Vishay Semiconductors
Insulated Gate Bipolar Transistor
GA200SA60SP
Ultralow V
CE(on)
, 342 A
FEATURES
• Standard: Optimized for minimum saturation
voltage and low speed up to 5 kHz
• Lowest conduction losses available
• Fully isolated package (2500 V
AC
)
• Very low internal inductance (5 nH typical)
• Industry standard outline
SOT-227
• UL approved file E78996
• Compliant to RoHS directive 2002/95/EC
PRODUCT SUMMARY
V
CES
V
(typical) at 200 A, 25 °C 1.33 V
CE(on)
I
at TC = 97 °C
C
Note
(1)
Maximum I
maximum temperature of terminals
RMS
(1)
current admitted 100 A to do not exceed the
600 V
200 A
• Designed and qualified for industrial level
BENEFITS
• Designed for increased operating efficiency in power
conversion: UPS, SMPS, TIG welding, induction heating
• Easy to assemble and parallel
• Direct mounting to heatsink
• Plug-in compatible with other SOT-227 packages
ABSOLUTE MAXIMUM RATINGS
PARAMETER SYMBOL TEST CONDITIONS MAX. UNITS
Collector to emitter breakdown voltage V
Continuous collector current I
Pulsed collector current I
Clamped Inductive load current I
Gate to emitter voltage V
Reverse voltage avalanche energy E
RMS isolation voltage V
Maximum power dissipation P
Operating junction and storage
temperature range
Mounting torque 6-32 or M3 screw 12 (1.3) lbf in (N m)
Note
(1)
Maximum I
current admitted 100 A to do not exceed the maximum temperature of terminals
RMS
CES
TC = 25 °C 342
(1)
C
CM
LM
GE
ARV
ISOL
T
, T
J
T
= 97 °C 200
C
Repetitive rating; VGE = 20 V, pulse width limited
by maximum junction temperature
See fig. 15
VCC = 80 % (V
L = 10 μH, R
See fig. 14
Repetitive rating; pulse width limited by
maximum junction temperature
Any terminal to case, t = 1 minute 2500 V
TC = 25 °C 781
D
T
= 100 °C 312
C
Stg
), VGE = 20 V,
CES
= 2.0 ,
g
600 V
400
400
± 20 V
155 mJ
W
- 55 to + 150 °C
A
THERMAL AND MECHANICAL SPECIFICATIONS
PARAMETER SYMBOL TYP. MAX. UNITS
Junction to case R
Case to sink, flat, greased surface R
Weight of module 30 - g
Document Number: 94363 For technical questions within your region, please contact one of the following: www.vishay.com
Revision: 22-Jul-10 DiodesAmericas@vishay.com
, DiodesAsia@vishay.com, DiodesEurope@vishay.com 1
thJC
thCS
-0.16
0.05 -
°C/W
GA200SA60SP
Vishay Semiconductors
Insulated Gate Bipolar Transistor
Ultralow V
CE(on)
, 342 A
ELECTRICAL SPECIFICATIONS (TJ = 25 °C unless otherwise noted)
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNITS
Collector to emitter breakdown voltage V
Emitter to collector breakdown voltage
Temperature coeff. of breakdown voltage V
Collector to emitter saturation voltage V
Gate threshold voltage V
Temperature coeff. of threshold voltage V
Forward transconductance g
Zero gate voltage collector current I
Gate to emitter leakage current I
Notes
(1)
Pulse width 80 μs; duty factor 0.1 %
(2)
Pulse width 5.0 μs, single shot
(BR)CES
V
(BR)ECS
/TJVGE = 0 V, IC = 1.0 mA - 0.62 - V/°C
(BR)CES
CE(on)
GE(th)
/T
GE(th)
(2)
fe
CES
GES
VGE = 0 V, IC = 250 μA 600 - -
(1)
VGE = 0 V, IC = 1.0 A 18 - -
IC = 100 A
V
= 15 V
I
= 200 A - 1.33 -
C
I
= 100 A, TJ = 150 °C - 1.02 -
