Optocoupler, Phototransistor Output, With Base Connection
C
Features
• Isolation materials according to UL94-VO
• Pollution degree 2 (DIN/VDE 0110 / resp. IEC
60664)
• Special construction: Therefore, extra low coupling capacity of typical 0.3 pF, high Common Mode Rejection
• Climatic classification 55/100/21
(IEC 60068 part 1)
• Low temperature coefficient of CTR
• Rated impulse voltage (transient overvoltage)
V
= 6 kV peak
IOTM
• Isolation test voltage (partial discharge test voltage) V
= 1.6 kV
pd
• Rated isolation voltage (RMS includes DC)
V
IOWM
= 600 V
(848 V peak)
RMS
• Rated recurring peak voltage (repetitive)
V
= 600 V
IORM
RMS
• Creepage current resistance according to VDE
0303/IEC 60112 Comparative Tracking Index: CTI = 275
• Thickness through insulation ≥ 0.75 mm
• Lead-free component
• Component in accordance to RoHS 2002/95/EC
and WEEE 2002/96/EC
Agency Approvals
• UL1577, File No. E76222 System Code A, Double
Protection
• BSI: BS EN 41003, BS EN 60095 (BS 415), BS EN
60950 (BS 7002), Certificate number 7081 and
7402
• DIN EN 60747-5-2 (VDE0884)
DIN EN 60747-5-5 pending
• FIMKO (SETI): EN 60950, Certificate No. 12399
Applications
Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation):
• For appl. class I - IV at mains voltage ≤ 300 V
• For appl. class I - III at mains voltage ≤ 600 V accord-
ing to DIN EN 60747-5-2(VDE0884)/ DIN EN 607475-5 pending, table 2, suitable for:
B
17186
e3
Switch-mode power supplies, line receiver, computer peripheral interface, microprocessor system interface.
Description
The CQY80N(G) series consist of a phototransistor
optically coupled to a gallium arsenide infrared-emitting diode in a 6-pin plastic dual inline package.
The elements are mounted on one leadframe providing a fixed distance between input and output for highest safety requirements.
VDE Standards
These couplers perform safety functions according to the following
equipment standards:
DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-5-5
pending
Optocoupler for electrical safety requirements
IEC 60950/EN 60950
Office machines (applied for reinforced isolation for mains voltage
≤
400 VRMS)
VDE 0804
Telecommunication apparatus and data processing
IEC 60065
Safety for mains-operated electronic and related household appa-
ratus
E
546
231
ncC (-)A (+)
V
DE
Pb
Pb-free
Document Number 83533
Rev. 1.7, 26-Oct-04
www.vishay.com
1
CQY80N/ CQY80NG
Vishay Semiconductors
Order Information
Par tRemarks
CQY80NCTR > 50 %, DIP-6
CQY80NGCTR > 50 %, DIP-6
G = Leadform 10.16 mm; G is marked on the body
Absolute Maximum Ratings
T
= 25 °C, unless otherwise specified
amb
Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is
not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute
Maximum Rating for extended periods of the time can adversely affect reliability.
Input
ParameterTest conditionSymbolVal ueUnit
Reverse voltageV
Forward currentI
Power dissipationP
Junction temperatureT
Forward surge currentt
≤ 10 µsI
p
R
F
diss
j
FSM
5V
60mA
100mW
125°C
1.5A
Output
ParameterTest conditionSymbolVal ueUnit
Collector emitter voltageV
Emitter collector voltageV
Collector currentI
Collector peak currentt
Power dissipationP
Junction temperatureT
/T = 0.5, tp ≤ 10 msI
p
Coupler
ParameterTest conditionSymbolVal ueUnit
Isolation test voltage (RMS)t = 1 minV
Total power dissipationP
Ambient temperature rangeT
Storage temperature rangeT
Soldering temperature2 mm from case, t ≤ 10 sT
CEO
ECO
C
CM
diss
ISO
tot
amb
stg
sld
32V
7V
50mA
100mA
150mW
j
125°C
3750V
250mW
- 55 to + 100°C
- 55 to + 125°C
260°C
RMS
www.vishay.com
2
Document Number 83533
Rev. 1.7, 26-Oct-04
CQY80N/ CQY80NG
Vishay Semiconductors
Electrical Characteristics
T
= 25 °C, unless otherwise specified
amb
Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering
evaluation. Typical values are for information only and are not part of the testing requirements.
