• Alternate Source to TLP621-2/-4 and
TLP621GB-2/-4
• High Collector-Emitter Voltage, BV
• Dual and Quad Packages Feature:
- Lower Pin and Parts Count
- Better Channel to Channel CTR Match
- Improved Common Mode Rejection
• Isolation Test Voltage 5300 V
RMS
Agency Approvals
• UL File # E52744 System Code H or J
• DIN EN 60747-5-2(VDE0884)
DIN EN 60747-5-5 pending
Available with Option 1
• BSI IEC60950 IEC60965
• FIMKO
CEO
=70 V
Description
The ILD621/ ILQ621 and ILD621GB/ ILQ621GB are
multi-channel phototransistor optocouplers that use
GaAs IRLED emitters and high gain NPN silicon phototransistors. These devices are constructed using
double molded insulation technology. This assembly
process offers a withstand test voltage of 7500 VDC.
The ILD621/ ILQ621GB is well suited for CMOS interfacing given the CTR
1.0 mA. High gain linear operation is guaranteed by a
minimum CTR
of 100 % at 5.0 mA. The ILD/Q621
CE
has a guaranteed CTR
The TRansparent IOn Shield insures stable DC gain
in applications such as power supply feedback circuits, where constant DC V
Document Number 83654
Rev. 1.3, 19-Apr-04
of 30 % minimum at I F of
CE sat
50 % minimum at 5.0 mA.
CE
voltages are present.
IO
Order Information
PartRemarks
ILD621CTR > 50 %, DIP-8
ILD621GBCTR > 100 %, DIP-8
ILQ621CTR > 50 %, DIP-16
ILQ621GBCTR > 100 %, DIP-16
ILD621-X006CTR > 50 %, DIP-8 400 mil (option 6)
ILD621-X007CTR > 50 %, SMD-8 (option 7)
ILD621-X009CTR > 50 %, SMD-8 (option 9)
ILD621GB-X007CTR > 100 %, SMD-8 (option 7)
ILQ621-X006CTR > 50 %, DIP-8 400 mil (option 6)
ILQ621-X007CTR > 50 %, SMD-16 (option 7)
ILQ621-X009CTR > 50 %, SMD-16 (option 9)
ILQ621GB-X006CTR > 100 %, DIP-16 400 mil (option 6)
ILQ621GB-X007CTR > 100 %, SMD-16 (option 7)
ILQ621GB-X009CTR > 100 %, SMD-16 (option 9)
For additional information on the available options refer to
Option Information.
www.vishay.com
1
Page 2
ILD621/ GB/ ILQ621/ GB
VISHAY
Vishay Semiconductors
Absolute Maximum Ratings
T
= 25 °C, unless otherwise specified
amb
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
ParameterTest conditionSymbolVal ueUnit
Reverse voltageV
Forward currentI
Surge currentI
Power dissipationP
Derate from 25 °C1.33mW/°C
R
F
FSM
diss
6.0V
60 mAmA
1.5A
100mW
Output
ParameterTest conditionSymbolVal ueUnit
Collector -emitter reverse
voltage
Collector currentI
t < 1.0 msI
Power dissipationP
Derate from 25 °C- 2.0mW/°C
V
ECO
C
C
diss
70V
50mA
100mA
150mW
Coupler
ParameterTest conditionPar tSymbolVal ueUnit
