VISHAY BF996S Technical data

查询BF996SA供应商
N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode
Applications
Input- and mixer stages in UHF tuners.
Features
D
Integrated gate protection diodes
D
Low noise figure
D
Low feedback capacitance
D
High cross modulation performance
D
Low input capacitance
D
High AGC-range
BF996S
Vishay Telefunken
21
94 9279
13 579
G
2
G
1
43
BF996S Marking: MH Plastic case (SOT 143) 1=Source, 2=Drain, 3=Gate 2, 4=Gate 1
12623
Absolute Maximum Ratings
T
= 25_C, unless otherwise specified
amb
Parameter Test Conditions Type Symbol Value Unit Drain - source voltage V Drain current I Gate 1/Gate 2 - source peak current ±I Total power dissipation T Channel temperature T Storage temperature range T
60 °C P
amb
DS
D
G1/G2SM
tot Ch stg
D
20 V 30 mA
10 mA 200 mW 150
–65 to +150
S
°
C
°
C
Maximum Thermal Resistance
T
= 25_C, unless otherwise specified
amb
Parameter Test Conditions Symbol Value Unit
Channel ambient on glass fibre printed board (25 x 20 x 1.5) mm
plated with 35mm Cu
Document Number 85010 Rev. 3, 20-Jan-99
3
R
thChA
www.vishay.de FaxBack +1-408-970-5600
450 K/W
1 (8)
BF996S
DS G1S G2S
g
g
Vishay Telefunken
Electrical DC Characteristics
T
= 25_C, unless otherwise specified
amb
Parameter Test Conditions Type Symbol Min Typ Max Unit
Drain - source breakdown voltage
Gate 1 - source breakdown voltage
Gate 2 - source breakdown voltage
Gate 1 - source leakage current
Gate 2 - source leakage current
Drain current VDS = 15 V, V
Gate 1 - source cut-off voltage
Gate 2 - source cut-off voltage
ID = 10 mA, –V
±I
= 10 mA, V
G1S
±I
= 10 mA, V
G2S
±V
= 5 V, V
G1S
±V
= 5 V, V
G2S
VDS = 15 V, V
VDS = 15 V, V
= –V
G1S
G2S
G1S
= VDS = 0 ±I
G2S
= VDS = 0 ±I
G1S
= 0, V
G1S
= 4 V V
G2S
= VDS = 0 ±V
= VDS = 0 ±V
= 4 V BF996S I
G2S
BF996SA I BF996SB I
= 4 V, ID = 20 mA –V
G2S
= 0, ID = 20 mA –V
G1S
(BR)DS
(BR)G1SS
(BR)G2SS
G1SS
G2SS
DSS DSS DSS
G1S(OFF)
G2S(OFF)
20 V
8 14 V
8 14 V
4 18 mA 4 10.5 mA
9.5 18 mA
50 nA
50 nA
2.5 V
2.0 V
Electrical AC Characteristics
VDS = 15 V, ID = 10 mA, V
Parameter Test Conditions Symbol Min Typ Max Unit Forward transadmittance y Gate 1 input capacitance C Gate 2 input capacitance V Feedback capacitance C Output capacitance C Power gain GS = 2 mS, GL = 0.5 mS, f = 200 MHz G
AGC range V Noise figure GS = 2 mS, GL = 0.5 mS, f = 200 MHz F 1.0 dB
= 4 V, f = 1 MHz , T
G2S
G1S
= 0, V
= 4 V C
G2S
GS = 3.3 mS, GL = 1 mS, f = 800 MHz G
= 4 to –2 V, f = 800 MHz
G2S
= 25_C, unless otherwise specified
amb
15 18.5 mS
21s issg1 issg2
rss
oss
ps ps
D
G
ps
2.2 2.6 pF
1.1 pF 25 35 fF
10.8 1.2 pF 25 dB 18 dB
40 dB
GS = 3.3 mS, GL = 1 mS, f = 800 MHz F 1.8 dB
www.vishay.de FaxBack +1-408-970-5600 2 (8)
Document Number 85010
Rev. 3, 20-Jan-99
Common Source S–Parameters
BF996S
Vishay Telefunken
VDS , = 15 V , V
ID/mA f/MHz
5 700 –1.62 –52.3 0.43 85.0 –47.02 58.9 –0.91 –19.7
10 700 –1.75 –55.1 2.39 88.7 –46.53 56.7 –0.96 –20.0
15 700 –1.86 –57.2 3.22 89.6 –46.13 54.9 –1.02 –20.4
= 4 V , Z0 = 50 W,T
G2S
S11 S21 S12 S22
LOG
MAG
dB deg dB deg dB deg dB deg 100 –0.05 –8.5 3.24 164.9 –56.84 82.2 –0.08 –3.4 200 –0.15 –17.7 3.63 150.9 –50.57 75.6 –0.18 –7.1 300 –0.43 –24.6 2.51 134.7 –48.51 67.7 –0.29 –9.7 400 –0.70 –32.1 2.01 121.3 –46.98 62.8 –0.44 –12.3 500 –1.03 –39.2 1.45 108.4 –46.40 57.8 –0.59 –15.1 600 –1.33 –45.8 0.94 96.5 –46.40 57.3 –0.76 –17.4
