VISHAY IL410, IL4108 User Manual

IL410/ IL4108
i179030
MT2
MT1
NC
A
C
NC
*Zero Crossing Circuit
ZCC*
Vishay Semiconductors
Optocoupler, Phototriac Output, Zero Crossing, High dV/dt, Low Input Current
Features
• High Input Sensitivity
•I
= 2.0 mA, PF = 1.0
FT
•I
= 5.0 mA, PF 1.0
FT
• 300 mA On-State Current
• Zero Voltage Crossing Detector
• 600/800 V Blocking Voltage
• High Static dV/dt 10 kV/µs
• Inverse Parallel SCRs Provide Commutating dV/dt >10 kV/µs
• Very Low Leakage < 10 µA
• Isolation Test Voltage 5300 V
RMS
• Small 6-Pin DIP Package
• Lead-free component
• Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC
Agency Approvals
• UL1577, File No. E52744 System Code H or J, Double Protection
• CSA 93751
• BSI IEC60950 IEC60065
• DIN EN 60747-5-2 (VDE0884) DIN EN 60747-5-5 pending Available with Option 1
• FIMKO
Applications
Solid-state relays Industrial controls Office equipment Consumer appliances.
Description
The IL410/ IL4108 consists of a GaAs IRLED optically coupled to a photosensitive zero crossing TRIAC net­work. The TRIAC consists of two inverse parallel con­nected monolithic SCRs. These three semi­conductors are assembled in a six pin dual in-line package.
High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR pre­driver resulting in an LED trigger current of less than
2.0 mA (DC). The IL410/ IL4108 uses two discrete SCRs resulting
in a commutating dV/dt greater than 10 kV/µs. The use of a proprietary dV/dt clamp results in a static dV/ dt of greater than 10 kV/µs. This clamp circuit has a MOSFET that is enhanced when high dV/dt spikes occur between MT1 and MT2 of the TRIAC. When conducting, the FET clamps the base of the pho­totransistor, disabling the first stage SCR predriver.
The zero cross line voltage detection circuit consists of two enhancement MOSFETS and a photodiode. The inhibit voltage of the network is determined by the enhancement voltage of the N-channel FET. The P­channel FET is enabled by a photocurrent source that permits the FET to conduct the main voltage to gate on the N-channel FET. Once the main voltage can enable the N-channel, it clamps the base of the pho­totransistor, disabling the first stage SCR predriver.
The 600/800 V blocking voltage permits control of off­line voltages up to 240 VAC, with a safety factor of more than two, and is sufficient for as much as 380 VAC.
The IL410/ IL4108 isolates low-voltage logic from 120, 240, and 380 VAC lines to control resistive, inductive, or capacitive loads including motors, sole­noids, high current thyristors or TRIAC and relays.
Document Number 83627
Rev. 1.4, 26-Apr-04
www.vishay.com
1
IL410/ IL4108
Vishay Semiconductors
Order Information
Par t Remarks
IL410 600 V V
IL4108 800 V V
IL410-X006 600 V V
IL410-X007 600 V V
IL410-X009 600 V V
IL4108-X006 800 V V
IL4108-X007 800 V V
IL4108-X009 800 V V
For additional information on the available options refer to Option Information.
Absolute Maximum Ratings
T
= 25 °C, unless otherwise specified
amb
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability.
, DIP-6
DRM
, DIP-6
DRM
, DIP-6 400 mil (option 6)
DRM
, SMD-6 (option 7)
DRM
, SMD-6 (option 9)
DRM
, DIP-6 400 mil (option 6)
DRM
, SMD-6 (option 7)
DRM
, SMD-6 (option 9)
DRM
Input
Paramete r Test condition Symbol Val ue Unit
Reverse voltage V
Forward current I
Surge current I
Power dissipation P
Derate from 25 °C 1.33 mW/°C
R
F
FSM
diss
6.0 V
60 mA
2.5 A
100 mW
Output
Paramete r Test condition Par t Symbol Val ue Unit
Peak off-state voltage IL410 V
IL4108 V
RMS on-state current I
Single cycle surge current 3.0 A
Total power dissipation P
Derate from 25 °C 6.6 mW/°C
DM
DM
TM
diss
600 V
800 V
300 mA
500 mW
Coupler
Paramete r Test condition Symbol Val ue Unit
Isolation test voltage (between emitter and detector, climate per DIN 500414, part 2, Nov. 74)
Pollution degree (DIN VDE
0109)
Creepage 7.0 mm
Clearance 7.0 mm
t = 1.0 min. V
ISO
5300 V
2
RMS
www.vishay.com
2
Document Number 83627
Rev. 1.4, 26-Apr-04
IL410/ IL4108
Vishay Semiconductors
Parameter Test condition Symbol Value Unit
Comparative tracking index per DIN IEC 112/VDE 0303 part 1, group IIIa per DIN VDE 6110
Isolation resistance V
Storage temperature range T
Ambient temperature range T
Soldering temperature max. 10 sec. dip soldering
= 500 V, T
IO
V
= 500 V, T
IO
= 25 °C R
amb
= 100 °C R
amb
0.5 mm from case bottom
T
IO
IO
stg
amb
sld
Electrical Characteristics
T
= 25 °C, unless otherwise specified
amb
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements.
