Improper installation may create a condition where the operation of
the product could cause personal injury or property damage.
Improper installation, adjustment, alteration, service or maintenance can cause injury or property damage. Refer to this manual
for assistance or for additional information, consult a qualified contractor, installer or service agency.
WARNING indicates a potentially hazardous situation, which, if not
avoided, could result in death or serious injury
CAUTION indicates a potentially hazardous situation, which, if not
avoided may result in minor or mo derate injury.
alert against unsafe practices and hazards involving only property damage.
.
It is also used to
This product must be installed in strict compliance with the installation instructions and any applicable local, state, and national codes
including, but not limited to building, electrical, and mechanical
codes.
66832-UIM-D-1205
66832-UIM-D-1205
SPECIFIC SAFETY RULES AND PRECAUTIONS
1.Only Natural gas or Propane (LP) gas are approved for use with
this furnace. Refer to the furnace rating plate or Section IV of
these instructions.
2.Install this furnace only in a location and position as specified in
SECTION I of these instructions.
3.A gas-fired furnace for installation in a residential garage must be
installed as specified in SECTION I of these instructions.
4.Provide adequate combustion and ventilation air to the furnace
space as specified in SECTION VII of these instructions.
5.Combustion products must be discharged outdoors. Connect this
furnace to an approved vent system only, as specified in SECTION VII of these instructions.
FIRE OR EXPLOSION HAZARD
Failure to follow the safety warnings exactly could result in serious
injury, death or property damage.
Never test for gas leaks with an open flame. Use a commercially
available soap solution made specifically for detection of leaks to
check all connections. A fire or explosion may result causing property damage, personal injury or loss of life.
6.Test for gas leaks as specified in SECTION XI of these instructions.
7.Always install the furnace to operate within the furnace’s intended
temperature rise range. Only connect the furnace to a duct system
which has an external static pressure within the allowable range,
as specified on the furnace rating plate.
8.When a furnace is installed so that supply ducts carry air circulated
by the furnace to areas outside the space containing the furnace,
the return air shall also be handled by duct(s) sealed to the furnace casing and terminating outside the space containing the furnace.
9.It is permitted to be use the furnace for heating of buildings or
structures under construction. Installation must comply with all
manufacturer’s installation instructions including:
• Proper vent installation;
• Furnace operating under thermostatic control;
• Return air duct sealed to the furnace;
• Air filters in place;
• Set furnace input rate and temperature rise per rating plate
marking;
• Means for providing outdoor air required for combustion;
• Return air temperature maintained between 55ºF (13ºC) and
80ºF (27ºC);
• The air filter must be replaced upon substantial completion of
the construction process;
• Clean furnace, duct work and components upon substantial
completion of the construction process, and verify furnaceoperating conditions including ignition, input rate, temperature
rise and venting, according to the manufacturer’s instructions.
The following requirements to be met:
a.Clean, outside combustion air is provided to the furnace to
minimize the impact of corrosive adhesives, sealants, and
other construction materials. Drywall dust is a major concern
during construction, which can be pulled into the combustion
air path, leading to plugged gas valves, burners, and inducer
assemblies.
b.Filter must be installed in the furnace as specified in the
installation instructions, and must be replaced or thoroughly
cleaned prior to occupancy of the home. Again, drywall dust
is the key issue, as that dust can be pulled into the circulating
blower motor, plugging the motor vents, coating the rotors
and stators, etc. which can lead to a potential fire hazard.
c.The temperature of the return air to the furnace must not be
less than 55 degrees F (13 deg C), with no evening setback
or furnace shutdown, to prevent condensation in the primary
heat exchangers.
d.The air temperature rise must be within the stated rise range
as indicated on the furnace rating plate, and the firing input
rate must be set to the unit nameplate value.
e.The external static pressure of the air distribution system
ductwork must at set for heating operation to be at least 0.10
to 0.20 inches water column, based on the input rate of the
furnace, with the lower value for input rates less than 55,000
btu/hr and the upper value for units with input rates above
100,000 btu/hr.
f.A return air duct must be used, sealed to the furnace cabinet,
and terminated outside the space where the furnace is
installed. This prevents any recirculation of supply air, which
can generate a negative pressure condition at the furnace for
non-direct vent furnaces, leading to possible flame rollout or
combustion problems.
g.The furnace and ductwork should be thoroughly and com-
pletely cleaned prior to occupancy of the dwelling to insure
the proper operation of the furnace and to avoid potential
health concerns.
10. When installed in a Non-HUD-Approved Modular Home or building
constructed on-site, combustion air shall not be supplied from
occupied spaces.
