20 40
T
Junction Temperature (°C)
,
J
60
80 100
120
Fig. 4 - Normalized On-Resistance vs. Temperature
140 160
, Drain-to-Source Current (A)
D
I
91234_02
20 µs Pulse Width
= 150 °C
T
1
1
V
Drain-to-Source Voltage (V)
,
DS
C
10 10
Fig. 2 - Typical Output Characteristics
4.5 V
2
Document Number: 91234 www.vishay.com S09-1284-Rev. B, 13-Jul-09 3
IRFP460A, SiHFP460A
Vishay Siliconix
5
10
4
10
3
10
2
10
Capacitance (pF)
V
= 0 V, f = 1 MHz
GS
= Cgs + Cgd, Cds Shorted
C
iss
= C
C
rss
gd
C
= Cds + C
oss
gd
C
iss
C
oss
10
C
rss
91234_05
1
1
10
V
Drain-to-Source Voltage (V)
,
DS
2
10
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
20
ID = 20 A
V
= 400 V
16
V
12
V
DS
= 100 V
= 250 V
DS
DS
2
10
10
150 °C
25 °C
1
, Reverse Drain Current (A)
SD
I
91234_07
0.1
0.2
0.80.60.4
VSD, Source-to-Drain Voltage (V)
1.0
3
10
V
= 0 V
GS
1.2 1.4 1.6
Fig. 7 - Typical Source-Drain Diode Forward Voltage
3
10
Operation in this area limited
by R
DS(on)
2
10
µs
10
8
4
, Gate-to-Source Voltage (V)
GS
V
91234_06
0
0
40
20
QG, Total Gate Charge (nC)
For test circuit see figure 13
8060
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
100
, Drain Current (A)
D
I
91234_08
10
TC = 25 °C
= 150 °C
T
J
Single Pulse
1
10
2
10
VDS, Drain-to-Source Voltage (V)
Fig. 8 - Maximum Safe Operating Area
100 µs
1 ms
10 ms
10
3
4
10
www.vishay.com Document Number: 91234 4 S09-1284-Rev. B, 13-Jul-09
IRFP460A, SiHFP460A
Vishay Siliconix
R
D.U.T.
D
+
V
-
DD
V
DS
V
20
GS
R
G
15
10
, Drain Current (A)
D
I
5
0
25 1501251007550
91234_09
TC, Case Temperature (°C)
Fig. 9 - Maximum Drain Current vs. Case Temperature
1
)
thJC
Thermal Response (Z
91234_11
10
10
0.1
-2
-3
10
D = 0.5
0.2
0.1
0.05
0.02
0.01
-5
Single Pulse (Thermal Response)
-4
10
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
-3
10
-2
10
t1, Rectangular Pulse Duration (S)
10 V
Pulse width 1 µs Duty factor 0.1 %
Fig. 10a - Switching Time Test Circuit
V
DS
90 %
10 %
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig. 10b - Switching Time Waveforms
P
DM
t
1
t
1/t2
thJC
2
+ T
C
Notes:
1. Duty Factor, D = t
2. Peak Tj = PDM x Z
0.1 1
V
DS
R
V
G
20 V
15 V
t
p
DS
L
D.U.T.
I
AS
0.01 Ω
t
p
Driver
+
V
A
DD
-
I
AS
Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms
Document Number: 91234 www.vishay.com S09-1284-Rev. B, 13-Jul-09 5
IRFP460A, SiHFP460A
Vishay Siliconix
2400
2000
To p
Bottom
I
D
8.9 A 13 A 20 A
1600
1200
800
400
, Single Pulse Avalanche Energy (mJ)
0
AS
E
91234_12c
25 150
50
Starting T
, Junction Temperature (°C)
J
10075
125
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Q
10 V
V
Q
GS
G
G
Q
GD
Charge
Fig. 13a - Basic Gate Charge Waveform
, Avalanche Voltage (V)
DSav
V
91234_12d
620
600
580
560
540
020
4
, Avalanche Current (A)
I
AV
128
16
Fig. 12d - Typical Drain-to-Source Voltage vs.
Avalanche Current
Current regulator
Same type as D.U.T.
