Page 1
Power MOSFET
IRF840, SiHF840
Vishay Siliconix
PRODUCT SUMMARY
VDS (V) 500
R
(Ω )V
DS(on)
Q
(Max.) (nC) 63
g
Q
(nC) 9.3
gs
Q
(nC) 32
gd
Configuration Single
TO-220
= 10 V 0.85
GS
D
FEATURES
• Dynamic dV/dt Rating
• Repetitive Avalanche Rated
• Fast Switching
• Ease of Paralleling
• Simple Drive Requirements
• Lead (Pb)-free Available
DESCRIPTION
Third generation Power MOSFETs from Vishay provide the
designer with the best combination of fast switching,
G
ruggedized device design, low on-resistance and
cost-effectiveness.
The TO-220 package is universally preferred for all
S
D
G
N -Channel MOSFET
S
commercial-industrial applications at power dissipation
levels to approximately 50 W. The low thermal resistance
and low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
ORDERING INFORMATION
Package TO-220
Lead (Pb)-free
SnPb
IRF840PbF
SiHF840-E3
IRF840
SiHF840
Av ailab le
RoHS*
COMPLIANT
ABSOLUTE MAXIMUM RATINGS T C = 25 °C, unless otherwise noted
PARAMETER SYMBOL LIMIT UNIT
Drain-Source Voltage V
Gate-Source Voltage V
= 25 °C
T
Continuous Drain Current V
Pulsed Drain Current
a
at 10 V
GS
C
= 100 °C 5.1
C
DS
± 20 V
GS
I
D
IDM 32
Linear Derating Factor 1.0 W/°C
Single Pulse Avalanche Energy
Repetitive Avalanche Current
Repetitive Avalanche Energy
Maximum Power Dissipation T
Peak Diode Recovery dV/dt
b
a
a
= 25 °C P
c
C
Operating Junction and Storage Temperature Range T
E
AS
I
AR
E
AR
D
dV/dt 3.5 V/ns
, T
J
stg
Soldering Recommendations (Peak Temperature) for 10 s 300
Mounting Torque 6-32 or M3 screw
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. V
= 50 V, starting TJ = 25 °C, L = 14 mH, RG = 25 Ω, I AS = 8.0 A (see fig. 12).
DD
c. I
≤ 8.0 A, dI/dt ≤ 100 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
SD
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91070 www.vishay.com
S-81290-Rev. B, 16-Jun-08 1
500 V
8.0
510 mJ
8.0 A
13 mJ
125 W
- 55 to + 150
d
10 lbf · in
1.1 N · m
A T
°C
Page 2
IRF840, SiHF840
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER SYMBOL TYP. MAX. UNIT
Maximum Junction-to-Ambient R
Maximum Junction-to-Case (Drain) R
thJA
thCS
thJC
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Static
Drain-Source Breakdown Voltage V
Temperature Coefficient ΔV DS/TJ Reference to 25 °C, ID = 1 mA - 0.78 -
V
DS
Gate-Source Threshold Voltage V
Gate-Source Leakage I
Zero Gate Voltage Drain Current I
Drain-Source On-State Resistance R
Forward Transconductance g
Dynamic
Input Capacitance C
Reverse Transfer Capacitance C
Total Gate Charge Q
Gate-Drain Charge Q
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Internal Drain Inductance L
Internal Source Inductance L
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current I
Pulsed Diode Forward Current
a
Body Diode Voltage V
Body Diode Reverse Recovery Time t
Body Diode Reverse Recovery Charge Q
Forward Turn-On Time t
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
DS
GS(th)
V
GSS
DSS
V
DS(on)
fs
iss
- 310 -
oss
- 120 -
rss
g
--9 . 3
gs
--3 2
gd
d(on)
r
-4 9-
d(off)
-2 0-
f
D
V
V
R
Between lead,
6 mm (0.25") from
package and center of
S
S
I
SM
SD
rr
rr
on
die contact
MOSFET symbol
showing the
integral reverse
p - n junction diode