11. The size of the unit should be based on an acceptable heat loss
calculation for the structure. ACCA, Manual J or other approved
methods may be used.
SAFETY REQUIREMENTS
• This furnace should be installed in accordance with all national
and local building/safety codes and requirements, local plumbing
or wastewater codes, and other applicable codes. In the absence
of local codes, install in accordance with the National Fuel Gas
Code ANSI Z223.1/NFPA 54, National Fuel Gas Code, and/or
CAN/CGA B149.1 Natural Gas and Propane Installation Code
(latest editions). Furnaces have been certified to the latest edition
of standard ANSI Z21-47 • CSA 2.3.
• Refer to the unit rating plate for the furnace model number, and
then see the dimensions page of this instruction for return air plenum dimensions in Figure 5. The plenum must be installed
according to the instructions.
• Provide clearances from combustible materials as listed under
Clearances to Combustibles.
• Provide clearances for servicing ensuring that service access is
allowed for both the burners and blower.
• These models ARE NOT
into a HUD Approved Modular Home(Mobile) Home.
• This furnace is not approved for installation in trailers or recreational vehicles.
• Failure to carefully read and follow all instructions in this
manual can result in furnace malfunction, death, personal
injury and/or property damage.
• Furnaces for installation on combustible flooring shall not be
installed directly on carpeting, tile or other combustible material
other than wood flooring.
• Check the rating plate and power supply to be sure that the electrical characteristics match. All models use nominal 115 VAC, 1
Phase, 60-Hertz power supply. DO NOT CONNECT THIS APPLIANCE TO A 50 HZ POWER SUPPLY OR A VOLTAGE ABOVE
130 VOLTS.
CSA listed or approved for installation
or a Manufactured
2Unitary Products Group
66832-UIM-D-1205
• Furnace shall be installed so the electrical components are protected from water.
• Installing and servicing heating equipment can be hazardous due
to the electrical components and the gas fired components. Only
trained and qualified personnel should install, repair, or service
gas heating equipment. Untrained service personnel can perform
basic maintenance functions such as cleaning and replacing the
air filters. When working on heating equipment, observe precautions in the manuals and on the labels attached to the unit and
other safety precautions that may apply.
• These instructions cover minimum requirements and conform to
existing national standards and safety codes. In some instances
these instructions exceed certain local codes and ordinances,
especially those who have not kept up with changing residential
and non-HUD modular home construction practices. These
instructions are required as a minimum for a safe installation.
COMBUSTION AIR QUALITY
(LIST OF CONTAMINANTS)
The furnace will require OUTDOOR AIR for combustion when the furnace is located in any of the following environments.
• Restricted Environments
• Commercial buildings
• Buildings with indoor pools
• Furnaces installed in laundry rooms
• Furnaces installed in hobby or craft rooms
• Furnaces installed near chemical storage areas
• Chemical Exposure
The furnace will require OUTDOOR AIR for combustion when the furnace is located in an area where the furnace is being exposed to the following substances and / or chemicals.
• Permanent wave solutions
• Chlorinated waxes and cleaners
• Chlorine based swimming pool chemicals
• Water softening chemicals
• De-icing salts or chemicals
• Carbon tetrachloride
• Halogen type refrigerants
• Cleaning solvents (such as perchloroethylene)
• Printing inks, paint removers, varnishes, etc.
• Hydrochloric acid
• Cements and glues
• Antistatic fabric softeners for clothes dryers
• Masonry acid washing materials
If outdoor air is used for combustion, the combustion air intake duct system termination must be located external to the building and in an area
where there will be no exposure to the substances listed above.
The furnace area must not be used as a broom closet or for any
other storage purposes, as a fire hazard may be created. Never
store items such as the following on, near or in contact with the furnace.
1. Spray or aerosol cans, rags, brooms, dust mops, vacuum
cleaners or other cleaning tools.
2. Soap powders, bleaches, waxes or other cleaning compounds; plastic items or containers; gasoline, kerosene, cigarette lighter fluid, dry cleaning fluids or other volatile fluid.
3. Paint thinners and other painting compounds.
4. Paper bags, boxes or other paper products
Never operate the furnace with the blower door removed. To
do so could result in serious personal injury and/or equipment
damage.
INSPECTION
As soon as a unit is received, it should be inspected for possib le damage during transit. If damage is evident, the extent of the damage
should be noted on the carrier’s freight bill. A separate request for
inspection by the carrier’s agent should be made in writing. Also, before
installation the unit should be checked for screws or bolts, which may
have loosened in transit, and any shipping or spacer brackets which
need to be removed.