C
GE
See fig. 2, 5
- 1.10 1.3
VCE = VGE, IC = 250 μA 3.0 - 6.0
VCE = VGE, IC = 2 mA - - 10 - mV/°C
J
VCE = 100 V, IC = 100 A 90 150 - S
VGE = 0 V, VCE = 600 V - - 1.0
V
= 0 V, VCE = 10 V, TJ = 150 °C - - 10
GE
VGE = ± 20 V - - ± 250 nA
V
V
mA
SWITCHING CHARACTERISTICS (TJ = 25 °C unless otherwise specified)
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNITS
Total gate charge (turn-on) Q
Gate collector charge (turn-on) Q
Turn-on delay time t
Rise time t
Turn-off delay time t
Fall time t
Turn-on switching loss E
Total switching loss E
Turn-on delay time t
Rise time t
Turn-off delay time t
Fall time t
Total switching loss E
Internal emitter inductance L
Input capacitance C
Reverse transfer capacitance C
ge
gc
d(on)
r
d(off)
f
on
off
ts
d(on)
r
d(off)
f
ts
ies
oes
res
g
IC = 100 A
= 400 V
V
CC
= 15 V; See fig. 8
V
GE
TJ = 25 °C
= 100 A
I
C
= 480 V
V
CC
= 15 V
V
GE
= 2.0
R
g
Energy losses include “tail”
See fig. 9, 10, 13
TJ = 150 °C
= 100 A, VCC = 480 V
I
C
= 15 V, Rg = 2.0
V
GE
Energy losses include “tail”
See fig. 10, 11, 13
E
Between lead, and center of
the die contact
VGE = 0 V
= 30 V
V
CC
f = 1.0 MHz; See fig. 7
- 770 1200
- 100 150
nCGate emitter charge (turn-on) Q
- 260 380
-78-
-56-
- 890 1300
ns
- 390 580
-0.98-
- 17.4 -
mJTurn-off switching loss E
- 18.4 25.5
-72-
-60-
-1500-
ns
-660-
- 35.7 - mJ
-5.0 - nH
- 16 250 -
-1040-
pFOutput capacitance C
-190-
www.vishay.com For technical questions within your region, please contact one of the following: Document Number: 94363
2 DiodesAmericas@vishay.com
, DiodesAsia@vishay.com, DiodesEurope@vishay.com Revision: 22-Jul-10
For both:
Duty cycle: 50 %
T
J
= 125 °C
T
sink
= 90 °C
Gate drive as specified
Power dissipation = 140 W
0
250
0.1
f - Frequency (kHz)
Load Current (A)
1 10 100
200
150
100
50
Clamp voltage:
80 % of rated
Triangular wave:
I
60 % of rated
voltage
Ideal diodes
Square wave:
I
1
10
100
1000
0.5 1.0 1.5 2.0 2.5
VCE - Collector to Emitter Voltage (V)
I
C
- Collector to Emitter Current (A)
VGE = 15 V
20 µs pulse width
TJ = 150 °C
TJ = 25 °C
0
80
120
160
40
20
100
140
60
0 50 100 150 250200 300 350
T
C
- Case Temperature (°C)
Maximum DC Collector Current (A)
DC
1
2
3
- 60 - 40 - 20 0 20 40 60 80 100 120 140 160
TJ - Junction Temperature (°C)
V
CE
- Collector to Emitter Voltage (V)
VGE = 15 V
80 µs pulse width
IC = 400 A
IC = 200 A
IC = 100 A
GA200SA60SP
Insulated Gate Bipolar Transistor
Ultralow V
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = I
CE(on)
RMS
, 342 A
of Fundamental)
Vishay Semiconductors
Fig. 2 - Typical Output Characteristics
1000
100
- Collector to Emitter Current (A)
C
I
10
567
VGE - Gate to Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
Document Number: 94363 For technical questions within your region, please contact one of the following: www.vishay.com
Revision: 22-Jul-10 DiodesAmericas@vishay.com
Fig. 4 - Maximum Collector Current vs. Case Temperature
TJ = 150 °C
TJ = 25 °C
VCC = 50 V
5 µs pulse width
, DiodesAsia@vishay.com, DiodesEurope@vishay.com 3
Fig. 5 - Typical Collector to Emitter Voltage vs.
Junction Temperature