PowerVerter ®is a registered trademark of Tripp Lite. All rights reserved.
15
16
18
Introduction
Congratulations! You’ve purchased the most advanced, feature-rich integrated inverter/battery
charger on the market. Your APS provides your equipment with utility-supplied AC power when
it is available, and during blackouts, overvoltages and brownouts, your APS automatically
switches over to an external battery source to power connected equipment with voltage and
frequency-controlled AC power. In addition to reliable APS performance, your model features:
High Efficiency Output
Your APS’s advanced circuitry produces a more efficient DC-to-AC conversion, minimizing
energy loss. This allows you to run connected equipment longer between battery charges. The
APS will maintain this highly-efficient output even as the battery charge decreases.
Automatic Overload Protection
If you overload your APS, it will automatically protect itself and your valuable batteries from
damage.
Fast Load Switching
Your APS provides an uninterruptible power supply. If AC power goes down, your APS will
switch over to providing battery backup power in 6 milliseconds or less so that your equipment
will operate with no interruption.
Multi-Function Indicator Lights
Several sets of multifunction indicator lights keep you constantly informed of battery charge
levels, fault conditions and APS operation.
Multi-Operation Switches
An array of user-configurable switches gives you convenient options when operating your
APS. You can select the voltage level at which your APS’s inverter will turn on to maximize
equipment protection and minimize battery drain; set your APS for maximum charging
efficiency with your battery type; even set up your APS for remote control operation.
2
Introduction
15
14
13
12
Stage 2
Absorption
Stage 3
Float
Stage 1
Bulk
continued
3-Stage Battery Charger
Your APS recharges your battery faster than
conventional chargers because its three-stage
charger profile (Bulk, Absorption and Float) are
optimized, regardless of the type of battery you
use (Wet or Gel).* In addition, the advanced
charging system protects against over-charge
and over-discharge to ensure a longer service
life from your battery.
* The Absorption and Float levels vary according to battery
type, which can be set to either “Wet” or “Gel”cell.
Voltage Regulation (Select models only)
“VR” APS models regulate incoming AC power
by automatically “boosting” or “cutting” the
voltage to keep your equipment running through
brownouts and overvoltages without draining
battery power.
Load Sharing (Select models only)
Select APS models can be set to limit their own
charging functions so they can charge their
batteries at the quickest rate possible without
overloading their power input circuits.
Frequency-Controlled
Inverter Output
All APS models feature Frequency-Controlled
Inverter Output which allows devices dependent
on AC line frequency (such as computers,
VCRs, CD players, tape recorders, clocks and
turntables) to operate properly.
Circuit Board Protection
A silicone conformal coating safeguards the circuit boards against moisture.
3
Important Safety Instruction
SAVE THESE INSTRUCTIONS
This manual contains important instructions and warnings that should be followed during
the installation, operation and storage of all Tripp Lite APS Systems.
APS Location Warnings
• Install your APS indoors, away from excess moisture or heat, dust or direct sunlight.
• Your APS is NOT waterproof. Contact with water can cause the unit to short circuit and
could cause personal injury due to electric shock. Never immerse your APS. Mount it in
the driest location available.
• Leave adequate space around all sides of the APS for proper ventilation. The heavier the
load of connected equipment, the more heat will be generated by the APS.
• When mounting unit on a vertical surface, mount it with the control panel facing to the
side to reduce the risk of foreign objects entering the APS enclosure.
• Do not install the APS near magnetic storage media, as this may result in data corruption.
Battery Connection Warnings
• Your APS will not operate with or without utility power until batteries are connected.
• Multiple battery systems must be made up of batteries of the same voltage, age, amp hour
capacity and type.
• Keep battery location well ventilated. Explosive hydrogen gas can accumulate near
batteries if they are not kept well ventilated.
• Sparks may result during final battery connection. Always observe proper polarity as
batteries are connected.
• Do not allow objects to contact the two DC input terminals. Do not short or bridge these
terminals together. Serious injury to property or person could result.
Equipment Connection Warnings
• Do not use Tripp Lite APS Systems in life support applications where a malfunction or
failure of a Tripp Lite APS System could cause failure or significantly alter the performance of a life support device.
• Do not connect a surge suppressor, line conditioner or UPS to the output of the APS.
• Corded models: Do not modify the APS’s plug in a way that eliminates its ground
connection. Do not use power adaptors that will eliminate the plug's ground connection.