Isolation test voltaget = 1.0 sec.V
Package dissipationILD621400mW
ILD621GB400mW
Derate from 25 °C5.33mW/°C
Package dissipationILQ621500mW
ILQ621GB500mW
Derate from 25 °C6.67mW/°C
Creepage≥ 7.0mm
Clearance≥ 7.0mm
Isolation resistanceV
Storage temperatureT
Operating temperatureT
Junction temperatureT
Soldering temperature2.0 mm from case bottomT
= 500 V, T
IO
= 500 V, T
V
IO
= 25 °CR
amb
= 100 °CR
amb
ISO
IO
IO
stg
amb
j
sld
5300V
12
≥ 10
11
≥ 10
- 55 to +150°C
- 55 to +100°C
100°C
260°C
RMS
Ω
Ω
www.vishay.com
2
Document Number 83654
Rev. 1.3, 19-Apr-04
Page 3
VISHAY
ILD621/ GB/ ILQ621/ GB
Vishay Semiconductors
Electrical Characteristics
T
= 25 °C, unless otherwise specified
amb
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
ParameterTest conditionSymbolMinTyp .MaxUnit
Forward voltageI
Reverse currentV
CapacitanceV
Thermal resistance, Junction to
= 10 mAV
F
= 6.0 VI
R
= 0, f = 1.0 MHzC
F
R
F
R
O
THJL
1.01.151.3V
0.0110µA
40pF
750K/W
lead
Output
ParameterTest conditionSymbolMinTy p.MaxUnit
Collector-emitter capacitanceV
Collector-emitter leakage
current
Thermal resistance, Junction to
lead
= 5.0 V, f = 1.0 MHzC
CE
= 24 VI
V
CE
R
CEO
I
CEO
THJL
CE
6.8pF
10100nA
2050µA
500K/W
Coupler
ParameterTest conditionPartSymbolMinTy p.MaxUnit
Capacitance (input-output)V
Insulation resistanceV
= 0 V, f = 1.0 MHzC
IO
= 500 V
IO
IO
0.8pF
12
10
Channel to channel insulation500VAC
Collector-emitter saturation
voltage
= 8.0 mA, ICE = 2.4 mAILD621
I
F
I
= 1.0 mA, ICE = 0.2 mAILD621GB
F
ILQ621
V
V
CEsat
CEsat
0.4V
0.4V
ILQ621GB
Current Transfer Ratio
ParameterTest conditionPartSymbolMinTy p.MaxUnit
Channel/Channel CTR matchI
Current Transfer Ratio
(collector-emitter saturated)
Current Transfer Ratio
(collector-emitter)
= 5.0 mA, VCE = 5.0 VCTRX/
F
CTRY
I
= 1.0 mA, VCE = 0.4 VILD621
F
CTR
ILQ621
ILD621GB
CTR
ILQ621GB
I
= 5.0 mA, VCE = 5.0 VILD621
F
ILQ621
ILD621GB
CTR
CTR
ILQ621GB
at
at
1 to 13 to 1
CEs
CEs
30%
5080600%
CE
100200600%
CE
60%
Ω
Document Number 83654
Rev. 1.3, 19-Apr-04
www.vishay.com
3
Page 4
ILD621/ GB/ ILQ621/ GB
Vishay Semiconductors
Switching Characteristics
Non-saturated switching timing
ParameterTest conditionSymbolMinTy p .MaxUnit
On TimeI
Rise timeI
Off timeI
Fall tim eI
Propagation H-LI
Propagation L-HI
Saturated switching timing
ParameterTest conditionSymbolMinTy p .MaxUnit
On timeI
Rise timeI
Off timeI
Fall tim eI
Propagation H-LI
Propagation L-HI
= ± 10 mA, VCC = 5.0 V,
F
