www.vishay.com
IRF740B
Vishay Siliconix
D Series Power MOSFET
PRODUCT SUMMARY
VDS (V) at TJ max. 450
R
max. () at 25 °C VGS = 10 V 0.6
DS(on)
Q
max. (nC) 30
g
Q
(nC) 4
gs
Q
(nC) 7
gd
Configuration Single
FEATURES
• Optimal design
- Low area specific on-resistance
- Low input capacitance (C
iss
)
- Reduced capacitive switching losses
- High body diode ruggedness
- Avalanche energy rated (UIS)
• Optimal efficiency and operation
- Low cost
- Simple gate drive circuitry
- Low figure-of-merit (FOM): R
on
x Q
g
- Fast switching
• Material categorization: for definitions of compliance
please see www.vishay.com/doc?99912
Note
*
Thi s datasheet pro vi des information about parts that are
RoHS-compliant and / or parts that are non-RoHS-compliant. For
example, parts with lead (Pb) terminations are not RoHS-compliant.
Please see the information / tables in this datasheet for details.
APPLICATIONS
• Consumer electronics
- Displays (LCD or plasma TV)
• Server and telecom power supplies
- SMPS
• Industrial
- Welding
- Induction heating
- Motor drives
• Battery chargers
ORDERING INFORMATION
Package TO-220AB
Lead (Pb)-free IRF740BPbF
ABSOLUTE MAXIMUM RATINGS (TC = 25 °C, unless otherwise noted)
PARAMETER SYMBOL LIMIT UNIT
Drain-Source Voltage V
Gate-Source Voltage AC (f > 1 Hz) 30
T
= 25 °C
Continuous Drain Current (T
Pulsed Drain Current
a
= 150 °C) VGS at 10 V
J
C
= 100 °C 6
C
DS
V
GS
I
D
IDM 23
Linear Derating Factor 1.2 W/°C
Single Pulse Avalanche Energy
Maximum Power Dissipation P
Operating Junction and Storage Temperature Range T
Drain-Source Voltage Slope T
Reverse Diode dV/dt
d
Soldering Recommendations (Peak temperature)
b
= 125 °C
J
c
for 10 s 300 °C
E
AS
D
, T
J
dV/dt
stg
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature.
b. V
= 50 V, starting TJ = 25 °C, L = 2.3 mH, Rg = 25 , IAS = 13 A.
DD
c. 1.6 mm from case.
d. I
ID, starting TJ = 25 °C.
SD
S16-0799-Rev. B, 02-May-16
1
For technical questions, contact: hvm@vishay.com
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
400
± 30
10
194 mJ
147 W
-55 to +150 °C
24
0.6
Document Number: 91519
V Gate-Source Voltage
AT
V/ns
IRF740B
www.vishay.com
THERMAL RESISTANCE RATINGS
PARAMETER SYMBOL TYP. MAX. UNIT
Maximum Junction-to-Ambient R
Maximum Junction-to-Case (Drain) R
thJA
thJC
-62
-0.85
SPECIFICATIONS (TJ = 25 °C, unless otherwise noted)
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT
Static
Drain-Source Breakdown Voltage V
V
Temperature Coefficient
DS
Gate-Source Threshold Voltage (N) V
Gate-Source Leakage I
Zero Gate Voltage Drain Current I
Drain-Source On-State Resistance R
Forward Transconductance g
Dynamic
Input Capacitance C
Output Capacitance C
Reverse Transfer Capacitance C
Effective Output Capacitance, Energy
a
Related
Effective Output Capacitance, Time
b
Related
Total Gate Charge Q
Gate-Drain Charge Q
Turn-On Delay Time t
Rise Time t
Turn-Off Delay Time t
Fall Time t
Gate Input Resistance R
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current I