800 –1.92 –58.7 –0.10 74.1 –47.53 63.3 –1.08 –22.0 900 –2.21 –64.7 –0.59 63.6 –47.81 73.1 –1.26 –24.3
1000 –2.49 –70.7 –1.12 53.1 –48.52 83.5 –1.45 –26.2 1100 –2.80 –76.6 –1.52 43.7 –48.53 102.1 –1.57 –28.4 1200 –3.07 –82.5 –1.93 33.6 –46.95 120.4 –1.75 –30.5 1300 –3.31 –88.6 –2.35 24.1 –44.44 131.7 –1.92 –32.7
100 –0.05 –9.0 5.19 165.3 –56.24 81.9 –0.11 –3.5 200 –0.16 –18.7 5.58 151.8 –49.97 75.0 –0.21 –7.2 300 –0.48 –26.0 4.45 136.3 –47.91 67.2 –0.33 –9.8 400 –0.76 –33.7 3.95 123.3 –46.48 61.8 –0.47 –12.6 500 –1.11 –41.2 3.40 110.9 –45.91 56.3 –0.65 –15.3 600 –1.43 –48.3 2.88 99.5 –45.91 55.8 –0.81 –17.8
800 –2.07 –61.6 1.88 78.1 –47.13 60.7 –1.12 –22.4 900 –2.40 –67.9 1.39 67.9 –47.41 69.9 –1.32 –24.6
1000 –2.70 –74.2 0.90 57.9 –48.21 80.0 –1.49 –26.6 1100 –3.03 –80.2 0.50 48.7 –48.43 98.9 –1.61 –28.8 1200 –3.32 –86.4 0.13 38.9 –47.04 118.2 –1.79 –31.0 1300 –3.59 –92.3 –0.28 29.6 –44.54 130.5 –1.96 –33.3
100 –0.05 –9.4 6.07 165.4 –55.74 81.4 –0.15 –3.6 200 –0.17 –19.4 6.44 152.0 –49.47 74.6 –0.24 –7.3 300 –0.50 –27.1 5.31 136.7 –47.41 66.4 –0.36 –10.0 400 –0.81 –35.0 4.80 123.8 –45.98 60.8 –0.52 –12.9 500 –1.18 –42.9 4.23 111.5 –45.41 55.1 –0.68 –15.7 600 –1.52 –50.3 3.72 100.3 –45.41 54.4 –0.84 –18.0
800 –2.20 –63.9 2.72 79.4 –46.63 58.5 –1.16 –22.7 900 –2.53 –70.4 2.24 69.2 –47.00 67.3 –1.35 –25.0
1000 –2.86 –76.8 1.74 59.4 –47.91 76.7 –1.53 –27.1 1100 –3.21 –82.9 1.34 50.2 –48.33 95.2 –1.66 –29.4 1200 –3.50 –89.0 0.95 40.8 –47.04 115.3 –1.84 –31.6 1300 –3.80 –95.1 0.56 31.5 –44.53 128.7 –2.00 –33.9
= 25_C, unless otherwise specified
amb
ANG
LOG
MAG
ANG
LOG MAG
ANG
LOG
MAG
ANG
Document Number 85010 Rev. 3, 20-Jan-99
www.vishay.de FaxBack +1-408-970-5600
3 (8)
BF996S
Vishay Telefunken
Typical Characteristics (T
300
250
200
150
100
50
tot
P – Total Power Dissipation ( mW )
0
0 20 40 60 80 100 120 140 160
T
– Ambient Temperature ( °C )96 12159
amb
Figure 1. Total Power Dissipation vs.
Ambient Temperature
32
V
=4V
G2S
28
P
=200mW
tot
24 20 16 12
2V
1.5V 1V
0.5V
= 25_C unless otherwise specified)
amb
22 20
VDS=15V
18 16 14 12 10
8 6
D
I – Drain Current ( mA )
4 2 0
–1 –0.5 0.0 0.5 1.0 1.5
V
– Gate 2 Source Voltage ( V )12852
G2S
Figure 4. Drain Current vs. Gate 2 Source Voltage
4.0 VDS=15V
3.5 V
=4V
G2S
3.0
2.5
0
2.0
1.5
f=1MHz
5V
4V 3V
2V
1V
0
V
=–1V
G1S
8
D
I – Drain Current ( mA )
4 0
0246810121416
VDS – Drain Source Voltage ( V )12849
–0.5V
V
=–1V
G1S
Figure 2. Drain Current vs. Drain Source Voltage
22 20
VDS=15V
18 16 14 12 10
8 6
D
I – Drain Current ( mA )
4 2 0
–1 –0.5 0.0 0.5 1.0 1.5
V
– Gate 1 Source Voltage ( V )12851
G1S
6V
5V 4V
3V
2V
1V
0.5V
0
V
=–1V
G2S
Figure 3. Drain Current vs. Gate 1 Source Voltage
1.0
0.5
issg1
C – Gate 1 Input Capacitance ( pF )
0
–1 –0.5 0.0 0.5 1.0 1.5
ID – Drain Current ( mA )12853
Figure 5. Gate 1 Input Capacitance vs. Drain Current
3.0
2.5
2.0
1.5
1.0
0.5
issg2
C – Gate 2 Input Capacitance ( pF )
0
2–1012345
V
– Gate 2 Source Voltage ( V )12854
G2S
VDS=15V
=0
V
G1S
f=1MHz
Figure 6. Gate 2 Input Capacitance vs.