= 75 Ω, 50 % of V
R
L
= ± 10 mA, VCC = 5.0 V,
F
R
= 75 Ω, 50 % of V
L
= ± 10 mA, VCC = 5.0 V,
F
= 75 Ω, 50 % of V
R
L
= ± 10 mA, VCC = 5.0 V,
F
= 75 Ω, 50 % of V
R
L
= ± 10 mA, VCC = 5.0 V,
F
R
= 75 Ω, 50 % of V
L
= ± 10 mA, VCC = 5.0 V,
F
R
= 75 Ω, 50 % of V
L
= ± 10 mA, VCC = 5.0 V,
F
= 1.0 KΩ, VTH = 1.5 V
R
L
= ± 10 mA, VCC = 5.0 V,
F
R
= 1.0 KΩ, VTH = 1.5 V
L
= ± 10 mA, VCC = 5.0 V,
F
R
= 1.0 KΩ, VTH = 1.5 V
L
= ± 10 mA, VCC = 5.0 V,
F
R
= 1.0 KΩ, VTH = 1.5 V
L
= ± 10 mA, VCC = 5.0 V,
F
= 1.0 KΩ, VTH = 1.5 V
R
L
= ± 10 mA, VCC = 5.0 V,
F
= 1.0 KΩ, VTH = 1.5 V
R
L
PP
PP
PP
PP
PP
PP
t
t
t
t
t
on
t
t
off
t
PHL
PLH
t
on
t
t
off
t
PHL
PLH
VISHAY
3.0µs
r
f
r
f
2.0µs
2.3µs
2.0µs
1.1µs
2.5µs
4.3µs
2.8µs
2.5µs
11µs
2.6µs
7.2µs
Common Mode Transient Immunity
ParameterTest conditionSymbolMinTy p .MaxUnit
Common mode rejection output
high
Common mode rejection output
low
www.vishay.com
4
= 50 V
V
CM
I
= 0 mA
F
V
= 50 V
CM
I
= 10 mA
F
, RL = 1.0 KΩ,
P-P
, RL = 1.0 KΩ,
P-P
CM
CM
H
L
5000V/µs
5000V/µs
Document Number 83654
Rev. 1.3, 19-Apr-04
Page 5
VISHAY
iild621_04
V
O
VCC=5V
R
L
F=10KHz,
DF=50%
-60 -40 -20020406080100
120
100
80
60
40
0
20
TA- Ambient Temperature - °C
I
F
- Maximum LED Current - mA
TJ (MAX) = 100 °C
iild621_05
iild621_06
-60 -40 -20020406080100
200
100
0
50
Ta - Ambient Temperature - °C
P
LED
- LED Power - mW
150
ILD621/ GB/ ILQ621/ GB
Vishay Semiconductors
Typical Characteristics (T
I
F
t
t
V
iild621_01
PLH
O
t
t
D
R
Fig. 1 Non-saturated Switching Timing
PLH
t
S
VCC=5V
= 25 °C unless otherwise specified)
amb
50%
t
F
Fig. 4 Saturated Switching Timing
IF=10mA
F = 10 KHz,
RL = 75 Ω
DF = 50%
iild621_02
Fig. 2 Non-saturated Switching Timing
I
F
t
D
t
R
t
PLH
t
PHL
t
S
iild621_03
V
O
V
O
VTH= 1.5 V
t
F
Fig. 5 Maximum LED Current vs. Ambient Temperature
Fig. 3 Saturated Switching Timing
Document Number 83654
Rev. 1.3, 19-Apr-04
Fig. 6 Maximum LED Power Dissipation
www.vishay.com
5
Page 6
ILD621/ GB/ ILQ621/ GB
iild621_10
RL- Collector Load Resistor - kΩ
100101.1
1
10
100
1000
1.0
1.5
2.0
2.5
t
PLH
t
PLH
- Propagation Low-High µs
t
PHL
- Propagation High-Low µs
IF=10mA
V
CC
=5V,Vth=1.5V
t
PHL
iild621_11
-60-40 -20020406080100
0
50
100
150
200
TA- Ambient Temperature - °C
P
DET
- Detector Power - mW
iild621_12
.1
10
100
1000
100
10
1
.1
VCE- Collector-Emitter Voltage - V
I
CE
- Collector Current - mA
Rth = 500 °C/W
25 °C
50 °C
75 °C
90 °C
1
Vishay Semiconductors
1.4
3
- Forward Voltage - V
F
V
iild621_07
1.