FURNACE LOCATION AND CLEARANCES
The furnace shall be located using the following guidelines:
1.Where a minimum amount of air intake/vent piping and elbows will
be required.
2.As centralized with the air distribution as possible.
3.Where adequate combustion air will be available (particularly
when the appliance is not using outdoor combustion air).
4.Where it will not interfere with proper air circulation in the confined
space.
5.Where the outdoor vent terminal will not be blocked or restricted.
Refer to “VENT CLEARANCES” located in SECTION VII of these
instructions. These minimum clearances must be maintained in
the installation.
6.Where the unit will be installed in a level position with no more
than 1/4” (0.64 cm) slope side-to-side and front-to-back to provide
proper condensate drainage.
Installation in freezing temperatures:
1.Furnace shall be installed in an area where ventilation facilities
provide for safe limits of ambient temperature under normal operating conditions. Ambient temperatures falling below 32° F (0° C)
may result in the flue temperature falling below 260° F (127° C) at
any point in the flue pipe between the furnace and the chimney or
a B-Vent. The flue products will condense in the vent pipe if the
flue temperature falls below 260° F (127° C) causing the vent pipe
to deteriorate rapidly.
2.Do not allow return air temperature to be below 55º F (13° C) for
extended periods. To do so may cause condensation to occur in
the main heat exchanger, leading to premature heat exchanger
failure.
Improper installation in an ambient below 32ºF (0.0° C) could create
a hazard, resulting in damage, injury or death.
3.If this furnace is installed in an unconditioned space and an
extended power failure occurs, there will be potential damage to
the internal components. Following a power failure situation, do
not operate the unit until inspection and repairs are performed.
Clearances for access:
Ample clearances should be provided to permit easy access to the unit.
The following minimum clearances are recommended:
1.Twenty-four (24) inches (61 cm) between the front of the furnace
and an adjacent wall or another appliance, when access is
required for servicing and cleaning.
2.Eighteen (18) inches (46 cm) at the side where access is required
for passage to the front when servicing or for inspection or
replacement of flue/vent connections.
In all cases, accessibility clearances shall take precedence over clearances for combustible materials where accessibility clearances are
greater.
Unitary Products Group3
66832-UIM-D-1205
Downflow furnaces for installation on combustible flooring only
when installed on the accessory combustible floor base on wood
flooring only and shall not be installed directly on carpeting, tile or
other combustible material.
Check the rating plate and power supply to be sure that the electrical characteristics match. All models use nominal 115 VAC, 1
Phase 60Hz power supply.
Furnace shall be installed so the electrical components are protected from water.
TABLE 1:
Unit Clearances to Combustibles
Installation in a residential garage:
A gas-fired furnace for installation in a residential garage must be
installed so the burner(s) and the ignition source are located not less
than (18) inches (46 cm) above the floor, and the furnace must be
located or protected to avoid physical damage by vehicles.
1. Line contact only permitted between lines formed by the intersection of the rear panel and side panel (top in horizontal position) of the furnace jacket and building
joists, studs or framing.
TOPFRONT REARSIDES SINGLE WALL VENT
In. (cm) In. (cm) In. (cm) In. (cm)In. (cm)
FLOOR/
BOTTOM
CLOSET ALCOVE ATTIC
LINE
CONTACT
YES
YES
SECTION II: DUCTWORK
DUCTWORK GENERAL INFORMATION
The duct system’s design and installation must:
1.Handle an air volume appropriate for the served space and within
the operating parameters of the furnace specifications.
2.Be installed in accordance with standards of NFPA (National Fire
Protection Association) as outlined in NFPA pamphlets 90A and
90B (latest editions) or applicable national, provincial, or state, and
local fire and safety codes or in Canada, refer to the Natural Gas
and Propane Installation Code B149.1-00.
3.Create a closed duct system. For residential and Non-HUD Modular Home installations, when a furnace is installed so that the supply ducts carry air circulated by the furnace to areas outside the
space containing the furnace, the return air shall also be handled
by a duct(s) sealed to the furnace casing and terminating outside
the space containing the furnace.
4.Complete a path for heated or cooled air to circulate through the
air conditioning and heating equipment and to and from the conditioned space.
The cooling coil must be installed in the supply air duct, downstream of the furnace. Cooled air may not be passed over the heat
exchanger.
When the furnace is used in conjunction with a cooling coil, the coil
must be installed parallel with, or in the supply air side of the furnace to
avoid condensation in the primary heat exchanger. When a parallel flow
arrangement is used, dampers or other means used to control airflow
must be adequate to prevent chilled air from entering the furnace. If
manually operated, the damper must be equipped with means to prevent the furnace or the air conditioner from operating unless the damper
is in full heat or cool position.
