Trinamic TMCM-1140 FIRMWARE MANUAL

1-Axis Stepper Controller / Driver 2 A / 24 V sensOstep™ Encoder
USB, RS485, and CAN
MODULE FOR STEPPER MOTORS MODULE
Firmware Version V1.19
+
+ +
+
TMCM-1140
UNIQUE FEATURES:
TRINAMIC Motion Control GmbH & Co. KG Hamburg, Germany
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 2
Table of Contents
1 Features ........................................................................................................................................................................... 4
2 Putting the Module into Operation ........................................................................................................................ 6
2.1 Basic Set-Up .......................................................................................................................................................... 6
2.1.1 Start the TMCL-IDE Software Development Environment ................................................................. 8
2.2 Using TMCL Direct Mode .................................................................................................................................... 9
2.2.1 Important Motor Settings ......................................................................................................................... 10
2.3 Testing with a Simple TMCL Program ......................................................................................................... 11
3 TMCL and the TMCL-IDE: Introduction ................................................................................................................. 12
3.1 Binary Command Format ................................................................................................................................ 12
3.1.1 Checksum Calculation ................................................................................................................................ 13
3.2 Reply Format ....................................................................................................................................................... 13
3.2.1 Status Codes ................................................................................................................................................. 14
3.3 Standalone Applications .................................................................................................................................. 14
3.4 TMCL Command Overview .............................................................................................................................. 15
3.4.1 TMCL Commands ......................................................................................................................................... 15
3.4.2 Commands Listed According to Subject Area .................................................................................... 16
3.5 The ASCII Interface ........................................................................................................................................... 20
3.5.1 Format of the Command Line ................................................................................................................. 20
3.5.2 Format of a Reply ....................................................................................................................................... 20
3.5.3 Configuring the ASCII Interface ............................................................................................................. 21
3.6 Commands ........................................................................................................................................................... 22
3.6.1 ROR (rotate right) ....................................................................................................................................... 22
3.6.2 ROL (rotate left) ........................................................................................................................................... 23
3.6.3 MST (motor stop)......................................................................................................................................... 24
3.6.4 MVP (move to position) ............................................................................................................................ 25
3.6.5 SAP (set axis parameter) ........................................................................................................................... 27
3.6.6 GAP (get axis parameter) .......................................................................................................................... 28
3.6.7 STAP (store axis parameter) ..................................................................................................................... 29
3.6.8 RSAP (restore axis parameter) ................................................................................................................. 30
3.6.9 SGP (set global parameter) ...................................................................................................................... 31
3.6.10 GGP (get global parameter)...................................................................................................................... 32
3.6.11 STGP (store global parameter) ................................................................................................................ 33
3.6.12 RSGP (restore global parameter) ............................................................................................................ 34
3.6.13 RFS (reference search) ................................................................................................................................ 35
3.6.14 SIO (set output) ........................................................................................................................................... 36
3.6.15 GIO (get input/output) ............................................................................................................................... 38
3.6.16 CALC (calculate) ............................................................................................................................................ 40
3.6.17 COMP (compare)........................................................................................................................................... 41
3.6.18 JC (jump conditional) ................................................................................................................................. 42
3.6.19 JA (jump always) ......................................................................................................................................... 43
3.6.20 CSUB (call subroutine) ............................................................................................................................... 44
3.6.21 RSUB (return from subroutine) ................................................................................................................ 45
3.6.22 WAIT (wait for an event to occur) ......................................................................................................... 46
3.6.23 STOP (stop TMCL program execution) ................................................................................................... 47
3.6.24 SCO (set coordinate) ................................................................................................................................... 48
3.6.25 GCO (get coordinate) .................................................................................................................................. 49
3.6.26 CCO (capture coordinate) .......................................................................................................................... 50
3.6.27 ACO (accu to coordinate) .......................................................................................................................... 51
3.6.28 CALCX (calculate using the X register) .................................................................................................. 52
3.6.29 AAP (accumulator to axis parameter) .................................................................................................... 53
3.6.30 AGP (accumulator to global parameter) ............................................................................................... 54
3.6.31 CLE (clear error flags) ................................................................................................................................. 55
3.6.32 VECT (set interrupt vector) ........................................................................................................................ 56
3.6.33 EI (enable interrupt) ................................................................................................................................... 57