Connect your APS only to a properly grounded AC power outlet. Do not plug your APS
into itself; this will damage the APS and void your warranty.
Operation Warnings
• Your APS does not require routine maintenance. Do not open your APS for any reason.
There are no user-serviceable parts inside.
• Potentially lethal voltages exist within this unit as long as the battery supply and/or AC
input are connected. During any service work, the battery supply and AC input connection
(if any) should therefore be disconnected.
• Do not connect or disconnect batteries while the APS is operating from the battery supply.
Dangerous arcing may result.
4
Configuration
4321
Gel Cell
Wet Cell*
4321
145V
135V*
4321
105V
4321
95V
4321
85V
4321
75V*
Configuration Dip Switch Settings
DIP SWITCH GROUP A
(All models)
BATTERY TYPE / VOLTAGE POINT
Using a small tool, set the 4 “Battery Type / Voltage Point” Configuration DIP Switches, Group
A (located on the front panel of your APS; see Diagram 1, p. 36) to select battery type and set
the voltage range outside of which your APS will switch to battery power.
• Select Battery Type
CAUTION: The Battery Type DIP Switch setting must match the type of batteries you connect or your batteries may be
degraded or damaged over an extended period of time. See “Battery Selection,” page 8 for more information.
(DIP Switch #1, Group A)
Battery TypeSwitch Position
Gel Cell (Sealed) BatteryUp
Wet Cell (Vented) BatteryDown*
• Select High AC Voltage Switch To
Battery Point
VoltageSwitch Position
145VUp
135VDown*
(DIP Switch #2, Group A)
• Select Low AC Voltage Switch To
Battery Point
VoltageSwitch Postion
105V#4 Up & #3 Up
95V#4 Up & #3 Down
85V#4 Down & #3 Up
75V#4 Down & #3 Down*
(DIP Switches #4, Group A & #3, Group A)
Most loads will perform adequately when your APS’s High AC Voltage
Point DIP Switch #2 is set to 135V and its Low AC Voltage Point DIP
Switches #3 and #4 are set to 95V. However, if your APS frequently
switches to battery power due to momentary high/low line voltage
swings that would have little effect on equipment operation, you may
wish to adjust these settings. By raising the High AC Voltage Switch to
Battery point and/or lowering the Low AC Voltage Switch to Battery
Point, you may reduce the number of times your APS switches to
battery due to voltage swings.
* Factory default settings.
5
Configuration
4321
4321
4321
4321
continued
DIP SWITCH GROUP B (Available on Select Models)
LOAD SHARING/EQUALIZE BATTERY CHARGE
The “Load Sharing” Configuration DIP Switches, #1 and #2 of Group B (located on the front
panel of your APS; see Diagram 1, p. 36), should be set with a small tool according to the guidelines below. DIP Switch #3, Group B should be kept in the “UP” position when you are not equalizing your batteries' charges. DIP Switch #4, Group B has different functions, or no function,
depending on your APS model.
• Load Sharing
Your APS features a high-output battery charger that can draw a significant amount of power
from your line power source when charging at its maximum rate. If an APS is supplying its
full AC power rating to its connected load at the same time as it is charging, it could trip its
line source circuit breaker. Tripping this breaker will cut off AC power to your load and stop
battery charging.
To reduce the chance of tripping this breaker, select APS models may be set to automatically
limit their charger output to keep the sum of their AC load and charger power within their
circuit breakers’ rating.
This charger limiting function has four settings, allowing you to choose less charger limiting
for APS configurations with higher rated breakers. The figures below show how to set your DIP
Switches to select how heavy a load can be placed on your APS before charger limiting begins.
(DIP Switches #1, Group B & #2, Group B)
Battery Charger Limiting Points
Most Limiting (#1 & #2 Up*): Charger limiting takes effect the
moment any load is applied; charger output falls gradually from full
output at no load to no output at full load.
Less Limiting (#1 Down & #2 Up): Charger limiting begins when the
APS's load reaches 33% of the APS’s load rating. Charger output falls
gradually from full output at 33% of the APS's load rating to about 40%
of full output at full load.
Least Limiting (#1 Up & #2 Down): Charger limiting begins at when
the APS’s load reaches 66% of the APS’s load rating. Charger output
falls gradually from full output at 66% of the APS's load rating to about
40% of full output at full load.
No Limiting (#1 & #2 Down): No charger limiting occurs at any load size.