The duct system must be properly sized to obtain the correct airflow
for the furnace size that is being installed.
Refer to Table 8 and the furnace rating plate for the correct rise
range and static pressures
If the ducts are undersized, the result will be high duct static pressures and/or high temperature rises which can result in a heat
exchanger OVERHEATING CONDITION. This condition can result
in premature heat exchanger failure, which can result in personal
injury, property damage, or death.
INSTALLATION POSITION (50-125 MBH Models)
This furnace may be installed in an upflow, downflow or horizontal position. Depending on the configuration shipped from the factory, it may be
necessary to convert the furnace from downflow to upflow or from
upflow to downflow configuration. Use conversion instructions in this
document.
INSTALLATION POSITION (150 MBH Models)
This furnace may be installed in an upflow or horizontal position. No
conversion is necessary. This furnace is not approved for downflow
application.
CONVERSION INFORMATION (50-125 MBH Models)
This furnace may be shipped in either the upflow or the downflow configuration. To convert from upflow to downflow or vice-versa it is necessary only to exchange the top and bottom casing caps and to rotate the
vent blower 180 degrees. Use the step by step instructions to perform
the conversion.
1
1
4Unitary Products Group
66832-UIM-D-1205
TO CONVERT FROM DOWNFLOW TO UPFLOW
CONFIGURATION (50-125 MBH Models)
1.Lay the furnace on its back.
2.Remove the front door.
3.Remove the seven sheet metal screws that are used to fasten the
top cap to the casing. Remove the top cap and save the screws.
4.Remove the four sheet metal screws that are used to fasten the
bottom cap to the casing. Remove the bottom cap and save the
screws.
5.Unplug the vent blower wires.
6.Disconnect the pressure hose from the vent blower.
7.Remove the four machine screws that fasten the vent blower to
the vent pan and save the screws. Leave the gasket in place on
the pan.
8.Remove the two extra machine screws in the vent pan front and
save the screws.
9.Rotate the vent blower and transition 180° so that its outlet points
to the outlet air end of the furnaces as shown in Figure 1.
10. Line up the vent blower mounting holes with the holes in the vent
pan and screw it into place. Use the same machine screws that
held the vent blower in place previously.
11. Install the two extra machine screws in the two open holes in the
front of the vent pan See Figure 1.
12. Plug in the vent motor wires.
13. Plug the pressure hose into the vent blower.
14. Remove the rectangular knockout in the center of the top cap. See
Figure 4.
15. Install the top cap at the same end of the furnace as the vent
blower, using the sheet metal screws saved earlier. See Figure 1.
16. Install the bottom cap on the bottom of the furnace using the sheet
metal screws saved earlier. See Figure 1.
17. The conversion is now complete. The furnace may now be
installed in the upflow position or in the horizontal position on
either side.
TRANSITION
EXTRA
SCREWS
GASKET
TOP
CAP
VENT
PAN
PRESSURE
HOSE
PRESSURE
SWITCH
VENT
BLOWER
TOP
CAP
TRANSITION
BOTTOM
CAP
PRESSURE
HOSE
VENT
PAN
EXTRA
SCREWS
BLOWER
GASKET
VENT
FIGURE 2: Downflow/Horizontal Configuration
TO CONVERT FROM UPFLOW TO DOWNFLOW CONFIGURATION
(50-125 MBH Models)
1.Lay the furnace on its back.
2.Remove the front door.
3.Remove the seven sheet metal screws that are used to fasten the
top cap to the casing.
4.Remove the four sheet metal screws that are used to fasten the
bottom cap to the casing. Remove the bottom cap and save the
screws.
5.Unplug the vent blower wires.
6.Disconnect the pressure hose from the vent blower.
7.Remove the four machine screws that fasten the vent blower to
the vent pan and save the screws. Leave the gasket in place on
the vent pan.
8.Remove the two extra machine screws in the vent pan front and
save the screws.
9.Install the cast aluminum transition on the vent blower, using the
three screws supplied on the vent blower. See Figure 3.
FIGURE 1: Upflow/Horizontal Configuration
Unitary Products Group5
BOTTOM
CAP
TRANSITION
FIGURE 3: Vent Blower
66832-UIM-D-1205
10. Rotate the vent blower 180º so that its outlet points toward the inlet
air end of the furnace. See Figure 2.
11. Line up the vent blower mounting holes with the holes in the vent
pan and screw it into place. Use the same machine screws that
held the vent blower in place previously.