3.6.34 DI (disable interrupt) .................................................................................................................................. 58
3.6.35 RETI (return from interrupt) ..................................................................................................................... 59
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 3
3.6.36 Customer Specific TMCL Command Extension (UF0… UF7 / User Function) ............................... 60
3.6.37 Request Target Position Reached Event ............................................................................................... 60
3.6.38 TMCL Control Functions ............................................................................................................................. 61
4 Axis Parameters .......................................................................................................................................................... 63
4.1 stallGuard2 ........................................................................................................................................................... 70
4.2 coolStep Related Axis Parameters ................................................................................................................ 70
5 Global Parameters ...................................................................................................................................................... 72
5.1 Bank 0 ................................................................................................................................................................... 72
5.2 Bank 1 ................................................................................................................................................................... 74
5.3 Bank 2 ................................................................................................................................................................... 74
5.4 Bank 3 ................................................................................................................................................................... 75
6 Hints and Tips ............................................................................................................................................................. 76
6.1 Reference Search ............................................................................................................................................... 76
6.2 Changing the Prescaler Value of an Encoder ............................................................................................ 79
6.3 Using the RS485 Interface .............................................................................................................................. 80
7 TMCL Programming Techniques and Structure ................................................................................................. 81
7.1 Initialization ........................................................................................................................................................ 81
7.2 Main Loop ............................................................................................................................................................ 81
7.3 Using Symbolic Constants .............................................................................................................................. 81
7.4 Using Variables .................................................................................................................................................. 82
7.5 Using Subroutines ............................................................................................................................................. 82
7.6 Mixing Direct Mode and Standalone Mode ................................................................................................ 83
8 Life Support Policy ..................................................................................................................................................... 84
9 Revision History .......................................................................................................................................................... 85
9.1 Firmware Revision ............................................................................................................................................ 85
9.2 Document Revision ........................................................................................................................................... 85
10 References .................................................................................................................................................................... 85
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 4
1 Features
The TMCM-1140 is a single axis controller/driver module for 2-phase bipolar stepper motors with state of the art feature set. It is highly integrated, offers a convenient handling and can be used in many decentralized applications. The module can be mounted on the back of NEMA 17 (42mm flange size) stepper motors and has been designed for coil currents up to 2 A RMS and 24 V DC supply voltage. With its
high energy efficiency from TRINAMIC’s coolStep™ technology cost for power consumption is kept down. The
TMCL™ firmware allows for both, standalone operation and direct mode.
MAIN CHARACTERISTICS
Motion controller
- Motion profile calculation in real-time
- On the fly alteration of motor parameters (e.g. position, velocity, acceleration)
- High performance microcontroller for overall system control and serial communication protocol
handling
Bipolar stepper motor driver
- Up to 256 microsteps per full step
- High-efficient operation, low power dissipation
- Dynamic current control
- Integrated protection
- stallGuard2 feature for stall detection
- coolStep feature for reduced power consumption and heat dissipation
Encoder
- sensOstep magnetic encoder (1024 increments per rotation) e.g. for step-loss detection under all
operating conditions and positioning supervision
Interfaces
- RS485 2-wire communication interface
- CAN 2.0B communication interface
- USB full speed (12Mbit/s) device interface
- 4 multipurpose inputs:
- 3x general-purpose digital inputs
(Alternate functions: STOP_L / STOP_R / HOME switch inputs or A/B/N encoder input)
- 1x dedicated analog input
- 2 general purpose outputs
- 1x open-drain 1A max.
- 1x +5V supply output (can be switched on/off in software)
Software
- TMCL: standalone operation or remote controlled operation,
program memory (non volatile) for up to 2048 TMCL commands, and PC-based application development software TMCL-IDE available for free.
Electrical and mechanical data
- Supply voltage: +24 V DC nominal (9… 28 V DC)
- Motor current: up to 2 A RMS / 2.8 A peak (programmable)
Refer to separate Hardware Manual, too.
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 5
Load [Nm]
stallGuard2
Initial stallGuard2 (SG) value: 100%
Max. load
stallGuard2 (SG) value: 0 Maximum load reached. Motor close to stall.
Motor stalls
0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
0 50 100 150 200 250 300 350
Efficiency
Velocity [RPM]
Efficiency with coolStep
Efficiency with 50% torque reserve
TRINAMICS UNIQUE FEATURES EASY TO USE WITH TMCL
stallGuard2 stallGuard2 is a high-precision sensorless load measurement using the back EMF on the
coils. It can be used for stall detection as well as other uses at loads below those which stall the motor. The stallGuard2 measurement value changes linearly over a wide range of load, velocity, and current settings. At maximum motor load, the value goes to zero or near to zero. This is the most energy-efficient point of operation for the motor.
Figure 1.1 stallGuard2 load measurement SG as a function of load
coolStep coolStep is a load-adaptive automatic current scaling based on the load measurement via
stallGuard2 adapting the required current to the load. Energy consumption can be reduced by as much as 75%. coolStep allows substantial energy savings, especially for motors which see varying loads or operate at a high duty cycle. Because a stepper motor application needs to work with a torque reserve of 30% to 50%, even a constant-load application allows significant energy savings because coolStep automatically enables torque reserve when required. Reducing power consumption keeps the system cooler, increases motor life, and allows reducing cost.
www.trinamic.com
Figure 1.2 Energy efficiency example with coolStep
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 6
In/Out
Interface
USB
Motor
1
Motor
1
USB
Serial USB
interface
Converter
e.g. USB-2-485
USB
RS
485
CAN
Converter
e.g. USB-2-X
CAN Pin 6 CAN_L Pin 5 CAN_H Pin 1 GND
RS485 Pin 4 RS485­Pin 3 RS485+ Pin 1 GND
Power supply Pin 2 928V DC Pin 1 GND
Note, that the GND pin has to be used for power supply and for the interfaces also.
