Packaged Rooftop Air Conditioners
Precedent™ — Gas/Electric
5–10Tons–50Hz
Model Numbers
Only qualified personnel should install and service the equipment. The installation, starting up, and
servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific
knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could
result in death or serious injury.When working on the equipment, observe all precautions in the literature
and on the tags, stickers, and labels that are attached to the equipment.
September 2012RT-SVX38B-EN
YSC060ED - YSC120ED
SAFETY WARNING
Page 2
Warnings, Cautions and Notices
Warnings, Cautions and Notices. Note that warnings,
cautions and notices appear at appropriate intervals
throughout this manual. Warnings are provide to alert
installing contractors to potential hazards that could result
in death or personal injury. Cautions are designed to alert
personnel to hazardous situations that could result in
personal injury, while notices indicate a situation that
could result in equipment or property-damage-only
accidents.
Your personal safety and the proper operation of this
machine depend upon the strict observance of these
precautions.
Read this manual thoroughly before operating or servicing
this unit.
ATTENTION: Warnings, Cautions and Notices appear at
appropriate sections throughout this literature. Read
these carefully:
WARNING
CAUTIONs
NOTICE:
Indicates a potentially hazardous
situation which, if not avoided, could
result in death or serious injury.
Indicates a potentially hazardous
situation which, if not avoided, could
result in minor or moderate injury. It
could also be used to alert against
unsafe practices.
Indicates a situationthat could result in
equipment or property-damage only
Important
Environmental Concerns!
Scientific research has shown that certain man-made
chemicals can affect the earth’s naturally occurring
stratospheric ozone layer when released to the
atmosphere. In particular, several of the identified
chemicals that may affect the ozone layer are refrigerants
that contain Chlorine, Fluorine and Carbon (CFCs) and
those containing Hydrogen, Chlorine, Fluorine and
Carbon (HCFCs). Not all refrigerants containing these
compounds have the same potential impact to the
environment.Trane advocates the responsible handling of
all refrigerants-including industry replacements for CFCs
such as HCFCs and HFCs.
Responsible Refrigerant Practices!
Trane believes that responsible refrigerant practices are
important to the environment, our customers, and the air
conditioning industry. All technicians who handle
refrigerants must be certified.The Federal Clean Air Act
(Section 608) sets forth the requirements for handling,
reclaiming, recovering and recycling of certain
refrigerants and the equipment that is used in these
service procedures. In addition, some states or
municipalities may have additional requirements that
must also be adhered to for responsible management of
refrigerants. Know the applicable laws and follow them.
WARNING
Proper Field Wiring and Grounding
Required!
All field wiring MUST be performed by qualified
personnel. Improperly installed and grounded field
wiring poses FIRE and ELECTROCUTION hazards. To
avoid these hazards, you MUST follow requirements for
field wiring installation and grounding as described in
NEC and your local/state electrical codes. Failure to
follow code could result in death or serious injury.
WARNING
Personal Protective Equipment (PPE)
Required!
Installing/servicing this unit could result in exposure to
electrical, mechanical and chemical hazards.
•Before installing/servicing this unit, technicians
MUST put on all Personal Protective Equipment (PPE)
recommended for the work being undertaken.
ALWAYS refer to appropriateMSDS sheets and OSHA
guidelines for proper PPE.
•When working with or around hazardous chemicals,
ALWAYS refer to the appropriate MSDS sheets and
OSHA guidelines for information on allowable
personal exposure levels, proper respiratory
protection and handling recommendations.
•If there is a risk of arc or flash, technicians MUST put
on all Personal Protective Equipment (PPE) in
accordance with NFPA 70E or other country-specific
requirements for arc flash protection, PRIOR to
servicing the unit.
Failure to follow recommendations could result in death
or serious injury.
A Unpowered Convenience Outlet
B Powered Convenience Outlet
(three-phase only)
9
Digit 21 - Communications
Sensor
30
DCV
3
30
Options
0No Communications Interface
1 Trane Communications Interface
2LonTalk® Communications Interface
3Novar 2024 Controls
4Novar 3051 Controls without Zone
5Novar 3051Controls Interface with
6BACnet™ Communications Interface
Digit 22 - Refrigeration System
Option
0Standard Refrigeration System
B Dehumidification Option
Digit 23 - Refrigeration Controls
Note: Applicable to Digit7=E,F
0No Refrigeration Control
1Frostat
2Crankcase Heater
3Frostat
11 ,29
11 ,29
2
and Crankcase Heater
Digit 24 - Smoke Detector
0No Smoke Detector
A Return Air Smoke Detector
B Supply Air Smoke Detector
C Supply and Return Air Smoke
Detectors
12,13
D Plenum Smoke Detector
Digit 25 - System Monitoring
Controls
0No Monitoring Control
1Clogged Filter Switch
2Fan Failure Switch
3Discharge Air Sensing Tube
4Clogged Filter Switch and Fan
Failure Switch
5Clogged Filter Switch and Discharge
Air SensingTube
6Fan Failure Switch and Discharge Air
SensingTube
7Clogged Filter Switch, Fan Failure
Switch and Discharge Air
SensingTube
8Novar Return Air Sensor
(NOVAR 2024)
9Novar ZoneTemp Sensor
(NOVAR 3051)
A Condensate Drain Pan Overflow
Switch
B Clogged Filter Switch14and
Condensate Drain Pan Overflow
Switch
C Fan Failure Switch14and Condensate
Drain Pan Overflow Switch
D Discharge Air Sensing14and
Condensate Drain Pan Overflow
Switch
14
14
14
14
14
15,30
19,30
30
10
22,23
5
17
12,13
14
14
14
2
4RT-SVX38B-EN
Page 5
Model Number Description
14
E Clogged Filter Switch
Switch14and Condensate Drain Pan
Overflow Switch
FClogged Filter Switch14, Discharge
Air SensingTube14and Condensate
Drain Pan Overflow Switch
G Fan Failure Switch, Discharge Air
SensingTube14and Condensate
Drain Pan Overflow Switch
H Clogged Filter Switch14, Fan Failure
Switch14, Discharge Air Sensing
and Condensate Drain Pan Overflow
Switch
, Fan Failure
14
Digit 26 - System Monitoring
Controls
0No Monitoring Controls
A Demand Control Ventilation
31,32
(CO2)
Digit 27 - Unit Hardware
Enhancements
0No Enhancements
1Stainless Steel Drain Pan
Model Number Notes
1. Available on 3-5 ton models.
2. Standard on 4-5Ton E3,4,W and
6-10Ton Heat Pumps and all High
Efficiency models.
3. Not available with
electromechanical controls.
4. Manual outside air damper will
ship factory supplied within the
unit, but must be field installed.
5. High pressure controlis standard
on all units.
6. On 3-5 ton, multispeed direct
drive is standard on single phase
and 15 SEER. On 6-10 ton,
multispeed direct drive is
standard on all 10 ton and 7.5-8.5
ton high efficiency. Belt drive is
standard on all other units.
Digit 15 = 0
Standard Efficiency
1 Phase = High Efficiency Multispeed Direct
Drive Motor
3 Phase (3-8½ Ton) = Belt Drive
3 Phase (10 T on) = Ultra High Efficiency Direct
Drive Plenum Fan
High Efficiency
1 Phase = High Efficiency Multispeed Direct
Drive Motor
3 Phase (3-5 ton) = High Efficiency Multispeed
Direct Drive Motor
3 Phase (3-5 ton w/Dehumidification) = Belt
Drive Motor
3 Phase (7½-10 ton) = Ultra High Efficiency
Direct Drive Plenum Fan
7. Economizer with Barometric
Relief is for downflow configured
units only. Order Economizer
without Barometric Relief for
horizontal configuration.
Barometric Relief for horizontal
configured units must beordered
as field installed accessory.
8. Through the base electric
required when ordering
disconnect/circuit breaker
options.
9. Requires use of Disconnect or
Circuit Breaker.
Not Available
Standard Efficiency
10 Ton w/575V
High Efficiency
3-5 ton w/Standard Indoor Motor w/460V
10. Standard metering devices are
TXVs.
11. Frostat cannot be field installedin
electro-mechanical units.
12. The return air smoke detector
may not fitup or workproperly on
the Precedent units when used in
conjunction with 3rd party
accessories such as bolt on heat
wheels, economizers and power
exhaust. Do not order the return
air smoke detectors when using
this type of accessory.
13. Return Air Smoke Detector
cannot be ordered with Novar
Controls.
14. These options are standard when
ordering Novar Controls.
15. This option is used when
ordering Novar Controls.
16. Includes gas piping and shutoff
(field assembly required).
17. Not available with high
temperature duct sensor
accessory.
18. Digit 15 = 2
Standard Efficiency
1 Phase = Not Available
3 Phase = Not Available
High Efficiency
1 Phase = Not Available
3 Phase (3-5 ton) = May be Ordered
3 Phase (3-5 ton w/Dehumidification) = Not
Available
3 Phase (6-10 ton) = Not Available
19. Novar Sensor utilized with
Digit 21 = (4)Novar 3051 Controls
without Zone Sensor.
20. Available for 10 ton standard
efficiency models only.
21. Available for 3, 4, 5, 6, 7½, 8½ ton
standard/high efficiency models
only.
22. Requires selection of 2” Pleated
Filters (option B or C) for Digit 16.
23. Not available on 6 ton units and
all single phase or standard
efficiency.
24. Standard onYSC 6, 7½ (single
and dual systems), 8½, 10 ton
standard efficiency models and
YHC 4, 5, 6, 7½ ton highefficiency
models (except for
dehumidification models).
25. Epoxy coil and epoxy with
hailguard options are not
available for units with
microchannel condenser coil.
26. Single ZoneVAV is only available
on 7.5-10 ton high efficiency and
10 ton standard efficiency
products with ReliaTel™ controls.
27. Multi-speed indoor fan available
only on 7.5 & 8.5 ton high
efficiency, and 10 ton products
with ReliaTel™ controls.
28. Motorized Outside Air Damper is
not available on Multi-Speed or
SZVAV (Single Zone Variable Air
Volume) products.
29. Frostat standard on Multi-Speed
and SZVAV (Single ZoneVariable
Air Volume) products.
30. Novar is not available with SZVAV
products.
31. Demand Control Ventilation not
available with electromechanical
controls.
32. Demand Control Ventilation
Option includes wiring only.The
C0
sensor is afield-installed only
2
option.
RT-SVX38B-EN5
Page 6
General Information
Unit Inspection
As soon as the unit arrives at the job site
•Verify that the nameplate data matches the data on the
sales order and bill of lading (including electrical data).
•Verify that the power supply complies with the unit
nameplate specifications.
•Visually inspect the exterior of the unit, including the
roof, for signs of shipping damage.