12. Install the two extra machine screws in the two open holes in the
front of the vent pan. See Figure 2.
13. Plug in the vent motor wires.
14. Plug the pressure hose into the vent blower.
15. Remove the round knockout at the right side of the top cap. See
Figure 4.
UPFLOW
VENT
OPENING
DOWNFLOW
VENT
OPENING
FIGURE 4: Top Cap
16. Install the top cap at the opposite end of furnace from the vent
blower, using the seven sheet metal screws saved earlier. See
Figure 2.
17. Install the bottom cap on the bottom of the furnace using the sheet
metal screws saved earlier. See Figure 2.
18. The conversion is now complete. The furnace may now be
installed in the downflow position or in the horizontal position on
either side.
INSTALLATION POSITION (150 MBH Models)
This furnace may be installed in an upflow or horizontal position. No
conversion is necessary. This furnace is not approved for downflow
application.
FLOOR BASE AND DUCTWORK INSTALLATION
Upflow Instructions
Attach the supply plenum to the furnace outlet duct
connection flanges. This is typically through the use of
S cleat material when a metal plenum is used. The use
of an approved flexible duct connector is recommended on all installations. This connection should be
sealed to prevent air leakage. The sheet metal should
be cross-hatched to eliminate any popping of the
sheet metal when the indoor fan is energized.
When replacing an existing furnace, if the existing plenum is not the
same size as the new furnace then the existing plenum must be
removed and a new plenum installed that is the proper size for the new
furnace. If the plenum is shorter than 12” (30.5 cm) the turbulent air flow
may cause the limit controls not to operate as designed, or the limit controls may not operate at all.
The duct system is a very important part of the installation. If the duct
system is improperly sized the furnace will not operate properly.
The ducts attached to the furnace plenum, should be of sufficient size
so that the furnace operates at the specified external static pressure
and within the air temperature rise specified on the nameplate.
Table 2 is a guide for determining whether the rectangular duct system
that the furnace is being connected to be of sufficient size for proper furnace operation.
Use the Example below to help you in calculating the duct area to determine whether the ducts have sufficient area so that the furnace operates at the specified external static pressure and within the air
temperature rise specified on the nameplate.
Example: The furnace input is 80,000 BTUH, 1,200 CFM. The recommended duct area is 280 sq.in, there are two 8 x 14 rectangular ducts
attached to the plenum and there are two 7 inch round ducts attached to
the furnace.
1.Take 8 x 14, which equals 112 sq.in. X 2, which equals 224 square
inch then go to round duct size located in Table 2.
2.The square inch area for 7 inch round pipe is 38.4, multiply by 2 for
two round ducts which equals 76.8 square inch.
3.Then take the 224 square inch from the rectangular duct and add it
to the 76.8 sq.in. of round duct. The total square inch of duct
attached to the furnace plenum is 300.8 square inch. This exceeds
the recommended 280 square inch of duct.
In this example, the duct system attached to the plenum has a sufficient
area so that the furnace operates at the specified external static pressure and within the air temperature rise specified on the nameplate.
Consideration should be given to the heating capacity required and also
to the air quantity (CFM) required. These factors can be determined by
calculating the heat loss and heat gain of the home or structure. If these
calculations are not performed and the furnace is over-sized, the following may result:
1.Short cycling of the furnace.
2.Wide temperature fluctuations from the thermostat setting.
3.Reduced overall operating efficiency of the furnace.
The supply and return duct system must be of adequate size and
designed such that the furnace will operate within the designed air temperature rise range and not exceed the maximum designed static pressure. These values are listed Tables 2 and 3.
TABLE 2:
NOTE: This chart does not replace proper duct sizing calculations or take into
account static pressure drop for run length and fittings. Watch out for the temperature rise and static pressures.
TABLE 3:
Minimum Duct Sizing For Proper Airflow
InputAirflow
BTU/H
(kW)
50000
(14.65)
75000
(21.98)
75000
(21.98)
100000
(29.31)
100000
(29.31)
125000
(36.63)
150000
(43.96)
1. Maximum return air velocity in rigid duct @ 700 feet per minute (19.82 m3 /
minute).
2. Example return main trunk duct minimum dimensions.
3. Maximum supply a i r velocity in rigid duct @ 900 feet per minute (25.49 m3 /
minute).
TABLES 2 and 3 are to be used as a guide only to help the installer
determine if the duct sizes are large enough to obtain the proper air flow
(CFM) through the furnace. TABLES 2 and 3 ARE NOT to be used to
design ductwork for the building where the furnace is being installed.