Pulsed Diode Forward Current I
Diode Forward Voltage V
Reverse Recovery Time t
Reverse Recovery Charge Q
Reverse Recovery Current I
Notes
a. C
b. C
is a fixed capacitance that gives the same energy as C
oss(er)
is a fixed capacitance that gives the same charging time as C
oss(tr)
DS
V
DS/TJ
GS(th)
V
GSS
DSS
V
DS(on)
fs
iss
-59-
oss
-9-
rss
C
o(er)
C
o(tr)
g
-7-
gd
d(on)
r
-1836
d(off)
-1428
f
g
S
MOSFET symbol
showing the
integral reverse
SM
SD
rr
rr
RRM
p - n junction diode
VGS = 0 V, ID = 250 μA 400 - - V
Reference to 25 °C, I
= 250 μA
D
VDS = VGS, ID = 250 μA 3 - 5 V
= ± 30 V - - ± 100 nA
GS
VDS = 400 V, VGS = 0 V - - 1
= 320 V, VGS = 0 V, TJ = 125 °C - - 10
V
DS
= 10 V ID = 5 A - 0.5 0.6
GS
VDS = 50 V, ID = 5 A - 2.7 - S
VGS = 0 V,
V
= 100 V,
DS
f = 1 MHz
VGS = 0 V,
V
= 0 V to 320 V
DS
V
= 10 V ID = 5 A, VDS = 320 V
GS
= 400 V, ID = 10 A,
V
DD
V
= 10 V, Rg = 9.1
GS
f = 1 MHz, open drain 0.9 1.8 3.6
TJ = 25 °C, IS = 5 A, VGS = 0 V - - 1.2 V
TJ = 25 °C, IF = IS = 5 A,
dI/dt = 100 A/μs
while VDS is rising from 0 % to 80 % VDS.
oss
while VDS is rising from 0 % to 80 % VDS.
oss
, V
= 25 V
R
Vishay Siliconix
°C/W
-0.53-
- 526 -
-66-
-84-
-1530
-1224
-1836
--10
--40
- 230 - ns
-1.6-μC
-14-A
V/°C
μA
pF
nC Gate-Source Charge Qgs -4-
ns
A
S16-0799-Rev. B, 02-May-16
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
For technical questions, contact: hvm@vishay.com
2
Document Number: 91519
www.vishay.com
VDS, Drain-to-Source Voltage (V)
I
D
, Drain-to-Source Current (A)
0 5 10 15 20 25 30
11 V
0
5
10
15
20
25
TOP 15 V
14 V
13 V
12 V
11 V
10 V
9 V
8 V
7 V
6 V
BOTTOM 5 V
TJ = 25 °C
Qg, Total Gate Charge (nC)
V
GS
, Gate-to-Source Voltage (V)
16
4
0
24
20
12
8
VDS = 400 V
V
DS
= 250 V
V
DS
= 100 V
0 5 10 15 20 25
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)
, Drain-to-Source
DS(on)
R
3
2.5
ID = 5 A
2
1.5
1
0.5
On Resistance (Normalized)
IRF740B
Vishay Siliconix
VGS = 10 V
Fig. 1 - Typical Output Characteristics
16
TOP 15 V
14 V
13 V
12 V
11 V
12
8
4
, Drain-to-Source Current (A)
D
I
10 V
BOTTOM 6 V
9 V
8 V
7 V
0
TJ = 150 °C
5 V
0 5 10 15 20 25 30
VDS, Drain-to-Source Voltage (V)
Fig. 2 - Typical Output Characteristics
25
0
- 60 - 40 - 20020 40 60 80 100 120
140
160
TJ, Junction Temperature (°C)
Fig. 4 - Normalized On-Resistance vs. Temperature
10 000
C
1000
iss
100
C
Capacitance (pF)
10
oss
C
rss
1
0
50 100 150 200 250 300 350 400
V
= 0 V, f = 1 MHz
GS
= Cgs + Cgd, Cds Shorted
C
iss
= C
C
rss
gd
C
= Cds + C
oss
gd
VDS, Drain-to-Source Voltage (V)
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
20
15
10
TJ = 25 °C
TJ = 150 °C
5
, Drain-to-Source Current (A)
D
I
0
0 5 10 15 20
VGS, Gate-to-Source Voltage (V)
Fig. 3 - Typical Transfer Characteristics
S16-0799-Rev. B, 02-May-16
THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT
ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000
25
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
3
Document Number: 91519
For technical questions, contact: hvm@vishay.com