* Factory default settings.
6
Configuration
4321
Partial*
Full
continued
• Equalize Battery Charge
This DIP Switch is momentarily engaged to begin the process of equalizing the internal resistance
of your battery's cells. This can extend the useful life of certain types of batteries; consult with
your battery's manufacturer to determine if your batteries could benefit from this process. The
charge equalization process is automatic and once started can only be stopped by removing the
input power.
(DIP Switch #3, Group B)
Setting Procedure:
• Move to “Equalize” (DOWN) position for three seconds.
• Move to “Reset” (UP) position and leave it there.
CAUTION: Battery charge equalization should only be performed in
strict accordance with the battery manufacturer’s instructions and
specifications.
CAUTION: Do not leave DIP switch #3 in the down position after
beginning process.
Battery ChargeSwitch Position
Reset Up*
Equalize Down
* Factory default setting.
• Limit Battery Charger
To prevent overheating smaller batteries, the charger on these UPS systems is initially set to
deliver only a fraction of its maximum power rating to connected batteries. If you are using either
of these APS systems with a larger battery or battery system (over 100 amp-hours), you may
switch your charger to full power without overheating your batteries.
Battery ChargerSwitch Position
Partial (1/3) Charging PowerUp*
Full Charging PowerDown
* Factory default setting.
(APS1012, APS1524 & APS2012 only)
7
(DIP Switch #4, Group B)
Battery Selection
Selecting Battery Type
Select a battery or system of batteries that will provide your APS with proper DC voltage and an
adequate amp hour capacity.* Select ‘Deep-Cycle’batteries to enjoy optimum performance from
your APS. Batteries of either Wet-Cell (vented) or Gel-Cell/Absorbed Glass Mat (sealed)
construction are ideal. 6 Volt “golf-cart,” Marine Deep-Cycle or 8D Deep-Cycle batteries are also
acceptable.**
* Even though APS models are high-efficiency converters of electricity, their rated output capacities are limited by the
amp-hour size of the external batteries. ** You must set Configuration DIP Switch #1, Group A (Battery Type) to match the
type of batteries you connect or your batteries may be degraded or damaged over an extended period of time. See “APS
Configuration,” page 5 for more information.)
Selecting Battery Amp Hour Capacity
1. Add the Wattage Ratings of your connected equipment to determine the Total Wattage Required.*
2. Divide the Total Wattage Required (from Step 1) by the battery voltage to determine the DC
Amperes Required.
3. Multiply the DC Amperes Required (from Step 2) by the number of hours you estimate will
pass without AC power before your battery can recharge to determine a Battery Amp-Hours
Required Rough Estimate.**
4. Compensate for inefficiency by multiplying your Battery Amp-Hour Required Rough Estimate
(from Step 3) by 1.2 to determine how many amp-hours of battery backup (from one or several
batteries) you should connect to your APS. Note that the Amp-Hour ratings of
batteries are usually given for a 20 hour discharge rate. Actual Amp-Hour capacities are less
when batteries are discharged at faster rates: batteries discharged in 55 minutes provide only
about 50% of their listed Amp-Hour ratings, while batteries discharged in 9 minutes provide
as little as 30% of their Amp-Hour ratings.
* The wattage rating is usually stated in the equipment’s manuals or on their nameplates. If your equipment is rated in amperes, convert
to watts by multiplying the ampere rating by your nominal AC line voltage (120). ** Your charging amps multiplied by the charging
hours must exceed the discharge amp-hours taken from the batteries between charges or you will eventually run down your battery bank.
Mounting
(Optional)
(See Diagram 2, p. 36)
Horizontal mounting should be used for all vehicular applications. Due to their size and weight,
all APS PowerVerter systems in vehicles should be mounted on a rigid horizontal (not vertical)
surface, mounting plate or bracket before battery connection. User must supply all fasteners and
brackets and verify their suitability for use with the intended mounting surface. Turn your APS
PowerVerter and connected equipment OFF before mounting.
• Install two 8 mm (1/4 in.) fasteners (A) into a rigid horizontal surface using the
measurements in the diagram. Leave the heads of fasteners raised slightly above
the surface in order to engage the slots in the APS’s feet.
• Slide PowerVerter forward to fully engage the fasteners in the APS’s feet. Install two
8 mm (1/4 in.) fasteners (B) into the surface, through the slots in the APS’s two
unsecured feet. Tighten the screws to secure the APS in position.