There are several variables associated with proper duct sizing that are
not included in the tables. To properly design the ductwork for the building, Refer to the ASHRAE Fundamentals Handbook, Chapter on
“DUCT DESIGN” or a company that specializes in Residential and Modular Home duct designs.
IMPORTANT: The minimum plenum height is 12" (30.5). The furnace
will not operate properly on a shorter plenum height. The minimum recommended rectangular duct height is 4 inches (10 cm) attached to the
plenum.
IMPORTANT: The air temperature rise should be taken only after the
furnace has been operating for at least 15 minutes. Temperatures and
external static pressures should be taken 6" (15 cm) past the first bend
from the furnace in the supply duct and the return duct. If an external filter box or an electronic air cleaner is installed, take the return air readings before the filter box or air cleaner.
DOWNFLOW
B
C
31-1/2
I
The supply air temperature MUST NEVER exceed the Maximum
Supply Air Temperature, specified on the nameplate.
Operating the furnace above the maximum supply air temperature
will cause the heat exchanger to overheat, causing premature heat
exchanger failure. Improper duct sizing, dirty air filters, incorrect
manifold pressure, incorrect gas orifice and/or a faulty limit switch
can cause the furnace to operate above the maximum supply air
temperature. Refer to sections II, III and IX for additional information on correcting the problem.
If a matching cooling coil is used, it may be place directly on the furnace
outlet and sealed to prevent leakage. Follow the coil instructions for
installing the supply plenum. On all installations without a coil, a removable access panel is recommended in the outlet duct such that smoke
or reflected light would be observable inside the casing to indicate the
presence of leaks in the heat exchanger. This access cover shall be
attached in such a manner as to prevent leaks.
UPFLOW
31-1/2
D
16-1/4
E
14
29-3/4
BOTTOM VIEW
A
F
G
A
29-3/4
J
H
BOTTOM VIEW
FIGURE 5: Dimensions
TABLE 4:
125/100 (36.6/29.3)
150/120 (44.0/35.2)
125/100 (36.6/29.3)
150/120 (44.0/35.2)
1. 4-position models may be factory configured as upflow (MU) or downflow (MD).
2. All models are supplied with 3” (7.62 cm) vent connections. An installer supplied transition to 4” (10.16 cm) or 5” (12.7 cm) must be used where necessary.
3. 3-position 150 MBH model available only in upflow/horizontal (UH) configuration.
4. Dimensions “B”, “C”, “D”, and “E” are with duct flanges turned up. “F”, “G”, “H”, & “J” are with flanges flat.
RESIDENTIAL AND NON HUD MODULAR HOME
UPFLOW RETURN PLENUM CONNECTION
Return air may enter the furnace through the side(s) or bottom depending on the type of application. Return air may not be connected into the
rear panel of the unit. In order to achieve the airflow indicated, it is recommended those applications over 1800 CFM (57 m³/min) use return
air from two sides, one side and the bottom or bottom only. For single
return application, see data and notes on blower performance data
tables in this manual.
NOTE: The only return duct configurations that is approved for models
that have two separate fans are:
• Return duct attached to both sides of the furnace.
• Bottom and side return duct.
BOTTOM RETURN AND ATTIC INSTALLATIONS
Bottom return applications normally pull return air through a base platform or return air plenum. Be sure the return platform structure or return
air plenum is suitable to support the weight of the furnace.
The return air ducts to the furnace must have a total cross sectional
area of not less than two square inches per 1000 BTUH of furnace input
rating for heating operation. If air conditioning is to be installed with the
furnace, larger return air ducts may be required, depending on the
capacity of the air conditioner and the airflow required. The return air
opening in the top of the furnace is large enough for the largest capacity
air conditioner for which the furnace blower is rated. The return air duct
or plenum can be connected to the furnace by performing the following
steps:
1.Bend the 3/4" flanges that will be used to attach the return air plenum using the scribe marks in the furnace base. Refer to Figure 5
for flange locations.
2.Be sure to seal the furnace to plenum connections to prevent air
leakage. Refer to Figure 5 for unit and plenum dimensions. Attic
installations must meet all minimum clearances to combustibles
and have floor support with required service accessibility.
Attic installations must meet all minimum clearances to combustibles
and have floor support with required service accessibility.