Gate 2 Source Voltage
www.vishay.de FaxBack +1-408-970-5600 4 (8)
Document Number 85010
Rev. 3, 20-Jan-99
BF996S
Vishay Telefunken
2.0
1.8
1.6
V
=4V
G2S
f=1MHz
1.4
1.2
1.0
0.8
0.6
0.4
oss
C – Output Capacitance ( pF )
0.2 0
0 2 4 6 8 101214161820
VDS – Drain Source Voltage ( V )12856
Figure 7. Output Capacitance vs. Drain Source Voltage
10
f=200MHz
0
–10
–20
–30
–40
2
21
–50
S – Transducer Gain ( dB )
–60
–2.0 –1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0
V
– Gate 1 Source Voltage ( V )12855
G1S
4V
3V 2V
1V
0
–0.2V –0.4V –0.6V
–0.8V
V
=–1V
G2S
Figure 8. Transducer Gain vs. Gate 1 Source Voltage
20
700MHz
500MHz
f=1300MHz
900MHz
f=100...1300MHz
1100MHz
VDS=15V V
=4V
G2S
I
=10mA
D
18 16 14 12 10
11
8 6
Im ( y ) ( mS )
4 2
100MHz
300MHz
0
012345678910
Re (y11) ( mS )12857
Figure 10. Short Circuit Input Admittance
0
–5
f=100...1300MHz
–10
–15
ID=5mA
21
Im ( y ) ( mS )
–20
–25
VDS=15V V
G2S
10mA 15mA
=4V
1300MHz
f=100MHz
300MHz
500MHz
700MHz
900MHz
1100MHz
–15 –10 –5 0 5 10 15 20
Re (y21) ( mS )12858
Figure 11. Short Circuit Forward Transfer Admittance
20 18 16
VDS=15V
f=1MHz
4V
3V 2V
14 12
1V
10
8 6 4 2
21s
y – Forward Transadmittance ( mS )
V
G2S
=0
0.5V
0
024681012141618
ID – Drain Current ( mA )12850
Figure 9. Forward Transadmittance vs. Drain Current
Document Number 85010 Rev. 3, 20-Jan-99
7
6
VDS=15V
V I
5
f=100...1300MHz
4
G2S
=10mA
D
=4V
f=1300MHz
1100MHz
900MHz
700MHz
3
22
Im ( y ) ( mS )
2
1
100MHz
500MHz
300MHz
0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 Re (y22) ( mS )12859
Figure 12. Short Circuit Output Admittance
www.vishay.de FaxBack +1-408-970-5600
5 (8)
BF996S
Vishay Telefunken
VDS = 15 V, ID = 10 mA, V
S
11
j
j0.5
j0.2
S
0
–j0.2
21
0.2
0.5
12 968
1
1300MHz
–j0.5
–j
2
Figure 13. Input reflection coefficient
90°
120°
= 4 V , Z0 = 50
G2S
j2
j5
5
–j2
60°
1
100
–j5
W
S
12
90°
120°
150°
180°
–150°
12 969
Figure 15. Reverse transmission coefficient
S
22
1300MHz
100
–120° –60°
–90°
j
j0.5
60°
0.08 0.16
j2
30°
0°
–30°
150°
100
180°
–150°
–120° –60°
12 970
300
500
700
1300MHz 1 2
–90°
Figure 14. Forward transmission coefficient
30°
–30°
j0.2
0°
0
–j0.2
12 971
–j0.5
0.2
0.5
1
–j
2
1300MHz
–j2
j5
100
1
–j5
5
Figure 16. Output reflection coefficient
www.vishay.de FaxBack +1-408-970-5600 6 (8)
Document Number 85010
Rev. 3, 20-Jan-99
Dimensions in mm
BF996S
Vishay Telefunken
96 12240
Document Number 85010 Rev. 3, 20-Jan-99
www.vishay.de FaxBack +1-408-970-5600
7 (8)
BF996S
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. V arious national and international initiatives are pressing for an earlier ban on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly , any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423
www.vishay.de FaxBack +1-408-970-5600 8 (8)
Document Number 85010
Rev. 3, 20-Jan-99
Loading...