PRECAUTIONS
Do not connect or disconnect the TMCM-1140 while powered! Do not connect or disconnect the motor while powered! Do not exceed the maximum power supply voltage of 28 V DC! Note, that the module is not protected against reverse polarity! START WITH POWER SUPPLY OFF!
2 Putting the Module into Operation
Here you can find basic information for putting your TMCM-1140 into operation. If you are already common with TRINAMICs modules you may skip this chapter.
The things you need:
- TMCM-1140
- Interface (RS485/CAN/USB) suitable to your module with cables
- Nominal supply voltage +24V DC for your module
- TMCL-IDE program and PC
- Stepper motor
2.1 Basic Set-Up
The following paragraph will guide you through the steps of connecting the unit and making first movements with the motor.
CONNECTING THE MODULE
Figure 2.1: Starting up
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 7
Pin
Label
Description
1
GND
System and signal ground
2
VDD
VDD (+9V…+28V)
3
RS485+
RS485 interface, diff. signal (non-inverting)
4
RS485-
RS485 interface, diff. signal (inverting)
5
CAN_H
CAN interface, diff. signal (non-inverting)
6
CAN_L
CAN interface, diff. signal (inverting)
Pin
Label
Description
1
VBUS
+5V power
2
D-
Data –
3
D+
Data +
4
ID
ground
5
GND
ground
Pin
Label
Description
1
GND
System and signal ground
2
VDD
VDD, connected to VDD pin of the power and communication connector
3
OUT_1
Open-drain output (max. 1A) Integrated freewheeling diode to VDD
4
OUT_0
+5V supply output (max. 100mA) Can be switched on/off in software
5
AIN_0
Dedicated analog input, Input voltage range: 0..+10V Resolution: 12bit (0..4095)
6
IN_0, STOP_L, ENC_A
General purpose digital input (+24V compatible)
Alternate function 1: left stop switch input
Alternate function 2: external incremental encoder channel A input
7
IN_1, STOP_R, ENC_B
General purpose digital input (+24V compatible)
Alternate function 1: right stop switch input
Alternate function 2: external incremental encoder channel B input
8
IN_2, HOME, ENC_N
General purpose digital input (+24V compatible)
Alternate function 1: home switch input
Alternate function 2: external incremental encoder index / zero channel input
Pin
Label
Description
1
OB2
Pin 2 of motor coil B
2
OB1
Pin 1 of motor coil B
3
OA2
Pin 2 of motor coil A
4
OA1
Pin 1 of motor coil A
1. Connect power supply and choose your interface
a) Connect CAN or RS485 and power supply
CAN interface will be de-activated in case USB is connected due to internal sharing of hardware resources.
b) Connect USB interface (as alternative to CAN and RS485; use a normal USB cable)
Download and install the file TMCM-1140.inf (www.trinamic.com).
2. Connect In/Out connector
If you like to work with the GPIOs or switches, use the In/Out connector.
3. Connect the motor
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 8
4. Switch ON the power supply
Turn power ON. The green LED for power lights up and the motor is powered but in standstill now.
If this does not occur, switch power OFF and check your connections as well as the power supply.
2.1.1 Start the TMCL-IDE Software Development Environment
The TMCL-IDE is available on www.trinamic.com.
Installing the TMCL-IDE: Make sure the COM port you intend to use is not blocked by another program. Open TMCL-IDE by clicking TMCL.exe. Choose Setup and Options and thereafter the Connection tab. Choose COM port and type with the parameters shown in Figure 2.2 (baud rate 9600). Click OK.
USB interface If the file TMCM-1140.inf is installed correctly, the module will be identified automatically.
Figure 2.2 Setup dialogue and connection tab of the TMCL-IDE.
Please refer to the TMCL-IDE User Manual for more information (see www.TRINAMIC.com).
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 9
Direct Mode
2.2 Using TMCL Direct Mode
1. Start TMCL Direct Mode.
2. If the communication is established the TMCM-1140 is automatically detected. If the module is not
detected, please check all points above (cables, interface, power supply, COM port, baud rate).
3. Issue a command by choosing Instruction, Type (if necessary), Motor, and Value and click
Execute to send it to the module.
Examples:
- ROR rotate right, motor 0, value 500 -> Click Execute. The motor is rotating now.
- MST motor stop, motor 0 -> Click Execute. The motor stops now.
Top right of the TMCL Direct Mode window is the button Copy to editor. Click here to copy the chosen command and create your own TMCL program. The command will be shown immediately on the editor.
Note: Chapter 4 of this manual (axis parameters) includes a diagram which points out the coolStep related axis parameters and their functions.
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 10
Number
Axis Parameter
Description
Range [Unit]
4
Maximum positioning speed
Should not exceed the physically highest possible value. Adjust the pulse divisor (axis parameter 154), if the speed value is very low (<50) or above the upper limit.