8
Battery Connection
Standard
1. Connect your APS’s positive DC Terminal directly to a fuse.
UL recommends that you install a recognized UL component fuse block and fuse within 18
inches of the battery. The fuse’s rating must equal or exceed the Minimum DC Fuse Rating
listed in your APS model’s specifications on pages 16 or 17.
2. Choose a battery configuration appropriate to your batteries.
• Single Battery Connection: Refer to Diagram 4, page 37. When using a single battery, its
voltage must be equal to the voltage of your APS's Inverter Nominal Input Voltage (see
specs).
• Parallel Battery Connection: Refer to Diagram 5, page 37. When using multiple batteries
in parallel, each battery's voltage must be equal to the voltage of your APS’s Inverter
Nominal Input Voltage (see specs).
• Series Battery Connection: Refer to Diagram 6, page 37. When using multiple batteries
in series, all batteries must be equal in voltage and amp hour capacity, and the sum of their
voltages must be equal to the voltage of your APS's Inverter Nominal Input Voltage (see specs).
3. Use 2/0 gauge wire ONLY to make battery connections. Tighten terminals to a torque of 4 N-m.
Battery connection cable lengths should be short as possible, and must not exceed the Maximum
Cable Length listed under Specifications, page 16 or 17. Shorter and heavier gauge cabling limits
DC voltage drop and allows for maximum transfer of current.* You must tighten your battery
terminals to approximately 4 Newton-meters of torque to create an efficient connection and prevent
excessive heating. Insufficiently tightening terminals could void your PowerVerter’s warranty.
* APS models are capable of delivering a much higher wattage output for brief periods of time. Wiring should be
configured to handle this brief high-current draw. Though your APS is a high-efficiency converter of electricity, its
rated output capacity is limited by the length and gauge of the wires running from the battery to the APS.
DC Vehicular
APS systems may be permanently mounted in a car, truck or boat and connected to draw power
from the vehicle's battery. Note: An APS can ONLY be connected to vehicle batteries with
voltage that matches the APS’s Nominal DC Input—12V vehicle batteries to 12V Nominal
DC Input APS systems, etc. (See Specifications). There are two main ways to make this sort of
vehicular battery connection. Choose the Basic Connection if you are running light hand tools or
other small appliances for a brief period of time (see Diagram 7, p. 38). Choose the Advanced
Connection if you are using your APS to power heavy loads for extended periods of time (seeDiagram 8, p. 38). The Advanced Connection incorporates a battery isolator and separate
battery system to provide battery power to your APS while preventing it from draining your vehicle’s
battery. Note: Depending on your application, you may require more than one Deep Cycle Battery.
Note: The main ground stud on the rear panel must be connected to the vehicle chassis. A non-grounded unit could
cause an electrical shock hazard.
Caution: Never operate your APS from an alternator without a battery connected as shown in Diagrams 7 or 8, p. 38.
DC Ground Connection
APS systems must be connected to a grounded, permanent wiring system. For most installations,
the negative battery conductor must be bonded to the grounding system at one (and only one)
point in the system. All installations must comply with national and local codes and ordinances.
9
AC Connection
Before AC connection, match the power requirements of your
equipment with the power output of your APS to avoid overload.
When figuring the power requirements of your equipment, do not confuse “continuous” power
ratings with “peak” power ratings. Electric motors require more power to turn on (“peak power”)
than they require to run continuously. “Peak” power ratings are usually 2 to 5 times “Continuous”
ratings. Most electric motors require “peak power” only when they are first turned on. The electric
motors in equipment such as refrigerators and sump pumps, however, constantly turn on and off
according to demand. These motors require “peak power” at multiple, unpredictable times during
their operation.
Consult a qualified electrician and follow all applicable electrical codes and requirements.
HARDWIRE PROCEDURE
1. Remove screws and cover plate from your APS’s Hardwire AC electrical box. Remove the
knockout covers closest to the desired electrical source and to your equipment.
2. Thread your wires through the knockouts, adding strain reliefs if desired.
3. Connect both input and output ground wires to the ground (green) terminal.
4. Connect the incoming hot wire to the input hot (brown) terminal.
5. Connect the incoming neutral wire to the input neutral (blue) terminal.
6. Connect the outgoing hot wire to the output hot (black) terminal.
7. Connect the outgoing neutral wire to the output neutral (white) terminal.
8. Tighten and affix strain reliefs. Replace cover plate and tighten screws.
(See Diagram 3, p. 36)
AC Input Electrical Connection (All corded models)
Plug the line cord into an outlet providing 120V AC, 60 Hz. power. Make sure that the circuit you
connect your APS to has adequate overload protection, such as a circuit breaker or a fuse.
