PD-5.045B
CPV362M4K
1
IGBT SIP MODULE
Features Features
Features
Features Features
PRELIMINARY
Short Circuit Rated UltraFast IGBT
• Short Circuit Rated UltraFast: Optimized for high
operating frequencies >5.0 kHz , and Short Circuit
Rated to 10µs @ 125°C, V
GE
= 15V
• Fully isolated printed circuit board mount package
• Switching-loss rating includes all "tail" losses
• HEXFRED
TM
soft ultrafast diodes
Q1
3
Q2
6
D1 D3 D5
Q3
9
D2 D4 D6
Q4
12
15
18
Q5
10 16 4
Q6
• Optimized for high operating frequency (over 5kHz)
See Fig. 1 for Current vs. Frequency curve
71 31 9
Product Summary
Output Current in a Typical 20 kHz Motor Drive
4.3 A
Power Factor 0.8, Modulation Depth 115% (See Figure 1)
per phase (1.27 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,
RMS
Description
The IGBT technology is the key to International Rectifier's advanced line of
IMS (Insulated Metal Substrate) Power Modules. These modules are more
efficient than comparable bipolar transistor modules, while at the same time
having the simpler gate-drive requirements of the familiar power MOSFET.
This superior technology has now been coupled to a state of the art materials
system that maximizes power throughput with low thermal resistance. This
package is highly suited to motor drive applications and where space is at a
premium.
IMS-2
Absolute Maximum Ratings
Parameter Max. Units
V
CES
IC @ TC = 25°C Continuous Collector Current, each IGBT 5.7
IC @ TC = 100°C Continuous Collector Current, each IGBT 3.0
I
CM
I
LM
IF @ TC = 100°C Diode Continuous Forward Current 3.4
I
FM
t
sc
V
GE
V
ISOL
PD @ TC = 25°C Maximum Power Dissipation, each IGBT 23 W
PD @ TC = 100°C Maximum Power Dissipation, each IGBT 9.1
T
J
T
STG
Collector-to-Emitter Voltage 600 V
Pulsed Collector Current 11 A
Clamped Inductive Load Current 11
Diode Maximum Forward Current 11
Short Circuit Withstand Time 10 µs
Gate-to-Emitter Voltage ± 20 V
Isolation Voltage, any terminal to case, 1 minute 2500 V
Operating Junction and -40 to +150
Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting torque, 6-32 or M3 screw 5-7 lbf•in (0.55 - 0.8 N•m)
Thermal Resistance
Parameter Typ. Max. Units
R
(IGBT) Junction-to-Case, each IGBT, one IGBT in conduction ––– 5.5
θ JC
R
(DIODE) Junction-to-Case, each diode, one diode in conduction ––– 9.0 °C/W
θ JC
R
(MODULE) Case-to-Sink, flat, greased surface 0.1 –––
θ CS
Wt Weight of module 20 (0.7) ––– g (oz)
RMS
2/24/98
CPV362M4K
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
∆ V
V
V
∆ V
g
I
V
I
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
Q
Q
Q
t
t
t
t
E
E
E
t
t
t
t
t
E
C
C
C
t
I
Q
di
Collector-to-Emitter Breakdown Voltage 600 ––– ––– V VGE = 0V, IC = 250µA
(BR)CES
/∆ T
(BR)CES
CE(on)
Temp. Coeff. of Breakdown Voltage ––– 0.49 ––– V/°C VGE = 0V, IC = 1.0mA
J
Collector-to-Emitter Saturation Voltage ––– 1.70 1.93 IC = 3.0A VGE = 15V
––– 1.98 ––– V IC = 5.7A See Fig. 2, 5
––– 1.65 ––– IC = 3.0A, TJ = 150°C
GE(th)
GE(th)
fe
CES
Gate Threshold Voltage 3.0 ––– 6 .0 VCE = VGE, IC = 250µA
/∆ TJTemp. Coeff. of Threshold Voltage ––– - 13 ––– mV/°C VCE = VGE, IC = 250µA
Forward Transconductance 2.0 3.0 ––– S VCE = 100V, IC = 12A
Zero Gate Voltage Collector Current ––– ––– 250 µA VGE = 0V, VCE = 600V
––– ––– 1700 VGE = 0V, VCE = 600V, TJ = 150°C
FM
Diode Forward Voltage Drop ––– 1. 4 1.7 V IC = 8A See Fig. 13
––– 1.3 1.6 IC = 8A, TJ = 150°C
GES
g
ge
gc
d(on)
r
d(off)
f
on
off
ts
sc
Gate-to-Emitter Leakage Current ––– ––– ±100 nA VGE = ±20V
Total Gate Charge (turn-on) ––– 38 57 IC = 3.0A
Gate - Emitter Charge (turn-on) ––– 5 .2 8 nC VCC = 400V
Gate - Collector Charge (turn-on) ––– 18 27 See Fig. 8
Turn-On Delay Time ––– 23 ––– TJ = 25°C
Rise Time ––– 54 ––– ns IC = 3.0A, VCC = 480V
Turn-Off Delay Time ––– 125 188 VGE = 15V, RG = 51Ω
Fall Time ––– 120 180 Energy losses include "tail" and
Turn-On Switching Loss ––– 0.14 ––– diode reverse recovery.