1.2
1.1
1.0
0.9
0.8
0.7
TA=85°C
TA=85°C
TA= 85° C
100101.1
IF- Forward Current - mA
VISHAY
Fig. 7 Forward Voltage vs. Forward Current
35
30
25
50°C
20
15
10
- Collector Current - mA
5
CE
I
25°C
85°C
70°C
0
iild621_08
40
IF- LED Current - mA
60503020100
Fig. 8 Collector-Emitter Current vs. Temperature and LED
Current
5
10
4
10
3
10
2
- Collector-Emitter - nA
CEO
I
10
10
10
10
10
1
0
Typical
-1
-2
VCE=10V
100806040200-20
TA- Ambient Temperature - °C
iild621_09
Fig. 10 Propagation Delay vs. Collector Load Resistor
Fig. 11 Maximum Detector Power Dissipation
Fig. 9 Collector-Emitter Leakage vs. Temperature
www.vishay.com
6
Document Number 83654
Fig. 12 Maximum Collector Current vs. Collector Voltage
Rev. 1.3, 19-Apr-04
Page 7
VISHAY
2.0
1.5
1.0
Normalized to:
V
=10V,IF= 5 mA,
CE
CTRce(sat) VCE= 0.4 V
NCTRce
ILD621/ GB/ ILQ621/ GB
Vishay Semiconductors
NCTRce(sat)
TA=50°C
CTRNF - Normalized CTR Factor
iild621_13
0.5
0.0
.1110100
IF- LED Current - mA
Fig. 13 Normalization Factor for Non-saturated and Saturated CTR
vs. I
F
2.0
Normalized to:
VCE=10V,IF= 5 mA,
1.5
CTRNF - Normalized CTR Factor
iild621_14
CTRce(sat) V
1.0
0.5
0.0
.1110100
= 0.4 V
CE
NCTRce
NCTRce(sat)
IF- LED Current - mA
TA=70°C
Fig. 14 Normalization Factor for Non-saturated and Saturated CTR
vs. I
F
2.0
Normalized to:
VCE=10V,IF= 5 mA,
1.5
CTRNF - Normalized CTR Factor
iild621_15
CTRce(sat) V
1.0
0.5
0.0
.1110100
= 0.4 V
CE
NCTRce
NCTRce(sat)
IF- LED Current - mA
TA= 100 °C
Fig. 15 Normalization Factor for Non-saturated and Saturated CTR
vs. I
F
Document Number 83654
Rev. 1.3, 19-Apr-04
www.vishay.com
7
Page 8
ILD621/ GB/ ILQ621/ GB
Vishay Semiconductors
Package Dimensions in Inches (mm)
pin one ID
VISHAY
4
3
1
2
.255 (6.48)
.268 (6.81)
5
6
78
.379 (9.63)
.390 (9.91)
.030 (0.76)
.045 (1.14)
.031 (0.79)
4° typ.
.130 (3.30)
.150 (3.81)
.050 (1.27)
.020 (.51 )
i178006
.018 (.46)
.022 (.56)
.100 (2.54) typ.
.035 (.89 )
Package Dimensions in Inches (mm)
87654321
910111213141516
pin one ID
.255 (6.48)
.265 (6.81)
ISO Method A
.300 (7.62)
typ.
10°
3°–9°
.008 (.20)
.012 (.30)
.110 (2.79)
.130 (3.30)
ISO Method A
.230(5.84)
.250(6.35)
4°
.018 (.46)
.022 (.56)
i178007
www.vishay.com
8
.030 (.76)
.045 (1.14)
.100 (2.54)typ.
.779 (19.77 )
.790 (20.07)
.031(.79)
.130 (3.30)
.150 (3.81)
.020(.51)
.035 (.89)
.050 (1.27)
.300 (7.62)
typ.
10°
typ.
3°–9°
.008 (.20)
.012 (.30)
.110 (2.79)
.130 (3.30)
.230 (5.84)
.250 (6.35)
Document Number 83654
Rev. 1.3, 19-Apr-04
Page 9
VISHAY
ILD621/ GB/ ILQ621/ GB
Vishay Semiconductors
Option 6
.407 (10.36)
.391 (9.96)
.307 (7.8)
.291 (7.4)
.014 (0.35)
.010 (0.25)
.400 (10.16)
.430 (10.92)
.028 (0.7)
MIN.
Option 7
.300 (7.62)
TYP.
.315 (8.0)
MIN.
.331 (8.4)
MIN.
.406 (10.3)
MAX.
.180 (4.6)
.160 (4.1)
.0040 (.102)
.0098 (.249)
Option 9
.375 (9.53)
.395 (10.03)
.300 (7.62)
ref.
.020 (.51)
.040 (1.02)
.315 (8.00)
min.
.012 (.30) typ.
15° max.
18450
Document Number 83654
Rev. 1.3, 19-Apr-04
www.vishay.com
9
Page 10
ILD621/ GB/ ILQ621/ GB
VISHAY
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the
use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.