Input
ParameterTest conditionSymbolMinTy p.MaxUnit
Forward voltageI
Junction capacitanceV
= 50 mAV
F
= 0, f = 1 MHzC
R
Output
ParameterTest conditionSymbolMinTy p.MaxUnit
Collector emitter voltageI
Emitter collector voltageI
Collector-emitter leakage
current
= 1 mAV
C
= 100 µAV
E
V
= 20 V, If = 0, E = 0I
CE
Coupler
ParameterTest conditionSymbolMinTy p.MaxUnit
Collector emitter saturation
voltage
Cut-off frequencyV
Coupling capacitancef = 1 MHzC
= 10 mA, IC = 1 mAV
I
F
= 5 V, IF = 10 mA,
CE
= 100 Ω
R
L
F
j
CEO
ECO
CEO
CEsat
f
c
k
32V
7V
1.251.6V
50pF
10200nA
0.3V
110kHz
0.3pF
Current Transfer Ratio
ParameterTest conditionSymbolMinTy p.MaxUnit
I
C/IF
VCE = 5 V, IF = 10 mACTR5090%
Maximum Safety Ratings
(according to DIN EN 60747-5-2(VDE0884)/ DIN EN 60747-5-5 pending) see figure 1
This optocoupler is suitable for safe electrical isolation only within the safety ratings.
Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
Input
ParameterTest conditionSymbolMinTy p.MaxUnit
Forward currentI
F
Output
ParameterTest conditionSymbolMinTy p.MaxUnit
Power dissipationP
diss
Coupler
ParameterTest conditionSymbolMinTy p.MaxUnit
Rated impulse voltageV
Safety temperatureT
IOTM
si
130mA
265mW
6kV
150°C
Document Number 83533
Rev. 1.7, 26-Oct-04
www.vishay.com
3
CQY80N/ CQY80NG
Vishay Semiconductors
Insulation Rated Parameters
ParameterTest conditionSymbolMinTy p.MaxUnit
Partial discharge test voltage Routine test
Partial discharge test voltage Lot test (sample test)
Insulation resistanceV
275
250
225
200
175
150
125
100
75
Isi(mA)
50
25
tot
P - Total Power Dissipation ( mW )
0
0255075 100 125 150 175
95 10923
T
amb
Psi(mW)
- Ambient Temperature ( °C)
100 %, t
= 60 s, t
t
Tr
(see figure 2)
IO
V
IO
V
IO
(construction test only)
= 1 sV
test
= 10 s,
test
= 500 VR
= 500 V, T
= 500 V, T
amb
amb
V
= 100 °CR
= 150 °C
IOTM
V
R
V
V
V
13930
pd
pd
IO
IO
IO
IOTM
V
IOWM
IORM
1.6kV
6kV
1.3kV
12
10
11
10
9
10
t1, t2 = 1 to 10 s
t
, t4 = 1 s
3
= 10 s
t
test
t
= 12 s
stres
Pd
0
t
1
tTr = 60 s
t
2
t
t3t
test
t
stres
t
Ω
Ω
Ω
4
Figure 1. Derating diagram
Figure 2. Test pulse diagram for sample test according to DIN EN
60747-5-2(VDE0884)/ DIN EN 60747-; IEC60747
www.vishay.com
4
Document Number 83533
Rev. 1.7, 26-Oct-04
Switching Characteristics
ParameterTest conditionSymbolMinTy p.MaxUnit
Delay timeV
Rise timeV
Fall timeV
Storage timeV
Turn-on timeV
Turn-off timeV
Turn-on timeV
Turn-off timeV
= 5 V, IC = 5 mA, RL = 100 Ω
S
(see figure 3)
= 5 V, IC = 5 mA, RL = 100 Ω
S
(see figure 3)
= 5 V, IC = 5 mA, RL = 100 Ω
S
(see figure 3)
= 5 V, IC = 5 mA, RL = 100 Ω
S
(see figure 3)
= 5 V, IC = 5 mA, RL = 100 Ω
S
(see figure 3)
= 5 V, IC = 5 mA, RL = 100 Ω
S
(see figure 3)
= 5 V, IF = 10 mA, RL = 1 kΩ
S
(see figure 4)
= 5 V, IF = 10 mA, RL = 1 kΩ
S
(see figure 4)
CQY80N/ CQY80NG
Vishay Semiconductors
t
d
t
r
t
f
t
s
t
on
t
off
t
on
t
off
4.0µs
7.0µs
6.7µs
0.3µs
11.0µs
7.0µs
25.0µs
42.5µs
0
R
t
p
T
t
14943
+5V
IC=5mA;
Channel I
Channel II
Ω
10050
=50
G
= 0.01
=50µs
p
I
I
F
F
Ω
Ω
Figure 3. Test circuit, non-saturated operation
I
0
RG = 50 W
t
p
= 0.01
T
tp = 50 Ps
I
F
F
50 W1 kW
+ 5 V
I
C
Channel I
Channel II
Adjusted through
input amplitude
Oscilloscope
R
≥ 1M
Ω
L
C
≥
20 pF
L
Oscilloscope
R
C
t 1 MW
L
d 20 pF
L
I
F
0
I
C
100%
90%
10%
0
t
d
t
t
p
t
d
t
r
t
(= td+tr)turn-on time
on
on
pulse duration
delay time
rise time
t
p
t
r
t
s
t
off
t
s
t
f
t
(= ts+tf)turn-off time
off
Figure 5. Switching Times
96 11698
t
t
f
t
storage time
fall time
14944
Figure 4. Test circuit, saturated operation
Document Number 83533
Rev. 1.7, 26-Oct-04
www.vishay.com
5
CQY80N/ CQY80NG
Vishay Semiconductors
Typical Characteristics (Tamb = 25 °C unless otherwise specified)
300
Coupled device
250
200
Phototransistor
150
IR-diode
100
50
tot
P –Total Power Dissipation ( mW )
0
04080120
T
96 11700
– Ambient Temperature(°C )
amb
Figure 6. Total Power Dissipation vs. Ambient Temperature
1000
100
10
1
F
I - Forward Current ( mA )
0.1
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
96 11862
VF- Forward Voltage(V)
10000
VCE=20V
I
=0
1000
F
100