0… 2047


 



5
Maximum acceleration
The limit for acceleration (and deceleration). Changing this parameter requires re-calculation of the acceleration factor (no. 146) and the acceleration divisor (no. 137), which is done automatically. See TMC 429 datasheet for calculation of physical units.
0… 2047*1
6
Absolute max. current (CS / Current Scale)
The maximum value is 255. This value means 100% of the maximum current of the module. The current
adjustment is within the range 0… 255 and can be
adjusted in 32 steps.
The most important motor setting, since too high values might cause motor damage!
0… 7
79…87
160… 167
240… 247
8… 15
88… 95
168… 175
248… 255
16… 23
96… 103
176… 183
24… 31
104… 111
184… 191
32… 39
112… 119
192… 199
40… 47
120… 127
200… 207
48… 55
128… 135
208… 215
56… 63
136… 143
216… 223
64… 71
144… 151
224… 231
72… 79
152… 159
232… 239
0… 255

  



  


7
Standby current
The current limit two seconds after the motor has stopped.
0… 255

  



  


140
Microstep resolution
0
full step
1
half step
2
4 microsteps
3
8 microsteps
4
16 microsteps
5
32 microsteps
6
64 microsteps
7
128 microsteps
8
256 microsteps
0… 8
Attention: The most important motor setting is the absolute maximum motor current setting, since too high values might cause motor damage!
2.2.1 Important Motor Settings
There are some axis parameters which have to be adjusted right in the beginning after installing your module. Please set the upper limiting values for the speed (axis parameter 4), the acceleration (axis parameter 5), and the current (axis parameter 6). Further set the standby current (axis parameter 7) and choose your microstep resolution with axis parameter 140. Please use the SAP (Set Axis Parameter) command for adjusting these values. The SAP command is described in paragraph 3.6.5. You can use the TMCL-IDE direct mode for easily configuring your module.
IMPORTANT AXIS PARAMETERS FOR MOTOR SETTING
*1 Unit of acceleration:





www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 11
Assemble
Download Run
Stop
ROL 0, 500 //Rotate motor 0 with speed 10000 WAIT TICKS, 0, 500 MST 0 ROR 0, 500 //Rotate motor 0 with 50000 WAIT TICKS, 0, 500 MST 0
SAP 4, 0, 500 //Set max. Velocity SAP 5, 0, 50 //Set max. Acceleration Loop: MVP ABS, 0, 10000 //Move to Position 10000 WAIT POS, 0, 0 //Wait until position reached MVP ABS, 0, -10000 //Move to Position -10000 WAIT POS, 0, 0 //Wait until position reached JA Loop //Infinite Loop
2.3 Testing with a Simple TMCL Program
Type in the following program:
1. Click the Assemble icon to convert the TMCL program into binary code.
2. Then download the program to the TMCM-1140 module by clicking the Download icon.
3. Click the Run icon. The desired program will be executed.
4. Click the Stop button to stop the program.
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 12
Bytes
Meaning
1
Module address
1
Command number
1
Type number
1
Motor or Bank number
4
Value (MSB first!)
1
Checksum
3 TMCL and the TMCL-IDE: Introduction
As with most TRINAMIC modules the software running on the microprocessor of the TMCM-1140 consists of two parts, a boot loader and the firmware itself. Whereas the boot loader is installed during production and testing at TRINAMIC and remains untouched throughout the whole lifetime, the firmware can be updated by the user. New versions can be downloaded free of charge from the TRINAMIC website (http://www.trinamic.com).
The TMCM-1140 supports TMCL direct mode (binary commands) and standalone TMCL program execution. You can store up to 2048 TMCL instructions on it. In direct mode and most cases the TMCL communication over RS485, CAN, or USB follows a strict master/slave relationship. That is, a host computer (e.g. PC/PLC) acting as the interface bus master will send a command to the TMCM-1140. The TMCL interpreter on the module will then interpret this command, do the initialization of the motion controller, read inputs and write outputs or whatever is necessary according to the specified command. As soon as this step has been done, the module will send a reply back over RS485/CAN/USB to the bus master. Only then should the master transfer the next command. Normally, the module will just switch to transmission and occupy the bus for a reply, otherwise it will stay in receive mode. It will not send any data over the interface without receiving a command first. This way, any collision on the bus will be avoided when there are more than two nodes connected to a single bus.
The Trinamic Motion Control Language [TMCL] provides a set of structured motion control commands. Every motion control command can be given by a host computer or can be stored in an EEPROM on the TMCM module to form programs that run standalone on the module. For this purpose there are not only motion control commands but also commands to control the program structure (like conditional jumps, compare and calculating).
Every command has a binary representation and a mnemonic. The binary format is used to send commands from the host to a module in direct mode, whereas the mnemonic format is used for easy usage of the commands when developing standalone TMCL applications using the TMCL-IDE (IDE means Integrated Development Environment).
There is also a set of configuration variables for the axis and for global parameters which allow individual configuration of nearly every function of a module. This manual gives a detailed description of all TMCL commands and their usage.