If the job site inspection of the unit reveals damage or
material shortages, file a claim with the carrier
immediately.Specify the typeand extent ofthe damage on
the “bill of lading” before signing.
•Visually inspect the internal components for shipping
damage as soon as possible after delivery and before
it is stored. Do not walk on the sheet metal base pans.
•If concealed damage is discovered, notify the carrier’s
terminal of damage immediately by phone and by
mail. Concealed damage must be reported within 15
days.
•Request an immediate joint inspection of the damage
by the carrier and the consignee. Do not remove
damaged material from the receiving location.Take
photos of the damage, if possible.The owner must
provide reasonable evidence that the damage did not
occur after delivery.
•Notify the appropriate sales representative before
installing or repairing a damaged unit.
Compressor Nameplate
The nameplate forthe compressors are located onthe side
of the compressor.
Unit Description
Before shipment, each unit is leak tested, dehydrated,
charged with refrigerant and compressor oil, and run
tested for proper control operation.
The condenser coilsare either aluminum fin, mechanically
bonded to copper tubing or all aluminum microchannel.
Direct-drive, vertical discharge condenser fans are
provided with built-in thermal overload protection.
There are two control systems offered for these units.The
electromechanical control option uses a thermostat to
perform unit functions.The ReliaTel™ Control Module is a
microelectronic control system that is referred to as
“Refrigeration Module” (RTRM). The acronym RTRM is
used extensively throughout this document when
referring to the control system network.
These modules through Proportional/Integral control
algorithms perform specific unit functions that governs
unit operation inresponse to; zone temperature, supply air
temperature, and/or humidity conditions depending on
the application.The stages of capacity control for these
units are achieved by starting and stopping the
compressors.
The RTRM is mounted in the control panel and is factory
wired to the respective internal components.The RTRM
receives and interprets information from other unit
modules, sensors, remote panels, and customer binary
contacts to satisfy the applicable request for cooling.
Storage
Take precautions to prevent condensate from forming
inside the unit’s electrical compartments and motors if:
1. The unit is stored before it is installed; or,
2. The unit is set on the roof curb, and temporary heat is
provided in the building. Isolate all side panel service
entrances and base pan openings (e.g., conduit holes,
Supply Air and Return Air openings, and flue
openings) from the ambient air until the unit is ready
for start-up.
Note: Do not use the unit’s heater for temporary heat
without first completing the start-up procedure
detailed under “Unit Start-Up,” p. 32.
The manufacturer will not assume any responsibility for
equipment damage resulting from condensate
accumulation on the unit’s electrical and/or mechanical
components.
Unit Nameplate
A Mylar unit nameplate is located on the unit’s corner
support next to the filter access panel. It includes the unit
model number, serial number, electrical characteristics,
refrigerant charge, as well as other pertinent unit data.
Economizer Control Actuator (Optional)
ReliaTel™ Control
The ECA monitors the mixed air temperature, return air
temperature, minimum position setpoint (local or
remote), power exhaust setpoint, CO
ambient dry bulb/enthalpy sensor or comparative
humidity (return air humidity against ambient humidity)
sensors, if selected, to control dampers to an accuracy of
+/- 5% of stroke.The actuator is spring returned to the
closed position any time that power is lost to the unit. It is
capable of delivering up to 25 inch pounds of torque and
is powered by 24 VAC.
RTCI - ReliaTel™ Trane Communication
Interface (Optional)
This module is used when the application calls for an
ICSTM building management type control system. It
allows the control and monitoring of the system through
an ICS panel.The module can be ordered from the factory
or ordered as a kit to be field installed. Follow the
installation instruction that ships with each kit when field
installation is necessary.
setpoint, CO2, and
2
6RT-SVX38B-EN
Page 7
General Information
RLCI - ReliaTel™ LonTalk® Communication
Interface (Optional)
This module is used when the application calls for an
ICSTM building management type control system that is
LonTalk. Itallows the control and monitoringof the system
through an ICS panel.The module can be ordered from the
factory or ordered as a kit to be field installed. Follow the
installation instruction that ships with each kit when field
installation is necessary.
This module is used when the application calls for anopen
BACnet protocol. It allows the control and monitoring of
the system through an ICS panel.The module can be
ordered from the factory or as a kit to be field installed.
Follow the installation instructions that ships with each kit
when field installation is necessary.
RTOM - ReliaTel™ Options Module (Optional)
The RTOMmonitors the supply fan proving, cloggedfilter,
supply air temperature, exhaust fan setpoint, supply air
tempering, Frostat™ and smoke detector. Refer to system
input devices and functions for operation.
System Input Devices & Functions
The RTRM must have a zone sensor or thermostat input in
order to operate the unit.The flexibility of having several
mode capabilities dependsupon the type of zone sensor or
thermostat selected to interface with the RTRM.
The descriptions of the following basic InputDevices used
within the RTRM network are to acquaint the operator with
their function as they interface with the various modules.
Refer to the unit’s electrical schematic for the specific
module connections.
The following controls are available from the factory for
field installation.
Supply Fan Failure Input (Optional)
The Fan Failure Switch can be connected to sense indoor
fan operation:
FFS (Fan Failure Switch) If air flow through the unit is not
proven by the differential pressure switch connected to the
RTOM (factory set point 0.07 “w.c.) within 40 seconds
nominally, the RTRM will shut off all mechanical
operations, lock the system out, send a diagnostic to ICS,
and the SERVICE output will flash.The system will remain
locked out until a reset is initiated either manually or
through ICS.
Clogged Filter Switch (Optional)
The unit mounted clogged filter switch monitors the
pressure differential across the return air filters. It is
mounted in the filter section and is connected to the
RTOM. A diagnostic SERVICE signal is sent to the remote
panel if the pressure differential across the filters is at least
0.5" w.c.The contacts will automatically open when the
pressure differential across the filters decreases to
approximately 0.4" w.c.The clogged filter output is
energized when the supply fan is operating and the
clogged filter switch has been closedfor at least 2 minutes.
The system will continue to operate regardless of the
status of the filter switch.
Note: On units equipped with factory installed MERV 13
filters, a clogged filter switch with different
pressure settings will be installed. This switch will
close when the differential pressure is
approximately 0.8' w.c. and open when the
differential falls to 0.7" w.c.
Condensate Drain Pan Overflow Switch
(Optional)
ReliaTel Option
This input incorporates the Condensate Overflow Switch
(COF) mounted on the drain pan and the ReliaTel Options
Module (RTOM).When the condensate level reaches the
trip point for 6 continuous seconds, the RTOM will shut
down all unit functions until the overflow condition has
cleared.The unit will return to normal operation after 6
continuous seconds with the COF in a non-tripped
condition. If the condensate level causes unit shutdown
more than 2 times in a 3 days period, the unit will be
locked-out of operation requiring manual reset of
diagnostic system through Zone Sensor or Building
Automation System (BAS). Cycling unit power will also
clear the fault.
Compressor Disable (CPR1/2)
This input incorporates the low pressure control (LPC) of
each refrigeration circuit and can be activated by opening
a field supplied contact installed on the LTB.
If this circuit is open before the compressor is started, the
compressor will not be allowed to operate. Anytime this
circuit is opened for 1 continuous second during
compressor operation, the compressor for that circuit is
immediately turned “Off”. The compressor will not be
allowed to restart for a minimum of 3 minutes should the
contacts close.
If four consecutive open conditions occur during the first
three minutes of operation,the compressor for that circuit
will be locked out, a diagnostic communicated to the
remote panel (if installed), and a manual reset will be
required to restart the compressor.
Low Pressure Control
ReliaTel Control
When the LPC is opened for 1 continuous second, the
compressor for that circuit is turned off immediately.The
compressor will not be allowed to restart for a minimum
of 3 minutes.
If four consecutive open conditions occur during an active
call for cooling, the compressor will be locked out, a
diagnostic communicated to ICS™, if applicable, and a
RT-SVX38B-EN7
Page 8
General Information
manual reset required to restart the compressor. On dual
compressor units only the affected compressor circuit is
locked out.
High Pressure Control
ReliaTel Control
The high pressure controls are wiredin series between the
compressor outputs on the RTRM and the compressor
contactor coils. If the high pressure control switch opens,
the RTRM senses a lack of current while calling for cooling
and locks the compressor out.
If four consecutive open conditions occur during an active
call for cooling, the compressor will be locked out, a
diagnostic communicated to ICS™, if applicable, and a
manual reset required to restart the compressor. On dual
compressor units only the affected compressor circuit is
locked out.
Lead/Lag Control (Dual Circuit Only)
ReliaTel Control Only
Lead/Lag is a selectable input located on the RTRM.The
RTRM is configured from the factory with the Lead/Lag
control disabled.To activate the Lead/Lag function, simply
cut the wire connected to J3-8 at the RTRM. When it is
activated, each time the designated lead compressor is
shut off due to the load being satisfied, the lead
compressor or refrigeration circuit switches. When the
RTRM is powered up, i.e. after a power failure, the control
will default to the number one circuit compressor.
Zone Sensor Module (ZSM) (BAYSENS106*)
This electronic sensor features three system switch
settings (Heat, Cool, and Off) and two fan settings (On and
Auto). It is a manual changeover control with single
setpoint. (Cooling Setpoint Only)
Zone Sensor Module (ZSM) (BAYSENS108*)
This electronic sensorfeatures four system switch settings
(Heat, Cool, Auto, and Off) and two fan settings (On and
Auto). It is a manual or auto changeover control with dual
setpoint capability. It can be used with a remote zone
temperature sensor BAYSENS077*.
Zone Sensor (BAYSENS110*)
This electronic sensorfeatures four system switch settings
(Heat, Cool, Auto, and Off) and two fan settings (On and
Auto) with four system status LED’s. It is a manual or auto
changeover control with dual setpoint capability. It can be
used with a remote zone temperature sensor
BAYSENS077*.
Programmable Zone Sensor - (BAYSENS119*)
This 7 day programmable sensor features 2, 3 or 4 periods
for Occupied or Unoccupied programming per day. If the
power is interrupted, the program is retained in
permanent memory. If power is off for an extended period
of time, only the clock and day may have to be reset.
The Zone Sensor allows selection of 2, 3 or 4 system
modes (Heat, Cool,Auto, and Off), two fan modes (On and
Auto). It has dual temperature selection with
programmable start time capability.
The occupied cooling set point ranges between 45 and 98
º F. The heating set point ranges between 43 and 96ºF.
A liquid crystal display (LCD) displays zone temperature,
temperature set points, day of the week, time, and
operational mode symbols.
The Option Menu is used to enable or disable applicable
functions, i.e.; Morning Warm-up, Economizer minimum
position override during unoccupied status, Fahrenheit or
Centigrade, Supply air tempering, Remote zone
temperature sensor, 12/24 hour time display, Smart fan,
and Computed recovery.
