10.5.3 Generic frequency hopping patterns
I=46 generic hopping patterns are defined. Each generic hopping pattern uses all 48 frequency channels.
Over a period of the hopping pattern, each frequency channel is used during a single frame. Therefore
the signal power is distributed uniformly over all frequency channels.
All 46 generic hopping patterns are listed in table 2. Each sequence f(i)[n] occupies two rows in the table,
the first row containing f(i)[0] to f(i)[23], and the second row f(i)[24] to f(i)[47].
n 0 1 2 3 4 5 6 7 8 91011121314151617181920212223
i 242526272829303132333435363738394041424344454647
03334354737383940414243444546 4 1 2 3 0 5 6 7 8 9
10 11 12 13 14 15 36 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
11921232527293133353739414345 4 2 0 6 81012141618
20 22 24 26 28 30 32 34 47 38 40 42 44 46 1 3 5 7 9 11 13 15 36 17
2 5 8111417202326293235384144 4 3 6 9121518212427
30 33 47 39 42 45 36 1 0 7 10 13 16 19 22 25 28 31 34 37 40 43 46 2
3 38 42 46 3 7 11 15 19 23 27 31 35 39 43 4 0 8 12 16 20 24 28 32 47
4044 1 5 9131721252933374145 2 61014182226303634
42429343944 2 712172227323742 4 51015202530354045
3 8 13 18 23 28 36 33 38 43 1 6 11 16 21 26 31 47 41 46 0 9 14 19
5 10 16 22 28 34 40 46 5 11 17 23 29 35 41 4 6 12 18 24 30 47 42 1 7
13 19 25 31 37 43 2 8 14 20 26 32 38 44 3 9 15 21 27 33 39 45 36 0
6 43 3 10 17 24 31 38 45 5 12 19 26 33 40 4 7 14 21 28 35 42 2 9 16
23 30 37 44 0 11 36 18 25 32 39 46 6 13 20 27 34 41 1 8 15 22 29 47
7 29 37 45 6 14 22 30 38 46 7 15 23 31 39 4 8 16 24 32 40 1 9 17 25
33 41 2 10 18 26 34 42 3 11 19 27 35 43 0 12 20 28 47 44 5 13 36 21
8 15 24 33 42 0 13 22 31 40 2 11 20 29 38 4 9 18 27 47 45 7 16 25 34
43 5 14 23 32 41 36 3 12 21 30 39 1 10 19 28 37 46 8 17 26 35 44 6
9 1 11 21 31 41 0 14 24 34 44 7 17 27 37 4 10 20 30 40 3 13 23 33 43
6 16 26 47 46 9 19 29 39 2 12 22 32 42 5 15 25 35 45 8 18 28 36 38
10 34 45 9 20 31 42 6 17 28 39 3 14 25 47 4 11 22 33 44 8 19 30 41 5
16 27 38 2 13 24 36 35 46 10 21 32 43 7 18 29 40 0 15 26 37 1 12 23
11 20 32 44 9 21 33 45 10 22 34 46 11 23 35 4 12 24 47 1 13 25 37 2 14
26 38 3 15 27 39 0 16 28 40 5 17 29 41 6 18 30 42 7 19 31 43 36 8
12 6 19 32 45 11 24 37 3 16 29 42 8 21 34 4 13 26 39 5 18 31 44 10 23
47 2 15 28 41 7 36 20 33 46 12 25 38 0 17 30 43 9 22 35 1 14 27 40
13 39 6 20 34 1 15 29 43 10 24 38 5 19 33 4 14 28 42 9 23 37 0 18 32
46 13 27 41 8 22 47 3 17 31 45 12 26 40 7 21 35 2 16 30 44 11 36 25
14 25 40 8 23 38 6 21 47 0 19 34 2 17 32 4 15 30 45 13 28 43 11 26 41
92439 7223736 52035 31833 116314614294412274210
15 11 27 43 12 28 44 13 29 45 14 30 46 15 31 4 16 32 1 17 33 2 18 34 3
19 35 0 20 47 5 21 37 6 22 38 7 23 39 8 24 40 9 25 41 10 26 36 42
16 44 14 31 1 18 35 5 22 39 9 26 43 13 30 4 17 34 0 21 38 8 25 42 12
29 46 16 33 3 20 36 37 7 24 41 11 28 45 15 32 2 19 47 6 23 40 10 27
17 30 1 19 37 8 26 44 15 33 0 22 40 11 29 4 18 47 7 25 43 14 32 3 21
39 10 28 46 17 35 6 24 42 13 31 2 20 38 9 27 45 16 34 5 23 41 36 12
18 16 35 7 26 45 17 47 8 27 46 18 37 9 28 4 19 38 10 29 1 20 39 11 30
2 21 40 12 31 3 36 22 41 13 32 0 23 42 14 33 5 24 43 15 34 6 25 44
19 2 22 42 15 35 8 28 1 21 41 14 34 7 27 4 20 40 13 33 6 26 46 19 39
12 32 5 25 45 18 38 11 31 0 24 44 17 37 10 30 3 23 43 16 47 9 36 29
20 35 9 30 0 25 46 20 41 15 47 10 31 5 26 4 21 42 16 37 11 32 6 27 1
22 43 17 38 12 33 36 7 28 2 23 44 18 39 13 34 8 29 3 24 45 19 40 14
21 21 43 18 40 15 37 12 34 9 31 6 28 3 25 4 22 44 19 41 16 38 13 35 10
32 7 29 0 26 1 23 45 20 42 17 39 14 47 11 33 8 30 5 27 2 24 36 46
22 7 30 6 29 5 28 0 27 3 26 2 25 1 24 4 23 46 22 45 21 44 20 43 19
42 18 41 17 40 16 36 39 15 38 14 37 13 47 12 35 11 34 10 33 9 32 8 31
Table 2: Generic frequency hopping patterns f(i)[n]