Turn-Off Switching Loss ––– 0.07 ––– mJ See Fig. 9, 10, 18
Total Switching Loss ––– 0.21 0.26
Short Circuit Withstand Time 10 ––– ––– µs VCC = 360V, TJ = 125°C
VGE = 15V, RG = 51Ω , V
d(on)
r
d(off)
f
ts
ies
oes
res
rr
Turn-On Delay Time ––– 25 ––– TJ = 150°C, See Fig. 10, 11, 18
Rise Time ––– 51 ––– ns IC =3.0A, VCC = 480V
Turn-Off Delay Time ––– 308 ––– VGE = 15V, RG = 51Ω
Fall Time ––– 166 ––– Energy losses include "tail" and
Total Switching Loss ––– 0.33 ––– mJ diode reverse recovery.
Input Capacitance ––– 450 ––– VGE = 0V
Output Capacitance ––– 61 ––– pF VCC = 30V See Fig. 7
Reverse Transfer Capacitance ––– 14 ––– ƒ = 1.0MHz
Diode Reverse Recovery Time ––– 37 55 ns TJ = 25°C See Fig.
––– 55 90 TJ = 125°C 14 IF = 8A
rr
Diode Peak Reverse Recovery Current ––– 3.5 5.0 A TJ = 25°C See Fig.
––– 4.5 8.0 TJ = 125°C 15 VR = 200V
rr
Diode Reverse Recovery Charge ––– 65 138 nC TJ = 25°C See Fig.
––– 124 360 TJ = 125°C 16 di/dt=200A/µs
/dt Diode Peak Rate of Fall of Recovery ––– 240 ––– A/µs TJ = 25°C See Fig.
(rec)M
During t
b
––– 210 ––– TJ = 125°C 17
CPK
< 500V
CPV362M4K
7.0
6.0
5.0
4.0
3.0
2.0
LOAD CURRENT (A)
1.0
0.0
0.1 1 10 100
Tc = 90°C
Tj = 125°C
Power Factor = 0.8
Modulation Depth = 1.15
Vcc = 50 % of R ated V oltage
f, Frequency (KHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = I
100
of fundamental)
RMS
100
2.05
1.76
1.46
1.17
0.88
0.59
Total Output Power (kW)
0.29
0.00
o
T = 25 C
J
T = 150 C
J
10
C
I , Collector-to-Emitter Current (A)
1
1 10
V , Collector-to-Emitter Voltage (V)
CE
V = 15V
GE
20µs PULSE WIDTH
Fig. 2 - Typical Output Characteristics
o
10
T = 150 C
C
I , Collector-to-Emitter Current (A)
1
5 10 15 20
o
J
o
T = 25 C
J
V = 50V
CC
5µs PULSE WIDTH
V , Gate-to-Emitter Voltage (V)
GE
Fig. 3 - Typical Transfer Characteristics
CPV362M4K
6
4
2
V = 15V
GE
Maximum DC Collector Current (A)
0
25 50 75 100 125 150
T , Case Tem p erature (°C
C
Fig. 4 - Maximum Collector Current vs.
Case Temperature
10
2.5
V = 15V
GE
80 us PULSE WIDTH
2.0
1.5
CE
V , Collector-to-Emitter Voltage(V)
1.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature ( C)
J
I = A 6
C
I = A 3
C
I = A 1.5
C
°
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
D = 0.50
thJC
T h e rma l Re s p o n s e (Z )
0.20
1
0.10
0.05
0.02
0.01
0.1
0.01
0.00001 0.0001 0.001 0.01 0.1 1 10
SIN GLE PU L SE
(THERMAL RESPONSE)
Note s:
1. D uty f acto r D = t / t
2. Pe ak T = P x Z + T
t , Rectangular Pulse Duration (sec)
1
J
DM
P
DM
t
1
t
2
2
1
thJC
C
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
CPV362M4K
800
600
400
V
=
0V,
GE
C
=
ies ge gc , ce
C
=
res gc
C
=
oes ce gc
C
ies
f = 1MHz
C
+ C
C
C
+ C
C SHORTED
C, Capacitance (pF)
200
0
1 10 100
C
oes
C
res
V , Collector-to-Emitter Voltage (V)
CE
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
1.0
V = 480V
CC
V = 15V
GE
T = 25 C
J
I = 6.0A
0.8
C
°
16
V = 400V
CC
I = 3A
C
12
8
4
GE
V , Gate-to-Emitter Voltage (V)
0
0 10 20 30 40
Q , Total Gate Charge (nC)
G
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
1
R = 51Ohm
V = 15V
V = 480V
G
GE
CC
51
10 Ω
Ω
I = A
C
I = A
C
6
3
0.6
0.4
0.2
Total Switching Losses (mJ)
0.0
0 10 20 30 40 50
R , Gate Resistance (Ohm)
G
R
, Gate Resistance ( Ω )
G
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
I = A
C
0.1
Total Switching Losses (mJ)
0.01
-60 -40 -20 0 20 40 60 80 100 120 140 160
T , Junction Temperature ( C )
J
°
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
1.5
CPV362M4K