3.1 Binary Command Format
Every command has a mnemonic and a binary representation. When commands are sent from a host to a module, the binary format has to be used. Every command consists of a one-byte command field, a one­byte type field, a one-byte motor/bank field and a four-byte value field. So the binary representation of a command always has seven bytes. When a command is to be sent via RS485 or USB interface, it has to be enclosed by an address byte at the beginning and a checksum byte at the end. In this case it consists of nine bytes.
This is different when communicating is via the CAN bus. Address and checksum are included in the CAN standard and do not have to be supplied by the user.
The binary command format for R485/USB is as follows:
- The checksum is calculated by adding up all the other bytes using an 8-bit addition.
- When using CAN bus, just leave out the first byte (module address) and the last byte (checksum).
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 13
Bytes
Meaning
1
Reply address
1
Module address
1
Status (e.g. 100 means no error)
1
Command number
4
Value (MSB first!)
1
Checksum
3.1.1 Checksum Calculation
As mentioned above, the checksum is calculated by adding up all bytes (including the module address byte) using 8-bit addition. Here are two examples to show how to do this:
- in C:
unsigned char i, Checksum; unsigned char Command[9];
//Set the “Command” array to the desired command Checksum = Command[0]; for(i=1; i<8; i++)
Checksum+=Command[i];
Command[8]=Checksum; //insert checksum as last byte of the command
//Now, send it to the module
- in Delphi:
var i, Checksum: byte; Command: array[0..8] of byte;
//Set the “Command” array to the desired command
//Calculate the Checksum: Checksum:=Command[0]; for i:=1 to 7 do Checksum:=Checksum+Command[i]; Command[8]:=Checksum; //Now, send the “Command” array (9 bytes) to the module
3.2 Reply Format
Every time a command has been sent to a module, the module sends a reply.
The reply format for RS485/ /USB is as follows:
- The checksum is also calculated by adding up all the other bytes using an 8-bit addition.
- When using CAN bus, just leave out the first byte (module address) and the last byte (checksum).
- Do not send the next command before you have received the reply!
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 14
Code
Meaning
100
Successfully executed, no error
101
Command loaded into TMCL program EEPROM
1
Wrong checksum
2
Invalid command
3
Wrong type
4
Invalid value
5
Configuration EEPROM locked
6
Command not available
3.2.1 Status Codes
The reply contains a status code. The status code can have one of the following values:
3.3 Standalone Applications
The module is equipped with a TMCL memory for storing TMCL applications. You can use TMCL-IDE for developing standalone TMCL applications. You can download a program into the EEPROM and afterwards it will run on the module. The TMCL-IDE contains an editor and the TMCL assembler where the commands can be entered using their mnemonic format. They will be assembled automatically into their binary representations. Afterwards this code can be downloaded into the module to be executed there.
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 15
Command
Number
Parameter
Description
ROR
1
<motor number>, <velocity>
Rotate right with specified velocity
ROL
2
<motor number>, <velocity>
Rotate left with specified velocity
MST
3
<motor number>
Stop motor movement
MVP
4
ABS|REL|COORD, <motor number>, <position|offset>
Move to position (absolute or relative)
SAP
5
<parameter>, <motor number>, <value>
Set axis parameter (motion control specific settings)
GAP
6
<parameter>, <motor number>
Get axis parameter (read out motion control specific settings)
STAP
7
<parameter>, <motor number>
Store axis parameter permanently (non volatile)
RSAP
8
<parameter>, <motor number>
Restore axis parameter
SGP
9
<parameter>, <bank number>, value
Set global parameter (module specific settings e.g. communication settings or TMCL™ user variables)
GGP
10
<parameter>, <bank number>
Get global parameter (read out module specific settings e.g. communication settings or TMCL™ user variables)
STGP
11
<parameter>, <bank number>
Store global parameter (TMCL™ user
variables only)
RSGP
12
<parameter>, <bank number>
Restore global parameter (TMCL™ user variable only)
RFS
13
START|STOP|STATUS, <motor number>
Reference search
SIO
14
<port number>, <bank number>, <value>
Set digital output to specified value
GIO
15
<port number>, <bank number>
Get value of analogue/digital input
CALC
19
<operation>, <value>
Process accumulator & value
COMP
20
<value>
Compare accumulator <-> value
JC
21
<condition>, <jump address>
Jump conditional
JA
22
<jump address>
Jump absolute
CSUB
23
<subroutine address>
Call subroutine
RSUB
24 Return from subroutine
EI
25
<interrupt number>
Enable interrupt
DI
26
<interrupt number>
Disable interrupt
WAIT
27
<condition>, <motor number>, <ticks>
Wait with further program execution
STOP
28 Stop program execution
SCO
30
<coordinate number>, <motor number>, <position>
Set coordinate GCO
31
<coordinate number>, <motor number>
Get coordinate
CCO
32
<coordinate number>, <motor number>
Capture coordinate
CALCX
33
<operation>
Process accumulator & X-register
AAP
34
<parameter>, <motor number>
Accumulator to axis parameter
AGP
35
<parameter>, <bank number>
Accumulator to global parameter
VECT
37
<interrupt number>, <label>
Set interrupt vector
RETI
38 Return from interrupt
ACO
39
<coordinate number>, <motor number>
Accu to coordinate
3.4 TMCL Command Overview
In this section a short overview of the TMCL commands is given.