50 kΩ
0.2 µF
12 V
V
GS
0.3 µF
D.U.T.
3 mA
I
G
Current sampling resistors
I
D
+
V
DS
-
Fig. 13b - Gate Charge Test Circuit
www.vishay.com Document Number: 91234 6 S09-1284-Rev. B, 13-Jul-09
IRFP460A, SiHFP460A
Peak Diode Recovery dV/dt Test Circuit
Vishay Siliconix
D.U.T.
+
-
R
G
Driver gate drive
P.W.
+
Circuit layout considerations
Low stray inductance
Ground plane
Low leakage inductance
current transformer
-
dV/dt controlled by R
Driver same type as D.U.T.
I
controlled by duty factor "D"
SD
D.U.T. - device under test
Period
-
D =
G
P.W.
Period
+
+
V
DD
-
V
= 10 V*
GS
waveform
SD
Body diode forward
current
waveform
DS
Body diode forward drop
Ripple 5 %
= 5 V for logic level devices
GS
Diode recovery
dV/dt
dI/dt
V
DD
I
SD
Reverse recovery current
Re-applied voltage
D.U.T. I
D.U.T. V
Inductor current
* V
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see www.vishay.com/ppg?91234
.
Document Number: 91234 www.vishay.com S09-1284-Rev. B, 13-Jul-09 7
www.vishay.com
0.10 AC
M M
E
E/2
(2)
(4)
R/2
B
2 x R
S
D
See view B
2 x e
b4
3 x b
2 x b2
L
C
L1
1
2
3
Q
D
A
A2
A
A
A1
C
Ø k BD
M M
A
ØP
(Datum B)
ØP1
D1
4
E1
0.01 BD
M M
View A - A
Thermal pad
D2
DDE E
C
C
View B
(b1, b3, b5)
Base metal
c1
(b, b2, b4)
Section C - C, D - D, E - E
(c)
Planting
4
3
5
7
4
4
4
Lead Assignments
1. Gate
2. Drain
3. Source
4. Drain
Package Information
Vishay Siliconix
TO-247AC (High Voltage)
MILLIMETERS INCHES MILLIMETERS INCHES
DIM. MIN. MAX. MIN. MAX. DIM. MIN. MAX. MIN. MAX.
A 4.58 5.31 0.180 0.209 D2 0.51 1.30 0.020 0.051 A1 2.21 2.59 0.087 0.102 E 15.29 15.87 0.602 0.625 A2 1.17 2.49 0.046 0.098 E1 13.72 - 0.540 -
b 0.99 1.40 0.039 0.055 e 5.46 BSC 0.215 BSC b1 0.99 1.35 0.039 0.053 Ø k 0.254 0.010 b2 1.53 2.39 0.060 0.094 L 14.20 16.25 0.559 0.640 b3 1.65 2.37 0.065 0.093 L1 3.71 4.29 0.146 0.169 b4 2.42 3.43 0.095 0.135 N 7.62 BSC 0.300 BSC b5 2.59 3.38 0.102 0.133 Ø P 3.51 3.66 0.138 0.144
c 0.38 0.86 0.015 0.034 Ø P1 - 7.39 - 0.291 c1 0.38 0.76 0.015 0.030 Q 5.31 5.69 0.209 0.224
D 19.71 20.82 0.776 0.820 R 4.52 5.49 0.178 0.216
D1 13.08 - 0.515 - S 5.51 BSC 0.217 BSC
ECN: X13-0103-Rev. D, 01-Jul-13 DWG: 5971
Notes
1. Dimensioning and tolerancing per ASME Y14.5M-1994.
2. Contour of slot optional.
3. Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body.
4. Thermal pad contour optional with dimensions D1 and E1.
5. Lead finish uncontrolled in L1.
6. Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154").
7. Outline conforms to JEDEC outline TO-247 with exception of dimension c.
8. Xian and Mingxin actually photo.
Revision: 01-Jul-13
Document Number: 91360
1
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
Legal Disclaimer Notice
www.vishay.com
Vishay
Disclaimer
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer’s technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed therein.
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.
Revision: 13-Jun-16
1
Document Number: 91000
Loading...