During an occupied period, an auxiliary relay ratedfor 1.25
amps @ 30 volts AC with one set of single pole double
throw contacts is activated.
Status Inputs (4 Wires Optional)
The ZSM can be wired to receive four (4) operating status
signals from the RTRM (HEAT, COOL, SYSTEM “ON”,
SERVICE).
Four (4) wires from the RTRM should be connected to the
appropriate terminals (7, 8,9&10)ontheZSM.
Remote Zone Sensor (BAYSENS073*)
This electronic sensor features remote zone sensing and
timed override with override cancellation. It is used with a
Trane Integrated Comfort™ building management
system.
Remote Zone Sensor (BAYSENS074*)
This electronic sensor features single setpoint capability
and timed override with override cancellation. It is used
with aTrane Integrated Comfort™ building management
system.
Remote Zone Sensor (BAYSENS016*)
This bullet type temperature sensor can be used for
outside air (ambient) sensing, return air temperature
sensing, supply air temperature sensing, remote
temperature sensing (uncovered). Wiring proceduresvary
according to the particular application and equipment
involved. Refer to the unit’s wiring diagrams for proper
connections.
Remote Zone Sensor (BAYSENS077*)
This electronic sensor can be used with BAYSENS106*,
108*, 110*, 119* Remote Panels.When this sensor is wired
to a BAYSENS119* Remote Panel, wiring must be 18 AWG
ShieldedTwisted Pair (Belden 8760 or equivalent). Refer to
the specific Remote Panel for wiring details.
Wireless Zone Sensor (BAYSENS050)
This electronic sensor features five system settings (Auto,
Off, Cool, Heat, and Emergency Heat) and with On and
8RT-SVX38B-EN
Page 9
Auto fan settings. It is amanual or auto changeover control
with dual setpoint capability. Other features include a
timed override function, lockable system settings, and
Fahrenheit or Celsius temperature display. Included with
the wireless zone sensor will be a receiver that is to be
mounted inside the unit, a mounting bracket, and a wire
harness.
High Temperature Sensor (BAYFRST001*)
This sensor connects to the RTRM Emergency Stop Input
on the LTB andprovides high limit “shutdown” of the unit.
The sensor is used to detect high temperatures due to a
high thermal event in the air conditioning or ventilation
ducts.The sensor is designed to mount directly to the
sheet metal duct. Each kit contains two sensors.The return
air duct sensor (X1310004001) is set to open at 135ºF. The
supply air duct sensor (X1310004002) is set to open at
240ºF. The control can be reset after the temperature has
been lowered approximately 25ºF below the cutout
setpoint.
Evaporator Frost Control
ReliaTel™ Option
This input incorporates the Frostat™ control (FOS)
mounted in the indoor coil circuit and can be activated by
closing a field supplied contact installed in parallel with
the FOS.
If this circuit is open before the compressor is started, the
compressor will not be allowed to operate. Anytime this
circuit is opened for 1 continuous second during
compressor operation, the compressor for that circuit is
immediately turned “Off”. The compressor will not be
allowed to restart for a minimum of 3 minutes should the
FOS close.
General Information
Discharge LineTemp Switch (DLTS)
The DLTS is looped in series with HPC and LPC. It prevents
compressor from overheating (over 300 Fº dome temp) in
case of indoor fan failure (cooling) or outdoor fan failure
(heating).
Phase Monitor
This sensor monitors voltage between the 3 conductors of
the 3 phase power supply.Two LED lights are provided:
• The green light indicates that a balanced 3 phase
supply circuit is properly connected.
• The red light indicates that unit operation has been
prevented.There are two conditions that will prevent
unit operation:
• The power supply circuit is not balanced with the
proper phase sequence of L1, L2, L3 for the 3
conductors of a 3 phase circuit.
• The line to line voltage is not between 180 volts and
633 volts.
RT-SVX38B-EN9
Page 10
Unit Dimensions
Figure 1 illustrates the minimum operating and service
clearances for either a single or multiple unit installation.
These clearances are the minimum distancesnecessary to
assure adequate serviceability, cataloged unit capacity,
and peak operating efficiency.
Figure 1.Typical installation clearances for single & multiple unit applications
Providing less than the recommended clearances may
result in condenser coil starvation, “short-circuiting” of
exhaust and economizer airflows, or recirculation of hot
condenser air.
YSC060ED
10RT-SVX38B-EN
YSC072-120ED
Page 11
Figure 2.5 tons standard efficiency
44MMMM
44MMMM
1038MMMM
1053MMMM
Notes:
1. All dimensions are in inches/millimeters.
2. ½ NPT Gas Connection
Unit Dimensions
Figure 3.5 tons standard efficiency - roof curb
Note: All dimensions are in inches/millimeters.
44
44
7
1038
1053
RT-SVX38B-EN11
Page 12
Unit Dimensions
Figure 4.5 tons standard efficiency - unit clearance and roof opening
Note: All dimensions are in inches/millimeters.
CLEARANCE 36” (914 MM)
Figure 5.6, 7½ tons standard efficiency
Note: All dimensions are in inches/millimeters.
12RT-SVX38B-EN
Page 13
Figure 6.6, 7½ tons standard efficiency - roof curb
Note: All dimensions are in inches/millimeters.
Unit Dimensions
(356 MM)
Figure 7.6, 7½ tons standard efficiency - unit clearance and roof opening
Note: All dimensions are in inches/millimeters.
(2130 MM)
RT-SVX38B-EN13
Page 14
Unit Dimensions
Figure 8.8½ - 10 tons standard efficiency
Note: All dimensions are in inches/millimeters.
1/2 NPT GAS CONNECTION
Figure 9.8½ - 10 tons standard efficiency - roof curb
Note: All dimensions are in inches/millimeters.
(356 MM)
(2130 MM)
14RT-SVX38B-EN
Page 15
Figure 10. 8½ - 10 tons standard efficiency - unit clearance and roof opening
Note: All dimensions are in inches/millimeters.
Unit Dimensions
RT-SVX38B-EN15
Page 16
Installation
Pre-Installation
WARNING
Fiberglass Wool!
Product contains fiberglass wool. Disturbing the
insulation in this product during installation,
maintenance or repair will expose you to airborne
particles of glass wool fibers and ceramic fibers known
to the state of California to cause cancer through
inhalation. Glass wool fibers may also cause
respiratory, skin or eye irritation.
Precautionary Measures
•Avoid breathing fiberglass dust.
•Use a NIOSH approved dust/mist respirator.
•Avoid contact with the skinor eyes.Wear long-sleeved,
loose-fitting clothing, gloves, and eye protection.
•Wash clothes separately from other clothing: rinse
washer thoroughly.
•Operations such as sawing, blowing, tear-out, and
spraying may generate fiber concentrations requiring
additional respiratory protection. Use the appropriate
NIOSH approved respiration in these situations.
First Aid Measures
Eye Contact - Flush eyes with water to remove dust. If
symptoms persist, seek medical attention.
Skin Contact -Wash affected areas gently with soap and
warm water after handling.
Procedure
WARNING
Heavy Objects!
Ensure that all the lifting equipment used is properly
rated for the weight of the unit being lifted. Each of the
cables (chains or slings), hooks, and shackles used to
lift the unit must be capable of supporting the entire
weight of the unit. Lifting cables (chains or slings) may
not be of the same length. Adjust as necessary for even
unit lift. Other lifting arrangements could cause
equipment or property damage. Failure to follow
instructions above or properly lift unit could result in
unit dropping and possibly crushing operator/
technician which could result in death or serious injury.
WARNING
Improper Unit Lift!
Test lift unit approximately 24 inches to verify proper
center of gravity lift point. To avoid dropping of unit,
reposition lifting point if unit is not level. Failure to
properly lift unit could result in unit dropping and
possibly crushing operator/technician which could
result in death or serious injury and possible equipment
or property-only damage.
Figure 11. Corner weights
16RT-SVX38B-EN
Page 17
Installation
Table 1.Maximum unit & corner weights (lbs/kgs) and center of gravity dimensions (in/mm) - gas/electric models
(a) Weights are approximate.
(b) Corner weights are given for information only.
Maximum Model
Weights
(a)
Corner Weights
(b)
Center of Gravity (in./
mm)
Figure 12. Rigging and center of gravity
Table 2.Factory installed options (fiops)/accessory net weights (lbs)
YSC060EDYSC072E-120ED
Net WeightNet Weight
Accessory5 Ton6-10 Ton
Barometric Relief7/310/5
Coil Guards12/520/9
Economizer26/1236/16
Hinged Doors10/512/5
Manual Outside Air Damper16/726/12
Motorized Outside Air Damper20/930/14
Oversized Motor–8/4
Roof Curb61/2878/35
(a)Weights for options not listed are <5 lbs.
(b)Net weight should be added to unit weight when ordering factory-installed accessories.
Foundation
Horizontal Units
If the unit is installed at ground level, elevate it above the
snow line. Provide concrete footings at each support
location with a“full perimeter” support structure or a slab
operating and point loading weights when constructing a
footing foundation.
If anchoring is required, anchor the unit to the slab using
hold down bolts or isolators. Isolators should be installed
to minimize the transmission of vibrations into the
building.
(a),(b)
foundation for support. Refer to Table 1, p. 17 for the unit’s
RT-SVX38B-EN17
Page 18
Installation
For rooftop applications, ensure the roof is strong enough
to support the combined unit and support structural
weight. Refer to Table 1, p. 17 for the unit operating
weights. If anchoring is required, anchor the unit to the
roof with hold-down bolts or isolators.
Check with a roofing contractor for proper waterproofing
procedures.
Ductwork
Figure 13, p. 18 to Figure 16, p. 18 illustrate the supply and
return air openings as viewed from the rear of the unit.
Figure 13. 5 ton unit - Horizontal supply & return air
openings
When attaching the ductwork to the unit, provide a water
tight flexible connector at the unit to prevent operating
sounds from transmitting through the ductwork.
All outdoor ductwork between the unit and the structure
should be weather proofed after installation is completed.
Figure 15. 5 ton unit - Downflow supply & return air
openings w/ through the base utilities
3 5/8”
92 MM
102 MM
610 MM
4”
24”
4 3/16”
106 MM
RETURN
14”
356 MM
23 1/2”
597 MM
9 1/4”
235 MM
406 MM
TBU CONDENSATE
THE BASE GAS
15 1/2”
394 MM
SUPPLY
16”
4 9/16”
116 MM
THROUGH
27 9/16”
701 MM
THROUGH
THE BASE
ELECTRICAL
4 7/8”
124 MM
9 15/16”
253 MM
5 1/16”
128 MM
2 13/16”
71 MM
3 11/16”
94 MM
6 1/2”
165 MM
Figure 16. 6-10 ton units - downflow supply & return air
openings w/ through the base utilities
Figure 14. 6-10 ton high units - horizontal supply &
return air openings
Return
Supply
Figure 15, p. 18 to Figure 16, p. 18 illustrate the supply and
return air openings in a downflow configuration.