0.8
R = 51Ohm
T = 150 C
V = 480V
V = 15V
0.6
0.4
0.2
G
J
CC
GE
Ω
°
Total Switching Losses (mJ)
0.0
1 2 3 4 5 6 7
I , Collector-to-emitter Current (A)
C
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
100
V = 2 0V
GE
T = 12 5° C
J
10
SAFE OPERATING AREA
1
C
I , C o llec tor-to -E mitter Cu rrent (A )
0.1
1 10 100 1000
V , Collector-to-Emitter Voltage (V
CE
Fig. 12 - Turn-Off SOA
F
10
T = 150°C
J
T = 125°C
J
T = 2 5 ° C
J
1
Instantaneous Forward Current - I (A)
0.1
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2
Forward Voltage Drop - V (V)
FM
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
CPV362M4K
100
V = 200V
R
T = 125°C
J
T = 25°C
J
80
I = 1 6A
F
60
rr
t - (n s )
40
I = 4.0A
F
20
0
100 1000
d i /d t - ( A /µ s )
f
I = 8.0A
F
Fig. 14 - Typical Reverse Recovery vs. di f/dt
500
V = 200V
R
T = 125°C
J
T = 25°C
J
400
100
V = 200V
R
T = 125°C
J
T = 25°C
J
I = 16 A
10
IRRM
I - ( A )
I = 8.0 A
F
1
100 1000
F
di /d t - (A /µs )
f
I = 4.0A
F
Fig. 15 - Typical Recovery Current vs. di f/dt
10000
V = 200V
R
T = 125°C
J
T = 25°C
J
300
I = 16 A
F
1000
RR
Q - (n C)
200
I = 8.0A
F
100
I = 4.0A
F
0
100 1000
di /d t - (A / µ s)
f
di(re c )M /d t - ( A /µ s)
100
100 1000
I = 16 A
Fig. 16 - Typical Stored Charge vs. di f/dt Fig. 17 - Typical di
I = 4.0A
F
I = 8.0 A
F
F
di / d t - (A/µ s )
f
(rec)M
/dt vs. dif/dt
CPV362M4K
Same type
device as
D.U.T.
80%
of Vce
430µF
D.U.T.
Fig. 18a - Test Circuit for Measurement of
I
LM
Vcc
, Eon, E
10% +V g
10% Ic
td(on)
t1
off(diode)
Vce
tr
, trr, Qrr, Irr, t
GATE VOLTAGE D.U.T.
+Vg
90% Ic
5% Vce
d(on)
, tr, t
Eon =
t2
, t
d(off)
DUT VOLTAGE
AND CURRENT
Ipk
Ic
t2
V c e i e dt
Vce Ic dt
∫
t1
90% Vge
+Vge
Vce
10% Vce
Ic
td(off)
f
t1
90% Ic
Ic
5% Ic
tf
t1+ 5 µ S
Eoff =
V c e i c dt
Vce Ic dt
∫
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
E
, t
d(off)
t3
, t
f
trr
10% Irr
DIODE RECOVERY
W AVEFORM S
Erec =
t4
Qrr =
∫
t3
trr
id d t
Ic dt
∫
tx
t4
Vd i d d t
Vd Ic dt
Vcc
off
Ic
tx
10% Vcc
Vpk
DIODE REVERSE
RECOVERY ENERG Y
Irr
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, t
d(on)
, t
r
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining E
, trr, Qrr, I
rec
rr
Vg
GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
CPV362M4K
t0
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
L
1000V
V *
c
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test
Circuit
t1
t2
D.U.T.
RL=
0 - 480V
Figure 20. Pulsed Collector Current
Test Circuit
480V
4 X IC @25°C
CPV362M4K
Notes:
Repetitive rating: V GE=20V; pulse width limited by maximum junction temperature (figure 20)
V CC=80%(V
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot.
Case Outline — IMS-2
), VGE=20V, L=10µH, RG = 23Ω (Figure 19)
CES
3.91 (.154)
2X
21.97 (.865)
3.94 (.155)
4.06 ± 0.51
(.160 ± .020)
62.43 (2.458)
53.85 (2.120)
1 2 3 4 5 6 7 8 9 1 0 1 1 12 1 3 1 4 15 1 6 1 7 18 19
1.27 (.050)
13X
2.54 (.100)
5.08 (.200)
6X
6X
IMS-2 Package Outline (13 Pins)
Dimensions in Millim eters and (Inches)
0.76 (.030)
13 X
0.38 (.015)
3.05 ± 0.38
(.120 ± .015)
0.51 (.020)
7.87 (.310)
5.46 (.215)
NOTES:
1. Tolerance unless otherwise
specified ± 0.254 (.010).
2. Co ntro lling Dim e ns ion: Inch.
3. Dimensions are shown in
Millimeter (Inches).
4. Terminal numbers are shown
for r e f e renc e o n ly .
1.27 (.050)
6.10 (.240)
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371
http://www.irf.com/ Data and specifications subject to change without notice. 2/98