AC Output Electrical Connection (All corded models)
Simply plug your equipment into the unit’s AC receptacles.
10
AC Connection
continued
Set Operating Mode Switch
• Switch to “AUTO/REMOTE” when you are using connected equipment. ADVANTAGE:
Uninterruptible power supply. Provides battery backup power during blackouts or
brownouts.
Note: When the switch is in the “AUTO/REMOTE” position, you can operate a user-supplied switch to transfer
between battery-backup and charge-only modes. (See Remote Connector manual for more information.)
• Switch to “CHARGE ONLY” when you are not using connected equipment. (WARNING!
APS will not provide battery backup!) ADVANTAGES: A) Continues to charge battery
when power is present, and B) Turns OFF the APS’s inverter, preventing battery drain
during blackouts or brownouts.
• Switch to “OFF” to completely turn off the APS and connected equipment or to reset the
APS after it has shut down due to overload or overheating.
Switches, Indicator Lights & Other Features
(See Diagrams 9a and 9b, p. 39-40, to locate the following switches, indicator lights and other features.)
Switches
1. Operating Mode Switch (All models): This switch selects the APS operating mode (either
“AUTO/REMOTE”, “OFF” or “CHARGE ONLY”). See “Set Operating Mode Switch”, pg. 11
to select the optimum setting for this switch.
2. “CONFIGURATION SWITCHES”—DIP Switch Group A (All models): These four
switches must be set for the type of battery your APS will be connected to and the voltage
points at which your APS will switch to battery power. See “Configuration”, pg. 5 to select
the optimum settings for these switches.
3. “CONFIGURATION SWITCHES”—DIP Switch Group B (Select models only): These
DIP Switches allow you to equalize the internal resistance of your battery’s cells and set the
percentage of your model's maximum load at which the APS will limit battery charging. See
“Configuration”, pg. 6 to select the optimum settings for these switches.
11
Switches, Indicator Lights & Other Features
continued
Indicator Lights
4. “LINE” (All models): This green light will turn continuously ON whenever connected equipment
is receiving utility-supplied AC power and your APS is set to “AUTO/REMOTE”, meaning
that it will provide battery backup if utility power fails. It will flash intermittently when
connected equipment is receiving utility power and your APS’s Operating Mode Switch is set
to “CHARGE ONLY” to warn you that the APS’s inverter is OFF and that the APS WILL
NOT provide battery backup during blackouts, brownouts or overvoltages.
5. “INV” (Inverting—all models): This yellow light will turn continuously ON whenever
connected equipment is receiving battery-supplied AC power (during a blackout, brownout or
overvoltage while connected to utility power or when connected to batteries during vehicular
operation).
6. “LOAD” (All models): This red light will turn continuously ON when the APS’s load is
between 80% and 110% of capacity. The light will flash intermittently when the APS’s inverter
shuts down due to a severe overload or overheating. If this happens, turn Operating Mode
Switch OFF. Remove the overload and let the unit cool. You may then turn the APS ON after
it cools.
7. “CUT/BOOST” (VR models only): These lights will turn ON whenever your APS is
automatically correcting high (CUT) or low (BOOST) AC line voltage. This is a normal, automatic
operation of your APS that does not drain battery power, and no action is required on your part.
8. “BATTERY HI/MED/LO” (All models): These three lights will turn ON in several
sequences to show the approximate charge level and voltage of your connected battery bank
and alert you to several fault conditions:
BATTERY CHARGE INDICATION (Approximate)
IndicatorCapacity
Green91% - Full
Green & yellow81% - 90%
Yellow61% - 80%
Yellow & red41% - 60%
Red21% - 40%
All three lights off1% - 20%
Flashing red0% (Inverter shutdown)
All three lights flash slowly*Excessive discharge
All three lights flash quickly** Overcharge
* Approximately 1/2 second on, 1/2 second off. See Troubleshooting section.
** Approximately 1/4 second on, 1/4 second off. May also indicate a battery charger fault exists. See Troubleshooting section.
12
Loading...
+ 28 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.