Elbows with turning vanes or splitters are recommended
to minimize air noise due to turbulence and toreduce static
pressure.
Roof Curb
Downflow
The roof curbs for these unitsconsists of a“full perimeter”
enclosure to support the unit just inside of the unit base
rail.
Before installing any roof curb, verify;
•It is the correct curb for the unit,
•It includes the necessary gaskets and hardware,
• The installation location provides the required
clearance for proper operation,
• The curb is level and square. The top surface of the
curb must be true to assure an adequate curb-to-unit
seal.
18RT-SVX38B-EN
Page 19
WARNING
Combustible Materials!
Maintain proper clearance between the unit heat
exchanger, vent surfaces and combustible materials.
Refer to unit nameplate and installation instructions for
proper clearances. Improper clearances could result in
combustible materials catching on fire. Failure to
maintain proper clearances could result in death or
serious injury or property damage.
Verify that appropriate materials were used in the
construction of roof and ductwork.Combustible materials
should not be used in the construction of ductwork or roof
curb that is in close proximity to heater elements or any
hot surface.Any combustible material on the inside of the
unit base should be removed and replaced with
appropriate material.
Step-by-step curb assembly and installation instructions
ship with each accessory roof curb kit. Follow the
instructions carefully to assure proper fit-up whenthe unit
is set into place.
Note: To assure proper condensate flow during
operation, as well as proper operation of the
condensate overflow switch (if equipped), the unit
and curb must be level.
If the unit is elevated, a field constructed catwalk around
the unit is strongly recommended to provide easy access
for unit maintenance and service.
Recommendations for installingthe Supply Air and Return
Air ductwork joining the roof curb are included in the curb
instruction booklet. Curb ductwork must befabricated and
installed by the installing contractor before the unit is set
into place.
Note: For sound consideration, cut only the holes in the
roof deck for the ductwork penetrations. Do not cut
out the entire roof deck within the curb perimeter.
If a Curb Accessory Kit is not used:
• The ductwork can be attached directly to the factoryprovided flanges around the unit’s supply and return
air openings. Be sure to use flexible duct connections
at the unit.
•For “built-up” curbs supplied by others, gaskets must
be installed around the curb perimeter flange and the
supply and return air opening flanges.
Installation
Rigging
WARNING
Heavy Objects!
Ensure that all the lifting equipment used is properly
rated for the weight of the unit being lifted. Each of the
cables (chains or slings), hooks, and shackles used to lift
the unit must be capable of supporting the entire
weight of the unit. Lifting cables (chains or slings) may
not be of the same length. Adjust as necessary for even
unit lift. Other lifting arrangements could cause
equipment or property damage. Failure to follow
instructions above or properly lift unit could result in
unit dropping and possibly crushing operator/
technician which could result in death or serious injury.
A Rigging illustration and Center-of-Gravity dimensional
data table is shown in Figure 12, p. 17. Refer to the typical
unit operating weights table before proceeding.
1. Remove all drill screws fastening wood protection to
metal base rail. Remove all screws securing wooden
protection to wooden top crate.
On 7½-10 ton high efficiency units, remove wire ties
from outdoor grill.
2. Remove wooden top crate.
3. Rig the unit as shown in Figure 12, p. 17. Attach
adequate strength lifting slings to all four lifting
brackets in the unit base rail. Do not use cables, chains,
or slings except as shown.
4. Install a lifting bar, as shown in Figure 12, p. 17,to
protect the unit and to facilitate a uniform lift.The
minimum distance between the lifting hook and the
top of the unit should be 7 feet.
5. Test-lift the unit to ensure it is properly rigged and
balanced, make any necessary rigging adjustments.
6. Lift the unit enough to allow the removal of base fork
pocket protection components as shown in the
following figures.
Figure 17.Fork pockets
RT-SVX38B-EN19
7. Downflow units; align the base rail of the unit with the
curb rail while lowering the unit onto the curb. Make
sure that the gasket on the curb is not damaged while
positioning the unit.
Page 20
Installation
General Unit Requirements
The checklist listed below is a summary of the steps
required to successfully install a commercial unit.This
checklist is intended to acquaint the installing personnel
with what isrequired in the installationprocess. It does not
replace the detailed instructions called out in the
applicable sections of this manual.
•Check the unit for shipping damage and material
shortage; file a freight claim and notify appropriate
sales representative.
•Verify correct model, options and voltage from unit
nameplate.
•Verify that the installation location of the unit will
provide the required clearance for proper operation.
•Assembleand install the roof curb (if applicable). Refer
to the latest edition of the curb installers guide that
ships with each curb kit.
•Fabricate and install ductwork; secure ductwork to
curb.
•Install pitch pocket for power supply through building
roof. (If applicable)
•Rigging the unit.
•Set the unit onto the curb; check for levelness.
•Ensure unit-to-curb seal istight and without buckles or
cracks.
•Install and connect a condensate drain line to the
evaporator drain connection.
Note: Condensate Overflow Switch (if equipped) will not
work if unit is not level properly.
Factory Installed Economizer
•Ensure the economizer has been pulled out into the
operating position. Refer to the economizer installers
guide for proper position and setup.
•Install all access panels.
limit switch from the combustion blower motor and
discard.
Supplies needed by installer for conversion: 3 oz. tube of
high temperature RTV sealant. (500°F / 260°C: similar to
Dow Corning 736)
Important: Failure to use recommended sealant could
result in unit performance loss.
If a unit is to be converted to a horizontal discharge, the
following conversion must be performed:
1. Remove RETURN and SUPPLY duct covers.
2. Locate supply cover. Apply ¼ in. (6mm.) continuous
bead of 500°F RTV sealant to the flange as shown.
Figure 18. Duct cover
RTV Sealant
Temperature Limit Switch Usage for Gas
Heat Units
Units are factory shipped in the down flow discharge
configuration but can be field converted to a horizontal
discharge configuration. Some, but not all units require a
differentTCO1 limit switch, which is attached to the
combustion blower motor if horizontal discharge
configuration is used.
Note: The following units require a limit switch change
out for horizontal discharge.The additional limit
switch is shipped attached to the combustion
blower housing:YSC060ED*H,YSC072ED*H,
YSC090ED*H,YSC102ED*H,YSC120ED*H.
If any of the aforementioned unitsare installed in thedown
flow discharge configuration, remove the additionalTCO1
20RT-SVX38B-EN
3. Position duct cover as shown, rotate 90 degrees to
allow entrance into supply opening.
4. Slide duct covers into duct openings until inward edge
of duct cover engages with the 2 retaining clips on the
duct flanges. Secure the outward edge of each duct
cover with 2 screws.
5. Slide RETURN DUCT COVER (insulation side up) into
supply opening until inward edge of duct cover
engages with the 2 retaining clips on the duct flange.
Secure outward edge of the duct cover with two
screws.
6. After completing installation of the duct covers for
horizontal discharge, proceed toTCO-1 instructions.
Page 21
Installation
FLAME
ROLLOUT
LIMIT
LOCATION OF TCO1 LIMIT
FOR THE Y(S/H)C036E, YHC037E,
YSC048E, AND YSC060E UNITS
TCO-1 Instructions
If the unit being installed is listed in the following list, the
limit controlTCO1 must be replaced with the extra limit
control shipped in the heater compartment. ReplaceTCO1
following the instructions insteps 1through 3 below.If the
unit being installed does not correspond to any in the
following list, skip steps1 through 3 and go on to next step
in the installation process.
Unit Model Number
YSC060ED*H
Figure 19. TCO1 location (YSC060ED*H)
LOCATION OF TCO1 LIMIT
FOR THE Y(S/H)C036E, YHC037E,
YSC048E, AND YSC060E UNITS
FLAME
ROLLOUT
LIMIT
2. Place SUPPLY DUCT COVER over down-flow return
opening. (insulation side down)
3. Using self-drilling screws, (or screws removed from
duct cover), screw through dimples to attach DUCT
COVER to base.
Figure 20. Duct cover
Supply Duct Cover
Screw into 4
dimples on top
edge
4. On original RETURN DUCT COVER, apply ¼”(6mm.)
continuous bead of 500°F RTV sealant around flange
(opposite insulation side), as shown.
Figure 21. Duct cover
WARNING
Hazardous Voltage!
Disconnect all electric power, including remote
disconnects before servicing. Follow proper lockout/
tagout procedures to ensure the power can not be
inadvertently energized. Failure to disconnect power
before servicing could result in death or serious injury.
1. Remove the heat section access panel.
2. RemoveTCO1 from shipping location, attached to the
combustion blower.
3. Replace and discard the existingTCO1 originally
installed at the factory for down flow operation with
theTCO1 shipped attached to the combustion blower
for horizontal operation.
4. Replace heat section access panel.
Horizontal Discharge Conversion
(6 Through 10Ton Units)
Note: 6 - 10 ton units the supply cover to return opening
& return cover to supply opening.
Supplies Needed by Installer for Conversion: 3 oz. tube of
highTemperature RTV sealant (500°F / 260°C: Similar to
Dow Corning 736).
Important: Failure to use recommended sealant could
result in unit performance loss.
If a unit is to be converted to a Horizontal discharge, the
following conversion must be performed:
1. Remove RETURN and SUPPLY duct covers.
RTV Sealant
5. Slide RETURN DUCT COVER (insulation side up) into
supply opening until inward edge of duct cover
engages with the 2 retaining clips on the duct flange.
Secure outward edge of the duct cover with two
screws.
Note: If unit is equipped with ReturnAir Smoke Detector,
refer to field conversion instructions for horizontal
discharge before installing return air duct.
Note: If unit is equipped with Discharge Air Sensing
option refer to the following figure for proper tube
positioning based on unit tonnage.
6. After completing installation of the duct covers for
horizontal discharge, proceed toTCO-1 instructions.
Figure 22. Supply and return covers
Supply duct cover
Insulation side
down
Insulation side up
Return duct
cover
RT-SVX38B-EN21
Page 22
Installation
TCO1 Instructions
If the unit being installed is listed in the following list, the
limit controlTCO1 must be replaced with the extra limit
control shipped in the heater compartment. ReplaceTCO1
following the instructions insteps 1through 3 below.If the
unit being installed does not correspond to any in the
following list, skip steps1 through 3 and go on to next step
in the installation process.
Unit Model Number
YSC072ED*H,YSC090ED*H,YSC102ED*H,YSC120ED*H
WARNING
Hazardous Voltage!