FLOOR BASE AND DUCTWORK INSTALLATION
Downflow Combustible Floor Base
Installations on combustible material or floors must
use a combustible floor base shown in Figure 6. The
perforations in the wrapper flanges must be bent in
towards the heat exchanger to allow for the coil duct
flange to recess into the furnace Follow the instructions supplied with the combustible floor base accessory. This combustible floor base can be replaced with
a matching cooling coil, properly sealed to prevent
leaks. Follow the instructions supplied with the cooling coil cabinet for
installing the cabinet to the duct connector. Refer to the installation
instructions for additional information.
Downflow Duct Connectors
All downflow installations must use a suitable duct connector approved
by the furnace manufacturer for use with this furnace. The duct connectors are designed to be connected to the rectangular duct under the
floor and sealed. Refer to the instructions supplied with the duct connector for proper installation. Refer to the separate accessory parts list
at the end of these instructions for the approved accessory duct connectors.
When replacing an existing furnace, if the existing plenum is not the
same size as the new furnace then the existing plenum must be
removed and a new plenum installed that is the proper size for the new
furnace.
IMPORTANT: If an external mounted filter rack is being used see the
instructions provided with that accessory for proper hole cut size.
DOWNFLOW
FURNACE
WARM AIR PLENUM
WITH 1” FLANGES
FIBERGLASS
INSULATION
FIBERGLASS TAPE
UNDER FLANGE
COMBUSTIBLE FLOOR
BASE ACCESSORY
FIGURE 6: Combustible Floor Base Accessory
Downflow Air Conditioning Coil Cabinet
The furnace should be installed with coil cabinet part number specifically intended for downflow application. If a matching cooling coil is
used, it may be placed directly on the furnace outlet and sealed to prevent leakage. For details of the coil cabinet dimensions and installation
requirements, refer to the installation instructions supplied with the coil
cabinet.
The perforations in the wrapper flanges must be bent away from the
heat exchanger to create duct flanges so the air conditioning coil can be
properly seated on the furnace. Attach the air conditioning coil cabinet
to the duct connector, and then position the furnace on top of the coil
cabinet. The connection to the furnace, air conditioning coil cabinet,
duct connector, and supply air duct must be sealed to prevent air leakage.
IMPORTANT: On all installations without a coil, a removable access
panel is recommended in the outlet duct such that smoke or reflected
light would be observable inside the casing to indicate the presence of
leaks in the heat exchanger. This access cover shall be attached in
such a manner as to prevent leaks.
RESIDENTIAL AND NON HUD MODULAR HOME
DOWNFLOW RETURN PLENUM CONNECTION
The return duct system must be connected to the furnace inlet and the
return duct system must terminate outside the space containing the furnace. When replacing an existing furnace, if the existing plenum is not
the same size as the new furnace then the existing plenum must be
removed and a new plenum installed that is the proper size for the new
furnace.
Attach the return plenum to the furnace inlet duct flanges. This is typically through the use of “S” cleat material when a metal plenum is used.
The use of an approved flexible duct connector is recommended on all
installations. The connection of the plenum to the furnace and all the
ducts connecting to the plenum must be sealed to prevent air leakage.
The sheet metal should be crosshatched to eliminate any popping of
the sheet metal when the indoor fan is energized.
The duct system is a very important part of the installation. If the duct
system is improperly sized the furnace will not operate properly. The
ducts attached to the furnace must be of sufficient size so that the furnace operates at the specified external static pressure and within the air
temperature rise specified on the nameplate.
IMPORTANT: If an external mounted filter rack is being used see the
instructions provided with that accessory for proper hole cut size.
HORIZONTAL MODELS
8Unitary Products Group
66832-UIM-D-1205
Horizontal Installations With a Cooling Coil Cabinet
The furnace should be installed with coil cabinet part number specifically intended for Horizontal application. If a matching cooling coil is
used, it may be placed directly on the furnace outlet and sealed to prevent leakage. Follow the coil instructions for installing the supply plenum. For details of the coil cabinet dimensions and installation
requirements, refer to the installation instructions supplied with the coil
cabinet
The perforations in the wrapper flanges must be bent away from the
heat exchanger to create duct flanges so the air conditioning coil can be
properly seated on the furnace.
Attach the supply plenum to the air conditioning coil cabinet outlet duct
flanges through the use of S cleat material when a metal plenum is
used. The use of an approved flexible duct connector is recommended
on all installations. The connection to the furnace, air conditioning coil
cabinet and the supply plenum should be sealed to prevent air leakage.
The sheet metal should be crosshatched to eliminate any popping of
the sheet metal when the indoor fan is energized.
The minimum plenum height is 12” (30.5 cm). If the plenum is shorter
than 12” (30.5 cm) the turbulent air flow may cause the limit controls not
to operate as designed, or the limit controls may not operate at all. Also
the plastic drain pan in the air conditioning coil can overheat and melt.