Input
Parameter Test condition Symbol Min Ty p. Max Unit
Forward voltage I
Reverse current V
Input capacitance V
Thermal resistance, junction to ambient
= 10 mA V
F
= 6.0 V I
R
= 0 V, f = 1.0 MHz C
F
F
R
IN
R
thja
175
12
10
11
10
- 55 to + 150 °C
- 55 to + 100 °C
260 °C
1.16 1.35 V
0.1 10 µA
25 pF
750 °C/W
Output
Parameter Test condition Par t Symbol Min Ty p. Max Unit
Off-state voltage I
Repetitive peak off-state voltage I
Off-state current V
On-state voltage I
On-state current PF = 1.0, V
Surge (non-repetitive), on-state current
Trigger current 1 V
Trigger current 2 V
Trigger current temp. gradient ∆I
Inhibit voltage temp. gradient ∆V
Off-state current in inhibit state I
Holding current I
Latching current V
Zero cross inhibit voltage I
Turn-on time V
Turn-off time PF = 1.0, I
= 70 µA IL410 V
D(RMS)
IL4108 V
= 100 µA IL410 V
DRM
IL4108 V
= V
, T
D
DRM
I
= 0 mA
F
V
= V
D
DRM
= 300 mA V
T
= 100 °C,
amb
, IF = Rated I
T(RMS)
FT
= 1.7 V I
f = 50 Hz I
= 5.0 V I
D
= 220 V, f = 50 Hz,
OP
T
= 100 °C, tpF > 10 ms
J
I
= I
, V
F
FT1
DRM
= 2.2 V I
T
= Rated I
F
RM
FT
= VDM = V
D(RMS)
= 300 mA t
T
D(RMS)
D(RMS)
DRM
DRM
I
D(RMS)1
I
D(RMS)2
TM
TM
TSM
FT1
I
FT2
FT1
FT2
DINH
I
DINH
H
L
V
IH
t
on
off
/T
/T
/T
424 460 V
565 V
600 V
800 V
10 100 µA
1.7 3.0 V
j
j
j
7.0 14 µA/°C
7.0 14 µA/°C
-20 mV/°C
50 200 µA
65 500 µA
5.0 mA
15 25 V
35 µs
50 µs
200 µA
300 mA
3.0 A
2.0 mA
6.0 mA
Document Number 83627
Rev. 1.4, 26-Apr-04
www.vishay.com
3
IL410/ IL4108
iil410_01
400350300250200150100500
.001
.01
.1
1
IL - Load Current - mA(RMS)
Cs - Shunt Capacitance - µF
Cs(µF) = 0.0032 (µF)* 10^(0.0066IL (mA)
Ta = 25°C, PF = 0.3
IF = 2.0 mA
Vishay Semiconductors
Paramete r Test condition Par t Symbol Min Ty p. Max Unit
Critical rate of rise of off-state voltage
Critical rate of rise of voltage at current commutation
Critical rate of rise of on-state dI/dt
Thermal resistance, junction to ambient
Coupler
Paramete r Test condition Symbol Min Ty p. Max Unit
Critical rate of rise of coupled input/output voltage
Common mode coupling capacitance
Capacitance (input-output) f = 1.0 MHz, V
Isolation resistance V
VD = 0.67 V
= 0.67 V
V
D
V
= 0.67 V
D
15 A/ms, TJ = 25 °C
dI/dt
crq
V
= 0.67 V
D
15 A/ms, TJ = 80 °C
dI/dt
crq
= 0 A, VRM = VDM = V
I
T
= 500 V, T
IO
V
= 500 V, T
IO
, TJ = 25 °C dV/dt
DRM
, TJ = 80 °C dV/dt
DRM
,
DRM
,
DRM
= 0 V C
IO
= 25 °C R
amb
= 100 °C R
amb
D(RMS)
dV/dt
dV/dt
dVIO/dt 10000 V/µs
C
CM
IO
IO
IO
10000 V/µs
cr
cr
crq
crq
cr
R
thja
5000 V/µs
10000 V/µs
5000 V/µs
8.0 A/µs
150 °C/W
0.01 pF
0.8 pF
10
10
12
11
Power Factor Considerations
A snubber isn’t needed to eliminate false operation of the TRIAC driver because of the IL410/ IL4108’s high static and commutating dV/dt with loads between 1.0 and 0.8 power factors. When inductive loads with power factors less than 0.8 are being driven, include a RC snubber or a single capacitor directly across the device to damp the peak commutating dV/dt spike. Normally a commutating dV/dt causes a turning-off device to stay on due to the stored energy remaining in the turning-off device.
But in the case of a zero voltage crossing optotriac, the commutating dV/dt spikes can inhibit one half of the TRIAC from turning on. If the spike potential exceeds the inhibit voltage of the zero cross detection circuit, half of the TRIAC will be held-off and not turn­on. This hold-off condition can be eliminated by using a snubber or capacitor placed directly across the optotriac as shown in Figure 1. Note that the value of the capacitor increases as a function of the load cur­rent.
Figure 1. Shunt Capacitance vs. Load Current
www.vishay.com
4
Document Number 83627
Rev. 1.4, 26-Apr-04
Loading...
+ 7 hidden pages