Disconnect all electric power, including remote
disconnects before servicing. Follow proper lockout/
tagout procedures to ensure the power can not be
inadvertently energized. Failure to disconnect power
before servicing could result in death or serious injury.
1. Remove the heat section access panel.
2. RemoveTCO1 from shipping location, attached to the
combustion blower.
3. Replace and discard the existingTCO1 originally
installed at the factory for down flow operation with
theTCO1 shipped attached to the combustion blower
for horizontal operation.
4. Replace heat section access panel.
Requirements for Gas Heat
Note: The unit gas train and Optional ThroughThe Base
Gas Shut-OffValve are rated at 1/2 PSIG maximum.
A pressure reducing regulator is recommended to
prevent this maximum from being exceeded.
These components must be isolated during field
gas piping test that exceed 1/2 PSIG. It is
recommended that the field piping be capped prior
to the unit gas train or OptionalThroughThe Base
Gas Shut-Off Valve if present.
•Gas supply line properly sized and connected to the
unit gas train.
•All gas piping joints properly sealed.
•Gas piping leak checked with a soap solution. If piping
connections to the unitare complete, do not pressurize
piping in excess of 0.50 psig or 14" W.C. to prevent
component failure.
•Drip leg Installed in the gas piping near the unit.
•Minimum gas supply pressure should be 4.5" W.C.
•Maximum gas supply pressure must not exceed 14.0"
W.C.
•Manifold pressure for single stage heaters should be
set to 3.3" W.C.
•Manifold pressure for two stage heaters should be set
to 3.5" W.C. on HIGH FIRE and 1.8" W.C. on LOW FIRE.
•Flue Exhaust clear of any obstruction.
Condensate Drain Configuration
An evaporator condensate drain connection is provided
on each unit. Refer to Figure 13, p. 18 and Figure 14, p. 18
for the appropriate drain location.
The condensate drain pan is factory installed to drain
condensate to theback side of the unit. See Figure 13, p. 18
and Figure 14, p. 18. It can be converted to drain
condensate out the front side of the unit or through the
base.
Before drain pan removal, switch wire must be
disconnected from wire tie on panel and any tape before
drain pan can be removed.
Care must be taken wire does not catch on bottom of
Indoor coil or any protrusions when drain pan is removed.
To Convert Drain Condensate Out the Front of
Unit:
1. Remove evaporator accesspanel and supplyair access
panels.
2. Remove the support panel that the condensate drain
pan exits through.
3. Slide the condensate drain pan out of the unit and
rotate 180°.
4. Slide the condensate drainpan back into the unit, align
the drain with the grommeted opening in the rear
support panel and push until the coupling is seated in
the grommet.
5. Replace the front support panel by aligning the panel
with tabs in the raceway. Align the condensate drain
pan support in the grommeted hole as the panel is put
in place.
6. Replace evaporator access panel and supply airaccess
panels.
To Convert Drain CondensateThrough the
Base of Unit:
1. Remove evaporator accesspanel and supplyair access
panels.
2. Remove the support panel that the condensate drain
pan exits through.
3. Slide the condensate drain pan out of the unit.
4. Place on a level surface in the position it was removed
from the unit.
5. Remove the plug knockout in the bottom of the drain
pan to convert it to through the base drainage.
6. Plug the original condensate drain opening with a field
supplied 3/4” NPT plug.
7. Slide the condensate drainpan back into the unit, align
the drain support with the grommeted opening in the
rear support panel and push until the support is seated
in the grommet.
22RT-SVX38B-EN
Page 23
Installation
8. Replace the front support panel by aligning the panel
with tabs inthe raceway.Align the pluggedcondensate
drain pan coupling in the grommeted hole as the panel
is put in place.
9. Replace evaporator access panel and supply airaccess
panels.
A condensate trap must be installed at the unit due to the
drain connection being on the“negative pressure” side of
the fan. Install the P-Trap using the guidelines in Figure 23,
p. 23.
A condensate drain line must be connected to the P-Trap.
Pitch the drain lines at least 1/2 inch for every 10 feet of
horizontal run to assure proper condensate flow. Do not
allow the horizontal run to sag causing a possible doubletrap condition which could result in condensate backup
due to “air lock”.
Figure 23. Condensate trap installation
38.1
Field Installed PowerWiring
WARNING
Proper Field Wiring and Grounding
Required!
All field wiring MUST be performed by qualified
personnel. Improperly installed and grounded field
wiring poses FIRE and ELECTROCUTION hazards. To
avoid these hazards, you MUST follow requirements for
field wiring installation and grounding as described in
NEC and your local/state electrical codes. Failure to
follow code could result in death or serious injury.
An overall dimensional layout forthe field installed wiring
entrance into the unit is illustrated in “Unit Dimensions,”
p. 10.To insure that the unit’s supply power wiring is
properly sized and installed, follow the following
guidelines.
Verify that the power supply available is compatible with
the unit’s nameplate ratings.The available supply power
must be within 10% of the rated voltage stamped on the
nameplate. Use only copper conductors to connect the
power supply to the unit.
NOTICE:
Drain Pan Removal (Units with Condensate
Overflow Switch Option)
Before drain pan removal, the switch wire must be
disconnected from wire tie on panel and/or any tape
before drain pan can be removed.
Care must be taken so the wire does not catch on the
bottom of indoor coil or any protrusion.
Note: When reversing the drain pan, on some units, the
condensate overflow switch will need to be moved
to the second hole in its bracket to avoid contact
with headers or indoor coil.
Filter Installation
The quantity of filters is determined by unit size.Access to
the filters is obtained by removing the filter access panel.
Refer to the unit Service Facts (shipped with each unit) for
filter requirements.
Note: Do not operate the unit without filters.
Use Copper Conductors Only!
Unit terminals are not designed to accept other types
of conductors. Failure to use copper conductors could
result in equipment damage.
Note: If the unit is not equipped with an optional factory
installed non-fused disconnect switch or circuit
breaker, a field supplied disconnect switch must be
installed at or near the unit in accordance with the
National Electrical Code (NEC latest edition).
Main Unit Power
WARNING
Proper Field Wiring and Grounding
Required!
All field wiring MUST be performed by qualified
personnel. Improperly installed and grounded field
wiring poses FIRE and ELECTROCUTION hazards. To
avoid these hazards, you MUST follow requirements for
field wiring installation and grounding as described in
NEC and your local/state electrical codes. Failure to
follow code could result in death or serious injury.
RT-SVX38B-EN23
Page 24
Installation
WARNING
Hazardous Voltage!
Disconnect all electric power, including remote
disconnects before servicing. Follow proper lockout/
tagout procedures to ensure the power can not be
inadvertently energized. Failure to disconnect power
before servicing could result in death or serious injury.
Standard Wiring
1. Location ofthe applicableelectrical serviceentrance is
illustrated in “Unit Dimensions,” p. 10. Complete the
unit’s power wiring connections at Compressor
Contactor # 1 (CC1) inside the unit control panel. Refer
to the customer connection diagram that is shipped
with the unit for specific termination points
2. Provide proper grounding for the unit in accordance
with local and national codes.
Figure 24. All units
Field Installed Control Wiring
Note: All field wiring must conform to NEC guidelines as
well as state and local codes.
Control PowerTransformer
The 24 volt controlpower transformers areto be used only
with the accessories called out in this manual.
Transformers rated greater than 50VA are equipped with
internal circuit breakers. If a circuit breaker trips, turn “Off”
all power to the unit before attempting to reset it.
WARNING
Hazardous Voltage!
Disconnect all electric power, including remote
disconnects before servicing. Follow proper lockout/
tagout procedures to ensure the power can not be
inadvertently energized. Failure to disconnect power
before servicing could result in death or serious injury.
The transformer is located in the control panel.The circuit
breaker is located on the left side of the transformer and
can be reset by pressing in on the black reset button.
Controls Using 24 VAC
Before installing any connecting wiring, refer to “Unit
Dimensions,” p. 10 for the electrical access locations
provided on the unit and Table 4, p. 24 for AC conductor
sizing guidelines, and;
1. Use copper conductors unless otherwise specified.
2. Ensure that the AC controlwiring between the controls
and the unit’s termination point does not exceed three
(3) ohms/conductor for the length of the run.
Note: Resistance in excess of 3 ohms per conductor may
cause component failure due to insufficient AC
voltage supply.
Note: Be sure to check all loads and conductors for
grounds, shorts, and mis-wiring.
3. Do not run the AC low voltage wiring in the same
conduit with the high voltage power wiring.
4. Route low voltage wiring per illustrations per
Figure 27, p. 25.
Table 4.Electromechanical thermostat 24V AC
conductors with ReliaTel
Distance from Unit to Control Recommended Wire Size
Controls using DC Analog Input/Outputs
(Standard Low Voltage Multi
conductor Wire)
Before installing any connecting wiring between the unit
and components utilizing a DC analog input\output signal,
refer to “Unit Dimensions,” p. 10 for the electrical access
locations provided on the unit.
•Table 5, p. 25 lists the conductor sizing guidelines that
must be followed when interconnecting the DC binary
output devices and the system components utilizing a
DC analog input/output signal to the unit.
Note: Resistance in excess of 2.5 ohms per conductor can
cause deviations in the accuracy of the controls.
24RT-SVX38B-EN
Page 25
Installation
Note: Ensure that the wiring between controls and the
unit’s termination point does not exceed two and a
half (2.5) ohms/conductor for the length of the run.
•Do not run the electrical wires transporting DC signals
in or around conduit housing high voltage wires.
•Route low voltage wiring per Figure 27, p. 25.
DC Conductors
Table 5.Zone sensor module wiring
Distance from Unit to Control Recommended Wire Size
Figure 25. ReliaTel conventional thermostat field wiring
diagrams
RTRM
Figure 26. ReliaTel options module
Figure 27. ReliaTel control customer low voltage
routing
RT-SVX38B-EN25
Space Temperature Averaging
(ReliaTel™ Only)
Space temperature averaging is accomplished by wiring a
number of remote sensors in a series/parallel circuit.
Using the BAYSENS016* or BAYSENS077*, at least four
sensors are required to accomplish space temperature
averaging. See diagram below.
Page 26
Installation
•Example #1 illustrates two series circuits with two
sensors in each circuit wired in parallel.The square of
any number of remote sensors is required.
•Example #2 illustrates three sensors squared in a
series/parallel circuit. Using BAYSENS077*, two
Figure 28. Examples
sensors are required to accomplish spacetemperature
averaging.
•Example #3 illustrates the circuit required for this
sensor. Table 6, p. 28 lists the temperature versus
resistance coefficient for all sensors.