TJ = 25 °C, IF = 8 A, dI/dt = 100 A/µs
-6 2
0.50 -
°C/W Case-to-Sink, Flat, Greased Surface R
-1 . 0
VGS = 0 V, ID = 250 µA 500 - -
VDS = VGS, ID = 250 µA 2.0 -
= ± 20 V - -
GS
VDS = 500 V, VGS = 0 V - -
= 400 V, VGS = 0 V, TJ = 125 °C - -
DS
= 10 V ID = 4.8 A
GS
VDS = 50 V, ID = 4.8 A
VGS = 0 V,
= 25 V,
V
DS
b
b
--
4.9 - -
- 1300 -
4.0 V
± 100 nA
25
250
0.85 Ω
f = 1.0 MHz, see fig. 5
--6 3
= 8 A, VDS = 400 V,
I
= 10 V
GS
D
see fig. 6 and 13
b
-1 4-
= 250 V, ID = 8 A
V
DD
= 9.1 Ω, R D = 31 Ω, see fig. 10
G
G
G
TJ = 25 °C, IS = 8 A, VGS = 0 V
b
D
S
D
S
b
-2 3-
-4 . 5-
-7 . 5-
--8 . 0
--3 2
--
-
b
460 970 ns
-
4.2 8.9 µC
2.0 V
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
V
V/°C
µA
S
pF Output Capacitance C
nC Gate-Source Charge Q
ns
nH
A
www.vishay.com Document Number: 91070
2 S-81290-Rev. B, 16-Jun-08
Page 3
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
V
GS
15 V
10 V
8 .0 V
7.0 V
6.0 V
5.5 V
5.0 V
4.5 V
20 µ s Pu lse W idth
T
= 25 °C
C
1
10
VDS, Drain-to-So u rce Voltage (V )
4.5 V
, Drain Cu rrent (A)
I
91070_03
, Drain Cu rrent (A)
D
I
91070_01
To p
1
10
Bottom
0
10
0
10
IRF840, SiHF840
Vishay Siliconix
150 ° C
1
10
25 ° C
0
10
D
20 µ s Pu lse W idth
= 50 V
V
DS
4
5678 91 0
V
Gate-to-Sou rce Voltage (V)
,
GS
Fig. 1 - Typical Output Characteristics, TC = 25 °C
V
To p
1
10
GS
15 V
10 V
8 .0 V
7.0 V
6.0 V
5.5 V
5.0 V
Bottom
4.5 V
, Drain Cu rrent (A)
D
I
0
91070_02
10
0
10
V
Drain-to-Sou rce Voltage (V )
,
DS
20 µ s Pu lse W idth
T
= 150 °C
C
1
10
Fig. 2 - Typical Output Characteristics, T
4.5 V
= 150 °C
C
Fig. 3 - Typical Transfer Characteristics
3.0
ID = 8 .0 A
= 10 V
V
GS
2.5
2.0
1.5
(N ormalized)
1.0
0.5
, Drain-to-Sou rce On Resistance
DS(on)
0.0
R
- 60 - 40 - 20 0 20 40 60 8 0 100 120 140 160
T
Ju nction Temperature (°C)
91070_04
,
J
Fig. 4 - Normalized On-Resistance vs. Temperature
Document Number: 91070 www.vishay.com
S-81290-Rev. B, 16-Jun-08 3
Page 4
IRF840, SiHF840
Vishay Siliconix
2500
2000
1500
V
= 0 V, f = 1 MHz
GS
= Cgs + Cgd, Cds Shorted
C
iss
= C
C
rss
gd
C
= Cds + C
oss
gd
C
iss
1000
Capacitance (pF)
500
0
0
10
91070_05
V
Drain-to-Sou rce Voltage (V )
,
DS
C
oss
C
rss
1
10
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
20
ID = 8 .0 A
V
16
V
V
= 100 V
12
DS
= 250 V
DS
= 400 V
DS
150 ° C
1
10
25 ° C
, Rev erse Drain Cu rrent (A)
SD
I
91070_07
0
10
0.4 1.0 0.8 0.6
VSD, So u rce-to-Drain Voltage (V )
1.2
V
= 0 V
GS
Fig. 7 - Typical Source-Drain Diode Forward Voltage
2
10
5
2
10
5
Operation in this area limited
b y R
DS(on)
10 µs
100 µs
1.4
8
4
, Gate-to-Sou rce Voltage (V)
GS
V
91070_06
0
0
15
30
QG, Total Gate Charge (nC)
For test circu it
see figu re 13
60 45
75
Fig. 6 - Typical Gate Charge vs. Drain-to-Source Voltage
, Drain Cu rrent (A)
D
I
91070_08
2
1
5
TC = 25 ° C
= 150 ° C
T
J
Single Pu lse
251025
1
0.1
2
0.1
25
VDS, Drain-to-So u rce Voltage (V )
Fig. 8 - Maximum Safe Operating Area
10
25
2
1 ms
10 ms
3
10
25
4
10
www.vishay.com Document Number: 91070
4 S-81290-Rev. B, 16-Jun-08
Page 5
8 .0
6.0
4.0
, Drain Cu rrent (A)
D
2.0
I
0.0
25 150 125 100 75 50
91070_09
TC, Case Temperatu re (°C)
Fig. 9 - Maximum Drain Current vs. Case Temperature
IRF840, SiHF840
Vishay Siliconix
R
D.U.T.