3.4.1 TMCL Commands
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 16
Mnemonic
Command number
Meaning
ROL
2
Rotate left
ROR
1
Rotate right
MVP
4
Move to position
MST
3
Motor stop
RFS
13
Reference search
SCO
30
Store coordinate
CCO
32
Capture coordinate
GCO
31
Get coordinate
Mnemonic
Command number
Meaning
JA
22
Jump always
JC
21
Jump conditional
COMP
20
Compare accumulator with constant value
CSUB
23
Call subroutine
RSUB
24
Return from subroutine
WAIT
27
Wait for a specified event
STOP
28
End of a TMCL™ program
Mnemonic
Command number
Meaning
SIO
14
Set output
GIO
15
Get input
Mnemonic
Command number
Meaning
SAP
5
Set axis parameter
GAP
6
Get axis parameter
STAP
7
Store axis parameter into EEPROM
RSAP
8
Restore axis parameter from EEPROM
SGP
9
Set global parameter
GGP
10
Get global parameter
STGP
11
Store global parameter into EEPROM
RSGP
12
Restore global parameter from EEPROM
3.4.2 Commands Listed According to Subject Area
3.4.2.1 Motion Commands
These commands control the motion of the motor. They are the most important commands and can be used in direct mode or in standalone mode.
3.4.2.2 Parameter Commands
These commands are used to set, read and store axis parameters or global parameters. Axis parameters can be set independently for each axis, whereas global parameters control the behavior of the module itself. These commands can also be used in direct mode and in standalone mode.
3.4.2.3 Control Commands
These commands are used to control the program flow (loops, conditions, jumps etc.). It does not make sense to use them in direct mode. They are intended for standalone mode only.
3.4.2.4 I/O Port Commands
These commands control the external I/O ports and can be used in direct mode and in standalone mode.
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 17
Mnemonic
Command number
Meaning
CALC
19
Calculate using the accumulator and a constant value
CALCX
33
Calculate using the accumulator and the X register
AAP
34
Copy accumulator to an axis parameter
AGP
35
Copy accumulator to a global parameter
ACO
39
Copy accu to coordinate
Mnemonic
Command number
Meaning
EI
25
Enable interrupt
DI
26
Disable interrupt
VECT
37
Set interrupt vector
RETI
38
Return from interrupt
3.4.2.5 Calculation Commands
These commands are intended to be used for calculations within TMCL applications. Although they could also be used in direct mode it does not make much sense to do so.
For calculating purposes there is an accumulator (or accu or A register) and an X register. When executed in a TMCL program (in standalone mode), all TMCL commands that read a value store the result in the accumulator. The X register can be used as an additional memory when doing calculations. It can be loaded from the accumulator.
When a command that reads a value is executed in direct mode the accumulator will not be affected. This means that while a TMCL program is running on the module (standalone mode), a host can still send commands like GAP and GGP to the module (e.g. to query the actual position of the motor) without affecting the flow of the TMCL™ program running on the module.
3.4.2.6 Interrupt Commands
Due to some customer requests, interrupt processing has been introduced in the TMCL firmware for ARM based modules.
3.4.2.6.1 Interrupt Types
There are many different interrupts in TMCL, like timer interrupts, stop switch interrupts, position reached interrupts, and input pin change interrupts. Each of these interrupts has its own interrupt vector. Each interrupt vector is identified by its interrupt number. Please use the TMCL included file Interrupts.inc for symbolic constants of the interrupt numbers.
3.4.2.6.2 Interrupt Processing
When an interrupt occurs and this interrupt is enabled and a valid interrupt vector has been defined for that interrupt, the normal TMCL program flow will be interrupted and the interrupt handling routine will be called. Before an interrupt handling routine gets called, the context of the normal program will be saved automatically (i.e. accumulator register, X register, TMCL flags).
There is no interrupt nesting, i.e. all other interrupts are disabled while an interrupt handling routine is being executed.
On return from an interrupt handling routine, the context of the normal program will automatically be restored and the execution of the normal program will be continued.
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 18
Interrupt number
Interrupt type
0
Timer 0
1
Timer 1
2
Timer 2
3
(Target) position reached
15
Stall (stallGuard2)
21
Deviation
27
Stop left
28
Stop right
39
IN_0 change
40
IN_1 change
255
Global interrupts
3.4.2.6.3 Interrupt Vectors
The following table shows all interrupt vectors that can be used.
3.4.2.6.4 Further Configuration of Interrupts
Some interrupts need further configuration (e.g. the timer interval of a timer interrupt). This can be done using SGP commands with parameter bank 3 (SGP <type>, 3, <value>). Please refer to the SGP command (paragraph 3.6.9) for further information about that.
3.4.2.6.5 Using Interrupts in TMCL
For using an interrupt proceed as follows:
- Define an interrupt handling routine using the VECT command.