26RT-SVX38B-EN
Page 27
Figure 29. Typical field wiring diagrams for optional controls (ReliaTel only)
Installation
BAYSENS075*
BAYSENS106*
BAYSENS073*BAYSENS074*
BAYSENS108*
BAYSENS075*
BAYSENS110*
BAYSENS119*
BAYSENS075*
ASYSTAT669A
OPTIONAL REMOTE SENSOR
RT-SVX38B-EN27
Page 28
Installation
Table 6.Temperature vs. resistance
Temperature
Degrees F°Degrees C°Nominal Resistance
-20°-28.9°170.1 K - Ohms
-15°-26.1° 143.5 K - Ohms
-10°-23.3°121.4 K - Ohms
-5°-20.6°103.0 K - Ohms
0°-17.8°87.56 K - Ohms
5°-15.0°74.65 K - Ohms
10°-12.2°63.80 K - Ohms
15°-9.4°54.66 K - Ohms
20°-6.7°46.94 K - Ohms
25°-3.8°40.40 K - Ohms
30°-1.1°34.85 K - Ohms
35°1.7°30.18 K - Ohms
40°4.4°26.22 K - Ohms
45°7.2°22.85 K - Ohms
50°10.0°19.96 K - Ohms
55°12.8°17.47 K - Ohms
60°15.6°15.33 K - Ohms
65°18.3°13.49 K - Ohms
70°21.1°11.89 K - Ohms
75°23.9°10.50 K - Ohms
80°26.7°9.297 K - Ohms
85°29.4°8.247 K - Ohms
90°32.2°7.330 K - Ohms
95°35.0°6.528 K - Ohms
Figure 30. Schematic diagram for field gas piping to
unit
Table 7.Sizing natural gas pipe mains and branches
Note: Capacity of Pipe of Different Diameters and Lengths in Cu. Ft. Per Hr .
with Pressure Drop of 0.3" and Specific Gravity of 0.60
Pipe
Pipe
Pipe
Pipe
1¼"
1½"
Pipe
Table 8.Iron pipe size (SI) millimeters
Iron Pipe Size (SI) Millimeters
Length of Pipe
(Meters)
4.62.154.989.7621.2334.54
9.11.473.396.8215.1424.06
13.71.212.805.6312.3119.82
18.31.072.434.8910.7617.27
22.9—2.184.389.7615.40
Note: Capacity of Pipe of Different Diameters and Lengths in Cu. Meter Per
Hr. with Pressure Drop of 74.6 Pa and Specific Gravity of 0.60.
15 mm
Pipe
20 mm
Pipe
25 mm
Pipe
32 mm
Pipe
40 mm
Pipe
28RT-SVX38B-EN
Page 29
Pre-Start
Use the checklist provided below in conjunction with the
“General Unit Requirements” checklist to ensure that the
unit is properly installed and ready for operation.
WARNING
Hazardous Voltage w/Capacitors!
Disconnect all electric power, including remote
disconnects and discharge all motor start/run
capacitors before servicing. Follow proper lockout/
tagout procedures to ensure the power cannot be
inadvertently energized. Verify with an appropriate
voltmeter that all capacitors have discharged. Failure to
disconnect power and discharge capacitors before
servicing could result in death or serious injury.
For additional information regarding the safe discharge
of capacitors, see PROD-SVB06A-EN
Verify that the condenser airflow will be unobstructed.
WARNING
Rotating Components!
During installation, testing, servicing and
troubleshooting of this product it may be necessary to
work with live and exposed rotating components. Have
a qualified or licensed service individual who has been
properly trained in handling exposed rotating
components, perform these tasks. Failure to follow all
safety precautions could result in rotating components
cutting and slashing technician which could result in
death or serious injury.
•Verify that the condenser fan and indoor blower turn
freely without rubbing and are properly tightened on
the shafts.
•Check the supply fan belts for proper tension and the
fan bearings for sufficient lubrication. If the belts
require adjustment, or if the bearingsneed lubricating,
refer to the maintenance section of this manual for
instructions.
•Verify that acondensate trap is installed and the piping
is properly sized and pitched.
•Verify that the correct size and number of filters are in
place.
•Inspect the interior of the unit for tools and debris and
install all panels in preparation for starting the unit.
Voltage Imbalance
Three phase electrical power to the unit must meet
stringent requirements for the unit to operate properly.
Measure each leg (phase-to-phase) of the power supply.
Eachreading must fallwithin the utilizationrange stamped
on the unit nameplate. If any of the readings do not fall
within the proper tolerances, notify the power company to
correct this situation before operating the unit.
Excessive three phase voltage imbalance between phases
will cause motors to overheat and eventually fail.The
maximum allowable voltage imbalance is 2%. Measure
and record the voltage between phases 1, 2, and 3 and
calculate the amount of imbalance as follows:
% Voltage Imbalance=
AV (Average Voltage)=
V1, V2, V3 = Line Voltage Readings
VD = Line Voltage reading that deviates the farthest from
the average voltage.
100 x AV - VD
AV
Volt 1 + Volt 2 + Volt 3
where;
3
Example: If the voltage readings of the supply power
measured 221, 230, and 227, the average volts would be:
221 + 230 + 227
3
VD (reading farthest from average) = 221
The percentage of imbalance equals:
100 x 226 - 227
226
The 2.2% imbalance in this example exceeds the
maximum allowable imbalance of 2.0%.This much
imbalance between phases can equal as much as a 20%
current imbalance with a resulting increase in motor
winding temperatures that will decrease motor life. If the
voltage imbalance is over 2%, notify the proper agencies
to correct the voltage problem before operating this
equipment.
= 226 Avg.
= 2.2%
Electrical Phasing (Three Phase
Motors)
The compressor motor(s) and the supply fan motor are
internally connected for the proper rotation when the
incoming power supply is phased as A, B, C.
Proper electrical supply phasing can be quickly
determined and corrected beforestarting the unit by using
an instrument such as an Associated Research Model 45
Phase Sequence Indicator and following the steps below:
• Turn the field supplied disconnect switch that provides
power to the main power terminal block or to the
“Line” side of the optional factory mounted disconnect
switch to the “Off” position.
•Connect the phase sequence indicator leads to the
terminal block or to the “Line” side of the optional
factory mounted disconnect switch as follows;
Black (phase A) to L1
Red (phase B) to L2
Yellow (phase C) to L3
RT-SVX38B-EN29
Page 30
Pre-Start
•Close the field supplied main power disconnect switch
or circuit protector switch that provides the supply
power to the unit.
Note: Upon closing main power disconnect and the unit
mounted disconnect switch or circuit breaker, the
phase monitor will verify proper phasing. If LED on
face of the monitor is red, correct supply power
fault.
WARNING
Live Electrical Components!
During installation, testing, servicing and
troubleshooting of this product, it may be necessary to
work with live electrical components. Have a qualified
licensed electrician or other individual who has been
properly trained in handling live electrical components
perform these tasks. Failure to follow all electrical safety
precautions when exposed to live electrical
components could result in death or serious injury.
To prevent injury or death from electrocution, it is the
responsibility of the technician to recognize this hazard
and use extreme care when performing service
procedures with the electrical power energized.
•Observe the ABC and CBA phaseindicator lights on the
face of the sequencer.The ABC indicator lightwill glow
if the phase is ABC. If the CBA indicator light glows,
open the disconnect switch or circuit protection switch
and reverse any two power wires.
•Restore the main electrical power and recheck the
phasing. If the phasing is correct, open the disconnect
switch or circuit protection switch and remove the
phase sequence indicator.
Compressor Crankcase Heaters (Optional)
Eachcompressor can be equipped with a crankcase heater
(on some units the crankcase heater comes standard).The
proper operation of the crankcase heater is important to
maintain an elevated compressor oil temperature during
the “Off” cycle to reduce oil foaming during compressor
starts. Oil foaming occurs when refrigerant condenses in
the compressor and mixes with the oil. In lower ambient
conditions, refrigerant migration to the compressor could
increase.
When the compressor starts, the sudden reduction in
crankcase pressure causes the liquid refrigerant to boil
rapidly causing the oil to foam.This condition could
damage compressor bearings due to reduced lubrication
and could cause compressor mechanical failures.
Before starting the unit in the “Cooling” mode, set the
system switch to the “Off” position and turn the main
power disconnect to the “On” position and allow the
crankcase heater to operate a minimum of 8 hours.
Before closing the main power disconnect switch, insure
that the “System” selection switch is in the “Off” position
and the “Fan” selection switch is in the “Auto” position.
Close the main power disconnect switch and the unit
mounted disconnect switch, if applicable.
Note: Upon closing main power disconnect and the unit
mounted disconnect switch or circuit breaker, the
phase monitor will verify proper phasing. If LED on
face of the monitor is red, correct supply power
fault.
WARNING
Live Electrical Components!
During installation, testing, servicing and
troubleshooting of this product, it may be necessary to
work with live electrical components. Have a qualified
licensed electrician or other individual who has been
properly trained in handling live electrical components
perform these tasks. Failure to follow all electrical
safety precautions when exposed to live electrical
components could result in death or serious injury.
To prevent injury or death from electrocution, it is the
responsibility of the technician to recognize this hazard
and use extreme care when performing service
procedures with the electrical power energized.
ReliaTel™ Controls
Upon power initialization, the RTRM performs selfdiagnostic checks to insure that all internal controls are
functional. It also checks the configuration parameters
against the components connected to the system.The
Liteport LED located on the RTRM module is turned “On”
within one second of power-up if internal operation is
okay.
Use one of the following“Test” procedure to bypass some
time delays and to start the unit at the control panel. Each
step of unit operation can be activated individually by
temporarily shorting across the“Test” terminals for two to
three seconds.The Liteport LED located on the RTRM
module will blink when the test mode has been initiated.
The unit can be left in any “Test” step for up to one hour
before it will automatically terminate, or it can be
terminated by opening the main power disconnect switch.
Once the test mode has been terminated, the Liteport LED
will glow continuously and the unit will revert to the
“System” control.
30RT-SVX38B-EN
Page 31
Table 9.Service test guide for component operation
Pre-Start
Test
StepModeFanEcon
FanOn
1
Minimum
Ventilation
Economizer
2
Test Open
3
(e)
4
(e)
5
(e)
6
(e)
7
(e)
8
(a)The exhaust fan will turn on anytime the economizer damper position is equal to or greater than the exhaust fan setpoint.
(b)The PWM Output is in reference to the user selected maximum unit fan speed.
(c) Regardless of the Economizer Mode configuration, the unit will run the Supply Fan at the minimum speed during the Economizer step of the Service
Test.
(d)The condenser fans will operate any time a compressor is ‘On’ providing the outdoor air temperatures are within the operating values.
(e) Steps for optional accessories and non-applicable modes in unit will be skipped.