with open Base ( nA )
10
CEO
I- Collector Dark Current,
1
100
95 11026
0255075
T
- Ambient Temperature ( ° C)
amb
Figure 9. Collector Dark Current vs. Ambient Temperature
1
VS=5V
0.1
0.01
CB
I- Collector Base Current ( mA )
0.001
95 11052
110
IF- Forward Current ( mA )
100
Figure 7. Forward Current vs. Forward Voltage
1.5
VCE=5V
1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7
0.6
rel
0.5
CTR- Relative Current Transfer Ratio
- 30 - 20 - 1 0 0 10 20 30 40 50 60 70 80
96 11920
=10 mA
I
F
T
- Ambient Temperature (° C)
amb
Figure 8. Relative Current Transfer Ratio vs. Ambient
Temperature
www.vishay.com
6
Figure 10. Collector Base Current vs. Forward Current
100
VCE=5V
10
1
0.1
C
I - Collector Current ( mA )
0.01
0.1110
95 11053
IF- Forward Current ( mA )
100
Figure 11. Collector Current vs. Forward Current
Document Number 83533
Rev. 1.7, 26-Oct-04
CQY80N/ CQY80NG
Vishay Semiconductors
100
IF= 50mA
20 mA
10 mA
10
5mA
2mA
1
C
I - Collector Current ( mA )
1mA
0.1
0.1110
95 11054
V
CE
- Collector Emitter Voltage(V)
100
Figure 12. Collector Current vs. Collector Emitter Voltage
1.0
0.8
0.6
0.4
CTR = 50%
0.2
20%
CEsat
V- Collector Emitter Saturation Voltage (V)
95 11055
0
110
IC- Collector Current ( mA )
10%
100
Figure 13. Collector Emitter Saturation Voltage vs. Collector
Current
1000
VCE=5V
100
10
CTR - Current Transfer Ratio ( % )
1
0.1110
95 11057
IF- Forward Current ( mA )
100
Figure 15. Current Transfer Ratio vs. Forward Current
50
t
40
off
30
t
20
on
Saturated Operation
V
=5V
offon
t / t - Turn on / Turn off Time ( µ s)
95 11017
10
S
=1kΩ
R
L
0
051015
I
- Forward Current ( mA )
F
20
Figure 16. Turn on / off Time vs. Forward Current
1000
VCE=5V
800
600
400
FE
h- DC Current Gain
200
0
0.010.1110
95 11056
IC- Collector Current ( mA )
Figure 14. DC Current Gain vs. Collector Current
Document Number 83533
Rev. 1.7, 26-Oct-04
100
20
Non Saturated
Operation
V
=5V
S
R
= 100
Ω
L
15
10
t
on
t
off
5
offon
t / t - Turn on / Turn off Time ( µ s)
95 11016
0
02 46
I
- Collector Current ( mA )
C
8
Figure 17. Turn on / off Time vs. Collector Current
10
www.vishay.com
7
CQY80N/ CQY80NG
Vishay Semiconductors
Customer Code/
Identification/
Option
Product Code
Figure 18. Marking example
V
D E
UL Logo
V XXXY 68
Vishay Logo
17936
Package Dimensions in mm
Date Code (year, week)
VDE Logo
Plant Code
Package Code
www.vishay.com
8
14770
Document Number 83533
Rev. 1.7, 26-Oct-04
Package Dimensions in mm
CQY80N/ CQY80NG
Vishay Semiconductors
14771
Document Number 83533
Rev. 1.7, 26-Oct-04
www.vishay.com
9
CQY80N/ CQY80NG
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and
operatingsystems with respect to their impact on the health and safety of our employees and the public, as
well as their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are
known as ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs
and forbid their use within the next ten years. Various national and international initiatives are pressing for an
earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments
respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each
customer application by the customer. Should the buyer use Vishay Semiconductors products for any
unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all
claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal
damage, injury or death associated with such unintended or unauthorized use.
Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc.,
or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.
Information contained herein is intended to provide a product description only. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's
terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express
or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness
for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications.
Customers using or selling these products for use in such applications do so at their own risk and agree to fully
indemnify Vishay for any damages resulting from such improper use or sale.
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.