- If necessary, configure the interrupt using an SGP <type>, 3, <value> command.
- Enable the interrupt using an EI <interrupt> command.
- Globally enable interrupts using an EI 255 command.
- An interrupt handling routine must always end with a RETI command
EXAMPLE FOR THE USE OF A TIMER INTERRUPT:
VECT 0, Timer0Irq //define the interrupt vector SGP 0, 3, 1000 //configure the interrupt: set its period to 1000ms EI 0 //enable this interrupt EI 255 //globally switch on interrupt processing
//Main program: toggles output 3, using a WAIT command for the delay Loop: SIO 3, 2, 1 WAIT TICKS, 0, 50 SIO 3, 2, 0 WAIT TICKS, 0, 50 JA Loop
//Here is the interrupt handling routine Timer0Irq: GIO 0, 2 //check if OUT0 is high JC NZ, Out0Off //jump if not SIO 0, 2, 1 //switch OUT0 high RETI //end of interrupt Out0Off: SIO 0, 2, 0 //switch OUT0 low RETI //end of interrupt
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 19
In the example above, the interrupt numbers are used directly. To make the program better readable use the provided include file Interrupts.inc. This file defines symbolic constants for all interrupt numbers which can be used in all interrupt commands. The beginning of the program above then looks like the following:
#include Interrupts.inc VECT TI_TIMER0, Timer0Irq SGP TI_TIMER0, 3, 1000 EI TI_TIMER0 EI TI_GLOBAL
Please also take a look at the other example programs.
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 20
3.5 The ASCII Interface
There is also an ASCII interface that can be used to communicate with the module and to send some commands as text strings.
THE FOLLOWING COMMANDS CAN BE USED IN ASCII MODE:
ROL, ROR, MST, MVP, SAP, GAP, STAP, RSAP, SGP, GGP, STGP, RSGP, RFS, SIO, GIO, SCO, GCO, CCO, UF0, UF1, UF2, UF3, UF4, UF5, UF6, and UF7.
Note: Only direct mode commands can be entered in ASCII mode!
SPECIAL COMMANDS WHICH ARE ONLY AVAILABLE IN ASCII MODE:
- BIN: This command quits ASCII mode and returns to binary TMCL™ mode.
- RUN: This command can be used to start a TMCL™ program in memory.
- STOP: Stops a running TMCL™ application.
ENTERING AND LEAVING ASCII MODE:
1. The ASCII command line interface is entered by sending the binary command 139 (enter ASCII mode).
2. Afterwards the commands are entered as in the TMCL-IDE.
3. For leaving the ASCII mode and re-enter the binary mode enter the command BIN.
3.5.1 Format of the Command Line
As the first character, the address character has to be sent. The address character is A when the module address is 1, B for modules with address 2 and so on. After the address character there may be spaces (but this is not necessary). Then, send the command with its parameters. At the end of a command line a <CR> character has to be sent.
EXAMPLES FOR VALID COMMAND LINES:
AMVP ABS, 1, 50000 A MVP ABS, 1, 50000 AROL 2, 500 A MST 1 ABIN
The command lines above address the module with address 1. To address e.g. module 3, use address character C instead of A. The last command line shown above will make the module return to binary mode.
3.5.2 Format of a Reply
After executing the command the module sends back a reply in ASCII format.
The reply consists of:
- the address character of the host (host address that can be set in the module)
- the address character of the module
- the status code as a decimal number
- the return value of the command as a decimal number
- a <CR> character
So, after sending AGAP 0, 1 the reply would be BA 100 –5000 if the actual position of axis 1 is –5000, the host address is set to 2 and the module address is 1. The value 100 is the status code 100 that means command successfully executed.
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 21
3.5.3 Configuring the ASCII Interface
The module can be configured so that it starts up either in binary mode or in ASCII mode. Global parameter 67 is used for this purpose (please see also chapter 5.1).
Bit 0 determines the startup mode: if this bit is set, the module starts up in ASCII mode, else it will start up in binary mode (default).
Bit 4 and Bit 5 determine how the characters that are entered are echoed back. Normally, both bits are set to zero. In this case every character that is entered is echoed back when the module is addressed. Character can also be erased using the backspace character (press the backspace key in a terminal program).
When bit 4 is set and bit 5 is clear the characters that are entered are not echoed back immediately but the entire line will be echoed back after the <CR> character has been sent.
When bit 5 is set and bit 4 is clear there will be no echo, only the reply will be sent. This may be useful in RS485 systems.
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 22
INSTRUCTION NO.
TYPE
MOT/BANK
VALUE
1
(don't care)
0*
<velocity>
0… 2047
STATUS
VALUE
100 – OK
(don't care)
Byte Index
0 1 2 3 4 5 6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$01
$00
$00
$00
$00
$01
$5e
3.6 Commands
The module specific commands are explained in more detail on the following pages. They are listed according to their command number.
3.6.1 ROR (rotate right)
With this command the motor will be instructed to rotate with a specified velocity in right direction (increasing the position counter).
Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #0 (target velocity).
The module is based on the TMC429 stepper motor controller and the TMC262 power driver. This makes possible choosing a velocity between 0 and 2047.
Related commands: ROL, MST, SAP, GAP
Mnemonic: ROR 0, <velocity>
Binary representation:
*motor number is always O as only one motor is involved
Reply in direct mode:
Example:
Rotate right, velocity = 350
Mnemonic: ROR 0, 350
Binary:
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 23
INSTRUCTION NO.
TYPE
MOT/BANK
VALUE
2
(don't care)
0*
<velocity>
0… 2047
STATUS
VALUE
100 – OK
(don't care)
Byte Index
0 1 2 3 4 5 6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$02
$00
$00
$00
$00
$04
$b0
3.6.2 ROL (rotate left)
With this command the motor will be instructed to rotate with a specified velocity (opposite direction compared to ROR, decreasing the position counter).
Internal function: First, velocity mode is selected. Then, the velocity value is transferred to axis parameter #0 (target velocity).
The module is based on the TMC429 stepper motor controller and the TMC262 power driver. This makes possible choosing a velocity between 0 and 2047.
Related commands: ROR, MST, SAP, GAP
Mnemonic: ROL 0, <velocity>
Binary representation:
*motor number is always O as only one motor is involved
Reply in direct mode:
Example:
Rotate left, velocity = 1200
Mnemonic: ROL 0, 1200
Binary:
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 24
INSTRUCTION NO.
TYPE
MOT/BANK
VALUE
3
(don't care)
0*
(don't care)
STATUS
VALUE
100 – OK
(don't care)
Byte Index
0 1 2 3 4 5 6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$03
$00
$00
$00
$00
$00
$00
3.6.3 MST (motor stop)
With this command the motor will be instructed to stop with a soft stop.
Internal function: The axis parameter target velocity is set to zero.
Related commands: ROL, ROR, SAP, GAP
Mnemonic: MST 0
Binary representation:
*motor number is always O as only one motor is involved
Reply in direct mode:
Example:
Stop motor
Mnemonic: MST 0
Binary:
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 25
INSTRUCTION NO.
TYPE
MOT/BANK
VALUE
4
0 ABS – absolute
0*
<position>
1 REL – relative
0
<offset>
2 COORD – coordinate
0
<coordinate number>
(0… 20)
STATUS
VALUE
100 – OK
(don't care)
Byte Index
0 1 2 3 4 5 6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$04
$00
$00
$00
$01
$5f
$90
3.6.4 MVP (move to position)
With this command the motor will be instructed to move to a specified relative or absolute position. It will use the acceleration/deceleration ramp and the positioning speed programmed into the unit. This command is non-blocking – that is, a reply will be sent immediately after command interpretation and initialization of the motion controller. Further commands may follow without waiting for the motor reaching its end position. The maximum velocity and acceleration are defined by axis parameters #4 and #5.
The range of the MVP command is 32 bit signed (−2.147.483.648… +2.147.483.647). Positioning can be
interrupted using MST, ROL or ROR commands.
THREE OPERATION TYPES ARE AVAILABLE:
- Moving to an absolute position in the range from −2.147.483.648… +2.147.483.647 (-2
- Starting a relative movement by means of an offset to the actual position. In this case, the new
resulting position value must not exceed the above mentioned limits, too.
- Moving the motor to a (previously stored) coordinate (refer to SCO for details).
Please note, that the distance between the actual position and the new one should not be more than
2.147.483.647 (231-1) microsteps. Otherwise the motor will run in the opposite direction in order to take the shorter distance.
Internal function: A new position value is transferred to the axis parameter #2 target position”.
Related commands: SAP, GAP, SCO, CCO, GCO, MST
Mnemonic: MVP <ABS|REL|COORD>, 0, <position|offset|coordinate number>
Binary representation:
31
… 231-1).
*motor number is always O as only one motor is involved
Reply in direct mode:
Example:
Move motor to (absolute) position 90000
Mnemonic: MVP ABS, 0, 9000
Binary:
www.trinamic.com
TMCM-1140 TMCL Firmware V1.19 Manual (Rev. 1.01 / 2012-JUL-27) 26
Byte Index
0 1 2 3 4 5 6
7
Function
Target-
address
Instructio
n
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$04
$01
$00
$ff
$ff
$fc
$18
Byte Index
0 1 2 3 4 5 6
7
Function
Target-
address
Instruction
Number
Type
Motor/
Bank
Operand
Byte3
Operand
Byte2
Operand
Byte1
Operand
Byte0
Value (hex)
$01
$04
$02
$00
$00
$00
$00
$08
Example:
Move motor from current position 1000 steps backward (move relative –1000)
Mnemonic: MVP REL, 0, -1000
Binary:
Example:
Move motor to previously stored coordinate #8
Mnemonic: MVP COORD, 0, 8
Binary:
When moving to a coordinate, the coordinate has to be set properly in advance with the help of the SCO, CCO or ACO command.
www.trinamic.com
Loading...
+ 59 hidden pages