(f) Units with Enhanced Dehumidification only will not perform this step during Service Test.
Cool
Stage 1
Cool
Stage 2
Cool
Stage 3
ReheatOnMinimumOnOnOffOff33KΩ100%
Heat
Stage 1
Heat
Stage 2
OnSelectableOffOffOffOff
OnOpenOffOffOffOff3.3K
On
On
On
OnMinimumOffOffOnOff10K
OnMinimumOffOffOnOn15K
(a)
Minimum
Position
Setpoint 0%
Minimum
Position
Minimum
Position
Minimum
Position
Comp 1 Comp 2Heat 1Heat 2Resistance
OffOffOffOff
2.2KΩ50%low
Ω50%
(d)
On
On
On
(d)
(d)
OffOffOff4.7KΩ82%low
(d)
On
On
(d)
OffOff6.8KΩ100%
OffOff8.2KΩ100%High
Ω100%High
Ω100%High
PWM
Output
Multi-Speed Fan
(b)
(c)
(f)
Output
High (2-step cooling)
Low (3-step cooling)
low
High
Test Modes
There are three methods in which the “Test” mode can be
cycled at LTB-Test 1 and LTB-Test 2.
1. Step Test Mode -This method initiates the different
components of the unit, one at a time, by temporarily
shorting across the two test terminals for two to three
seconds. For the initial start-up of the unit, this method
allows the technician to cycle a component “On” and
have up to one hour to complete the check.
2. ResistanceTest Mode - This method can be used for
start-up providing a decade boxfor variableresistance
outputs is available.This method initiates the different
components of the unit, one at a time, when a specific
resistance value is placed across the two test
terminals.The unit will remain inthe specific test mode
for approximately one hour even though the
resistance is left on the test terminals.
3. AutoTest Mode -This method is not recommended for
start-up due to the short timing between individual
component steps.This method initiates the different
components of the unit, one at a time, when a jumper
is installed across the test terminals.The unit will start
the first test step and change to the next step every 30
seconds.
At the end of the test mode, control of the unit will
automatically revert to the applied “System” control
method.
For unit test steps, test modes, and step resistance values
to cycle the various components, refer to Table 9, p. 31.
ReliaTel Controls
Upon power initialization, the Gas Ignition Module (IGN)
performs self-diagnostic checks to insure that all internal
controls are functional. It also checks the configuration
parameters against the components connected to the
system.The System LED located on the IGN module is
turned “On” within one second of power-up if internal
operation is okay.
RT-SVX38B-EN31
Page 32
Unit Start-Up
Verifying Proper Air Flow
WARNING
Live Electrical Components!
During installation, testing, servicing and
troubleshooting of this product, it may be necessary to
work with live electrical components. Have a qualified
licensed electrician or other individual who has been
properly trained in handling live electrical components
perform these tasks. Failure to follow all electrical
safety precautions when exposed to live electrical
components could result in death or serious injury.
Units with Belt Drive Indoor Fan
Much of the systems performance and reliability is closely
associated with, and dependent upon having the proper
airflow supplied both to the space that is being
conditioned and across the evaporator coil.
The indoor fan speed is changed by opening or closingthe
adjustable motor sheave.
Before starting the SERVICETEST, set the minimum
position setpoint for the economizer to 0 percent using the
setpoint potentiometer located onthe Economizer Control
(ECA), if applicable.
ReliaTel Control: Using the ServiceTest Guide in
Table 6, p. 30, momentarily jump across the Test 1 &Test
2 terminals on LTB1 one time to start the Minimum
Ventilation Test.
With the fan operating properly, determine the total
system airflow (CFM) by:
1. Measuring the actual RPM,
2. Measure the amperage at the supply fan contactor and
compare it with the fullload amp (FLA) rating stamped
on the motor nameplate.
a. Calculate the theoretical BHP using (Actual Motor
Amps/ Motor Nameplate Amps) X Motor HP.
b. Using thefan performance tables inthe unit Service
Facts, plot the actual RPM (step 1) and the BHP (step
2a) to obtain the operating CFM.
3. If therequired CFM is too low, (externalstatic pressure
is high causing motor HP output to be below table
value),
a. Relieve supply and/or return duct static.
b. Change indoor fan speed and repeat steps 1 and 2.
• ToIncrease Fan RPM; Loosen the pulley adjustment set
screw and turn sheave clockwise.
• To Decrease Fan RPM; Loosen the pulley adjustment
set screw and turn sheave counterclockwise.
•If the required CFM is too high, (external static
pressure is low causing motor HP output to be above
table value), change indoor fan speed and repeat steps
1 and 2.
• To stop the SERVICETEST, turn the main power
disconnect switch to the "Off" position or proceed to
the next component start-up procedure.
Economizer Start-Up
ReliaTel Control: Using the ServiceTest Guide in
Table 6, p. 30, momentarily jump across the Test 1 &Test
2 terminals on LTB1 one time to start the Minimum
Ventilation Test.
1. Set the minimum position setpoint for the economizer
to the required percentage of minimum ventilation
using the setpoint potentiometer located on the
Economizer Control (ECA).
The economizer will drive to its minimum position
setpoint, exhaust fans (if applicable) may start at
random, and the supply fan will start when the
SERVICETEST is initiated.
WARNING
Rotating Components!
During installation, testing, servicing and
troubleshooting of this product it may be necessary to
measure the speed of rotating components. Have a
qualified or licensed service individual who has been
properly trained in handling exposed rotating
components, perform these tasks. Failure to follow all
safety precautions when exposed to rotating
components could result in death or serious injury.
The Exhaust Fan will start anytime the economizer
damper position is equal to orgreater than the exhaust
fan setpoint.
2. Verify that the dampers stroked to the minimum
position.
ReliaTel Control:
Momentarily jump across theTest 1 &Test 2 terminals
on LTB1 one additional time if continuing from
previous component start-up or until the desired startup componentTest is started.
3. Verify that the dampers stroked to the full open
position.
4. To stop the SERVICETEST, turn the main power
disconnect switch to the “Off” position or proceed to
the next component start-up procedure. Remove
electro mechanical test mode connections (if
applicable).
32RT-SVX38B-EN
Page 33
Unit Start-Up
Compressor Start-Up
1. Attach a set of service gauges onto the suction and
discharge gauge ports for each circuit. Refer to the
refrigerant circuit illustration in the Service Facts.
ReliaTel Control:
Momentarily jump across theTest 1 &Test 2 terminals
on LTB1 one additional time if continuing from
previous component start-up or until the desired startup componentTest is started.
Scroll Compressors
a. Once each compressor has started, verify that the
rotation is correct. If a scroll compressor is rotating
backwards, it will not pump and a loud rattling
sound can be observed.
b. If the electrical phasing is correct, before
condemning a compressor, interchange any two
leads (at the compressorTerminal block) to check
the internal phasing. If the compressor runs
backwardfor an extendedperiod (15 to 30minutes),
the motor winding can overheat and cause the
motor winding thermostat to open.
2. After the compressor and condenser fan have started
and operated for approximately 30 minutes, observe
the operating pressures. Compare the operating
pressures to the operating pressure curve in the
Service Facts.
3. Check system superheat. Follow the instruction listed
on the superheat charging curve in the Service Facts.
Superheat should be within ±5F ofthe superheatchart
value.
4. Repeat steps 1 through 4 for each refrigerant circuit.
5. To stop the SERVICETEST, turn the main power
disconnect switch to the “Off” position or proceed to
the next component start-up procedure. Remove
electro mechanical test mode connections (if
applicable).
Final System Setup
After completing all of the pre-start and start-up
procedures outlined in the previous sections (i.e.,
operating the unit in each of its Modes through all
available stages of cooling & heating), perform these final
checks before leaving the unit:
•Program the Night Setback (NSB) panel (if applicable)
for proper unoccupied operation. Refer to the
programming instructions for the specific panel.
•Verify that the Remote panel “System” selection
switch, “Fan” selection switch, and “Zone
Temperature” settings for automatic operation are
correct.
•Inspect the unit for misplaced tools, hardware, and
debris.
•Verify that all exterior panels including the control
panel doors and condenser grilles are secured in place.
•Close the main disconnect switch or circuit protector
switch that provides the supply power to the unit’s
terminal block or the unit mounted disconnect switch.
WARNING
Live Electrical Components!
During installation, testing, servicing and
troubleshooting of this product, it may be necessary to
work with live electrical components. Have a qualified
licensed electrician or other individual who has been
properly trained in handling live electrical components
perform these tasks. Failure to follow all electrical
safety precautions when exposed to live electrical
components could result in death or serious injury.
Make sure all personnel are standing clear of the unit
before proceeding.The system components will start
when the power is applied.
Gas Heat Units
Open the main disconnect switch to shut the unit off and
to reset the RTRM.
ReliaTel Control: Follow theTest Guide inTable 9, p. 32
to start the unit in the heating mode. Momentarily jump
across theTest 1 &Test 2 terminals on LTB1 one additional
time if continuing from previous component start-up or
until the desired start-up componentTest is started.
When starting the unit for the first time or servicing the
heaters, it is a good practice to start the heater with the
main gas supply turned “Off”.
Once the ignition system and components have been
checked, open the main power disconnect switch to reset
the unit.
RT-SVX38B-EN33
Page 34
Maintenance
Fan Belt Adjustment - Belt Drive
Units
WARNING
Rotating Components!
During installation, testing, servicing and
troubleshooting of this product it may be necessary to
measure the speed of rotating components. Have a
qualified or licensed service individual who has been
properly trained in handling exposed rotating
components, perform these tasks. Failure to follow all
safety precautions when exposed to rotating
components could result in death or serious injury.
The fan belts must be inspected periodically to assure
proper unit operation.
Replacement is necessary if the belts appear frayed or
worn. Units with dual belts require a matched set of belts
to ensure equal belt length.
When removing or installing the new belts, do not stretch
them over the sheaves. Loosen the belts using the belt
tension adjustment bolts on the motor mounting base.
Once the new belts are installed, using a Browning or
Gates tension gauge (or equivalent) illustrated in
Figure 31; adjust the belt tension as follows;
1. To determine the appropriate belt deflection;
a. Measure the center-to-center shaft distance (in
inches) between the fan and motor sheaves.
b. Divide the distance measured in Step 1a by 64; the
resulting value represents the amount of belt
deflection that corresponds to the proper belt
tension.
2. Set the large O-ring on the belt tension gauge at the
deflection value determined in Step 1b.
3. Set the small O-ring at zero on the force scale of the
gauge plunger.
4. Place the large end of thegauge at the center of the belt
span; then depress the gauge plunger until thelarge Oring is even with the top of the next belt or even with
a straightedge placed across the fan and motor
sheaves. Refer to Figure 9.