D
+
-
t
t
d(off)
f
V
DS
V
GS
R
G
10 V
Pu lse w idth ≤ 1 µ s
Du ty factor ≤ 0.1 %
Fig. 10a - Switching Time Test Circuit
V
DS
90 %
10 %
V
GS
t
t
d(on)
r
Fig. 10b - Switching Time Waveforms
V
DD
)
th JC
Thermal Response (Z
91070_11
V ary tp to o b tain
requ ired I
AS
R
10
0.1
10
10
G
10 V
1
0 - 0.5
0.2
0.1
0.05
0.02
0.01
-2
Single Pu lse
(Thermal Response)
P
DM
t
1
t
2
N otes:
1. Du ty Factor, D = t
-3
-5
10
-4
10
-3
10
-2
10
0.1 1 10
2. Peak Tj = PDM x Z
1/t2
thJC
+ T
C
2
10
t1, Rectangu lar Pu lse Du ration (S)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
V
L
DS
t
p
D.U.T.
I
AS
t
p
0.01 Ω
+
V
DD
-
V
DS
I
AS
V
DS
V
DD
Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms
Document Number: 91070 www.vishay.com
S-81290-Rev. B, 16-Jun-08 5
Page 6
IRF840, SiHF840
Vishay Siliconix
10 V
1200
1000
To p
Bottom
I
D
3.6 A
5.1 A
8.0 A
800
600
400
, Single Pu lse Energy (mJ)
200
AS
E
91070_12c
VDD = 50 V
0
25 150
50
Starting T
, Ju nction Temperature (°C)
J
100 75
125
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Cu rrent regu lator
Same type as D.U.T.
Q
G
Q
GS
Q
GD
12 V
0.2 µF
50 kΩ
0.3 µF
D.U.T.
+
V
DS
-
V
G
Charge
Fig. 13a - Basic Gate Charge Waveform
V
GS
3 mA
I
G
Cu rrent sampling resistors
I
D
Fig. 13b - Gate Charge Test Circuit
www.vishay.com Document Number: 91070
6 S-81290-Rev. B, 16-Jun-08
Page 7
IRF840, SiHF840
Peak Diode Recovery dV/dt Test Circuit
Vishay Siliconix
D.U.T.
+
-
R
G
Driv er gate driv e
P.W .
+
Circu it layou t considerations
• Low stray indu ctance
• Ground plane
• Low leakage indu ctance
cu rrent transformer
-
• dV /dt controlled b y R
• Driv er same type as D.U.T.
• I
controlled b y du ty factor "D"
SD
• D.U.T. - dev ice u nder test
Period
-
D =
G
P.W .
Period
+
+
V
DD
-
= 10 V*
V
GS
w av eform
SD
Body diode forw ard
cu rrent
w av eform
DS
Body diode forw ard drop
Ripple ≤ 5 %
= 5 V for logic lev el dev ices
GS
Diode recov ery
dV /dt
dI/dt
V
DD
I
SD
Rev erse
recov ery
cu rrent
Re-applied
v oltage
D.U.T. I
D.U.T. V
Indu ctor cu rrent
* V
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91070.
Document Number: 91070 www.vishay.com
S-81290-Rev. B, 16-Jun-08 7
Page 8
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000 www.vishay.com
Revision: 18-Jul-08 1