Refer to the installation instructions supplied with the air conditioning
coil for additional information.
Horizontal Installations Without a Cooling Coil Cabinet
When installing this appliance, the furnace must be installed so as to
create a closed duct system, the supply duct system must be connected to the furnace outlet and the supply duct system must terminate
outside the space containing the furnace. When replacing an existing
furnace, if the existing plenum is not the same size as the new furnace
then the existing plenum must be removed and a new plenum installed
that is the proper size for the new furnace.
Attach the supply plenum to the furnace outlet duct flanges through the
use of S cleat material when a metal plenum is used. The use of an
approved flexible duct connector is recommended on all installations.
This connection should be sealed to prevent air leakage. The sheet
metal should be crosshatched to eliminate any popping of the sheet
metal when the indoor fan is energized. On all installations without a
coil, a removable access panel is recommended in the outlet duct such
that smoke or reflected light would be observable inside the casing to
indicate the presence of leaks in the heat exchanger. This access cover
shall be attached in such a manner as to prevent leaks.
Residential and Non Hud Modular Home Horizontal Return
Plenum Connections
The return duct system must be connected to the furnace inlet and the
return duct system must terminate outside the space containing the furnace. When replacing an existing furnace, if the existing plenum is not
the same size as the new furnace then the existing plenum must be
removed and a new plenum installed that is the proper size for the new
furnace.
Attach the return plenum to the furnace inlet duct flanges. This is typically through the use of S cleat material when a metal plenum is used.
The use of an approved flexible duct connector is recommended on all
installations. The connection of the plenum to the furnace and all the
ducts connecting to the plenum must be sealed to prevent air leakage.
The sheet metal should be crosshatched to eliminate any popping of
the sheet metal when the indoor fan is energized.
The duct system is a very important part of the installation. If the duct
system is improperly sized the furnace will not operate properly. The
ducts attached to the furnace must be of sufficient size so that the furnace operates at the specified external static pressure and within the air
temperature rise specified on the nameplate.
Attic installations must meet all minimum clearances to combustibles
and have floor support with required service accessibility.
IMPORTANT: if an external mounted filter rack is being used see the
instructions provided with that accessory for proper hole cut size.
ATTIC INSTALLATION
LINE CONNECT ONLY PERMISSIBLE BETWEEN
LINES FORMED BY THE INTERSECTION OF
FURNACE TOP AND TWO SIDES AND BUILDING
JOISTS, STUDS, OR FRAMING
FILTER RACK MUST
BE A MINIMUM DISTANCE
OF 18” (45.7 CM) FROM
THE FURNACE
RETURN AIR
SEDIMENT
TRAP
SHEET METAL IN FRONT OF FURNACE COMBUSTION
AIR OPENINGS IS RECOMMENDED
30” MIN.
WORK AREA
SUPPLY
AIR
PLYWOOD
FLOOR
FIGURE 7: Typical Attic Installation
This appliance is design certified for line contact when the furnace is
installed in the horizontal left or right position. The line contact is only
permissible between lines that are formed by the intersection of the top
and two sides of the furnace and the building joists, studs or framing.
This line may be in contact with combustible material.
When a furnace is installed in an attic or other insulated space,
keep all insulating materials at least 12 inches (30.5 Cm) away from
furnace and burner combustion air openings.
SUSPENDED FURNACE / CRAWL SPACE
INSTALLATION
The furnace can be hung from floor joists or installed on suitable blocks
or pad. Blocks or pad installations shall provide adequate height to
ensure the unit will not be subject to water damage. Units may also be
suspended from rafters or floor joists using rods, pipe angle supports or
straps. Angle supports should be placed at the supply air end and near
the blower deck. Do not support at return air end of unit. All four suspension points must be level to ensure quiet furnace operation. When
suspending the furnace use a secure platform constructed of plywood
or other building material secured to the floor joists. Refer to Figure 8
for typical crawl space installation.
ANGLE IRON
BRACKET
1” MAX. BETWEEN
ROD & FURNACE
6” MIN. BETWEEN
ROD & FURNACE
SUPPORT
ROD
1” MAX. BETWEEN
ROD & FURNACE
FIGURE 8: Typical Suspended Furnace / Crawl Space Installation
SECTION III: FILTERS
FILTER INSTALLATION
All applications require the use of a filter. A high velocity filter and
retainer are provided for field installation on G8C models. Models must
have a field-supplied filter and mounting hardware. Replacement filter
size is shown in Table 5.
Unitary Products Group9
Loading...
+ 19 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.