5. Remove the belt tension gauge.The small O-ring now
indicates a number other than zero on the plunger’s
force scale.This number represents the force (in
pounds) required to give the needed deflection.
6. Compare the “force” scale reading (Step 5) with the
appropriate “force” value listed in Table 10.Ifthe
“force” reading is outside the range, readjust the belt
tension.
Note: Actual belt deflection “force” must not exceed the
maximum “force” value shown in Table 10
7. Recheck the belt tension at least twice during the first
2 to 3 days of operation. Belt tension may decrease
until the new belts are “run in”.
Figure 31. Belt tension gauge
Table 10. Belt tension measurement and deflection
Deflection Force (Lbs.)
Belts
Cross
Section
A3.8 - 4.8 3 1/254 1/2 6 1/4 3 3/44 3/4
B4.4 - 5.6 5 1/8 7 1/8 6 1/2 9 1/8 5 3/47 1/4
Small
P.D
Range
3.0 - 3.634 1/2 3 7/8 5 1/2 3 1/44
5.0 - 7.045 1/256 7/84 1/45 1/4
3.4 - 4.245 1/2 5 3/484 1/25 1/2
5.8 - 8.8 6 3/8 8 3/4 7 3/8 10 1/878 3/4
Super
GripbeltsGripnotch
Min. Max. Min. Max. Min.Max
Steel Cable
Gripbelts
Monthly Maintenance
WARNING
Rotating Components!
During installation, testing, servicing and
troubleshooting of this product it may be necessary to
measure the speed of rotating components. Have a
qualified or licensed service individual who has been
properly trained in handling exposed rotating
components, perform these tasks. Failure to follow all
safety precautions when exposed to rotating
components could result in death or serious injury.
Before completing the following checks, turn the unit OFF
and lock the main power disconnect switch open.
Filters
Inspect the return air filters. Clean or replace them if
necessary. Refer to the unit Service Facts for filter
information.
34RT-SVX38B-EN
Page 35
Maintenance
Condensate Overflow Switch
During maintenance, the switch float (black ring) must be
checked to ensure free movement up and down.
Cooling Season
•Check the unit’s drain pans and condensate piping to
ensure that there are no blockages.
•Inspect the evaporator and condenser coils for dirt,
bent fins, etc. If the coils appear dirty, clean them
according to the instructions described in “Coil
Cleaning” later in this section.
•Manually rotate the condenser fan(s) to ensure free
movement and check motor bearings for wear. Verify
that all of the fan mounting hardware is tight.
•Inspect the F/A-R/A damper hinges and pins to ensure
that all moving parts are securely mounted. Keep the
blades clean as necessary.
•Verify that all damper linkages move freely; lubricate
with white grease, if necessary.
•Check supply fan motor bearings; repair or replace the
motor as necessary.
•Check the fan shaft bearings for wear. Replace the
bearings as necessary.
•Check the supply fan belt. If the belt is frayed or worn,
replace it. Refer to the “Fan Belt Adjustment” section
for belt replacement and adjustments.
•Verify that all wire terminal connections are tight.
•Remove any corrosion present onthe exterior surfaces
of the unit and repaint these areas.
•Generally inspect the unit for unusual conditions (e.g.,
loose access panels, leaking piping connections, etc.)
•Make sure that all retaining screws are reinstalled in
the unit access panels once these checks are complete.
•With the unit running, check and record the: ambient
temperature; compressor suction and discharge
pressures (each circuit); superheat (each circuit);
•Record this data on an “operator’s maintenance log”
like the one shown in Table 11, p. 37. If the operating
pressures indicate a refrigerant shortage, measure the
system superheat. For guidelines, refer to the
“Compressor Start-Up” section.
Note: Do not release refrigerant to the atmosphere! If
adding or removing refrigerant is required, the
service technician must comply with all federal,
state and local laws.
Heating Season
•Inspect the unit’s air filters. If necessary, clean or
replace them.
•Check supply fan motor bearings; repair or replace the
motor as necessary.
•Inspect both the main unit control panel and heat
section control box for loose electrical components
and terminal connections, as well as damaged wire
insulation. Make any necessary repairs.
•Clean burner area, verify gas heat system operates
properly.
Coil Cleaning
Regular coil maintenance, including annual cleaning,
enhances the unit’s operating efficiency by minimizing:
compressor head pressure and amperage draw;
evaporator water carryover; fan brake horsepower, due to
increase static pressure losses; airflow reduction.
At least once each year, or more often if the unit is located
in a “dirty” environment, clean the evaporator and
condenser coils using the instructions outlined below. Be
sure to follow these instructions as closely as possible to
avoid damaging the coils.
Note: For units equipped with hail guards follow removal
procedure listed below.
Hail Guard Removal
•Unlatch hail guard.
•Pull the top ofthe hail guard outward until the fastener
studs are free of the retaining nuts.
•Lift the hail guard from the lower retaining bracket and
set aside.
To clean refrigerant coils, use a soft brush and a sprayer
(either a garden pump-up typeor a high-pressure sprayer).
A high-quality detergent is also required; suggested
brands include “SPREX A.C.”, “OAKITE 161”, “OAKITE 166”
and “COILOX”. If the detergent selected is stronglyalkaline
(ph value exceeds 8.5), add an inhibitor.
WARNING
Hazardous Chemicals!
Coil cleaning agents can be either acidic or highly
alkaline. Handle chemical carefully. Proper handling
should include goggles or face shield, chemical
resistant gloves, boots, apron or suit as required. For
personal safety refer to the cleaning agent
manufacturer’s Materials Safety Data Sheet and follow
all recommended safe handling practices. Failure to
follow all safety instructions could result in death or
serious injury.
1. Remove enough panels from the unit to gain access to
the coil.
2. Protect all electrical devices such as motors and
controllers from any over spray.
3. Straighten any bent coil fins with a fin comb.
4. Mix the detergent with water according to the
manufacturer’s instructions. If desired, heat the
solution BUT DO NOT EXCEED 150 F maximum to
improve its cleansing capability.
RT-SVX38B-EN35
Page 36
Maintenance
WARNING
Hazardous Pressures!
Coils contain refrigerant under pressure.When cleaning
coils, maintain coil cleaning solution temperature under
150°F to avoid excessive pressure in the coil. Failure to
follow these safety precautions could result in coil
bursting, which could result in death or serious injury.
5. Pour the cleaning solution into the sprayer. If a highpressure sprayer is used:
a. Do not allow sprayer pressure to exceed 600 psi.
b. The minimum nozzle spray angle is 15 degrees.
c. Maintain a minimum clearance of 6" between the
sprayer nozzle and the coil.
d. Spray the solution perpendicular (at 90 degrees) to
the coil face.
6. Spray the leaving-airflow side of the coil first; then
spray the opposite side of the coil. Allow the cleaning
solution to stand on the coil for five minutes.
7. Rinse both sides of the coil with cool, clean water.
8. Inspect both sides of the coil; if it still appears to be
dirty, repeat Steps 6 and 7.
9. Reinstall all of the components and panels removed in
Step 1 and any protective covers installed in Step 2.
Note: For units equipped with hail guards follow
reinstallation procedure listed below.
Hail Guard Reinstallation
10.To reinstall the hail guard, locate the bottom of the hail
guard in the lower bracket and secure it to the upper
unit bracket with the attached fasteners.
Note: Secure hail guard latches.
Figure 32. Slide latch
11. Restore the unit to it’s operational status and check
system operation.
Annual Maintenance
•Clean and repaint any corroded surface.
36RT-SVX38B-EN
Page 37
Maintenance
Final Process
For future reference, you may find it helpful to record the
unit data requested in the blanks provided.
Wiring Diagram Numbers (from unit control panel)
Schematics
Complete Model Number
Connections
Unit Serial Number
Table 11.Sample maintenance log
Current
Date
Note: Check and record the data requested above each month during the cooling season with the unit running
Temp. F/C
Ambient
Compr.
Oil Level
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
Refrigerant Circuit #1 Refrigerant Circuit #2
Suct.
Press.
Psig/
kPa
Disch.
Press.
Psig/
kPa
Liquid
Press.
Psig/
kPa
Super
-heat
F/C
Subcool.
F/C
Compr.
Oil
Level
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
- ok
- low
Suct.
Press.
Psig/kPa
Disch.
Press.
Psig/
kPa
Liquid
Press.
Psig/
kPa
Superheat
F/C
Subcool.
F/C
RT-SVX38B-EN37
Page 38
Trouble Shooting
ReliaTel™ Control
The RTRM has the ability to provide the service personnel
with some unitdiagnostics and system status information.
Before turning the main power disconnect switch “Off”,
follow the steps below to check the ReliaTel Refrigeration
Module (RTRM). All diagnostics & system status
information stored in theRTRM will be lost when the main
power is turned “Off”.
operations for each mode, to assist in verifying proper
operation. Make the necessary repairs and proceed to
Steps 7 and 8.
7. If no abnormal operating conditions appear in the test
mode, exit the test mode by turning the power “Off” at
the main power disconnect switch.
8. Refer to the individual component test procedures if
other microelectronic components are suspect.
System Status Checkout
WARNING
Live Electrical Components!
During installation, testing, servicing and
troubleshooting of this product, it may be necessary to
work with live electrical components. Have a qualified
licensed electrician or other individual who has been
properly trained in handling live electrical components
perform these tasks. Failure to follow all electrical
safety precautions when exposed to live electrical
components could result in death or serious injury.
To prevent injury or death from electrocution, it is the
responsibility of the technician to recognize this hazard
and use extreme care when performing service
procedures with the electrical power energized.
1. Verify that the Liteport LED on the RTRM is burning
continuously. If the LED is lit, go to Step 3.
2. If the LED is not lit, verify that 24 VAC is presence
between J1-1 and J1-2. If 24 VAC is present, proceed to
Step 3. If 24 VAC is not present, check the unit main
power supply, check transformer (TNS1). Proceed to
Step 3 if necessary.
3. Utilizing “Method 1” or “Method 2” in the “System
Status Diagnostic” section, check the following:
System status
Heating status
Cooling status
If a System failure is indicated, proceed to Step 4. If no
failures are indicated, proceed to Step 5.
4. If a System failure is indicated, recheck Steps 1 and 2.
If the LED is not lit in Step 1, and 24 VAC is present in
Step 2, the RTRM has failed. Replace the RTRM.
5. If no failures are indicated, use one of theTEST mode
procedures described in the “Unit Start-Up” section to
start the unit.This procedure will allow you to check all
of the RTRM outputs, and all of the external controls
(relays, contactors, etc.) that the RTRM outputs
energize, for each respective mode. Proceed to Step 6.
6. Step the system through all of the available modes,
and verify operation of all outputs, controls, and
modes. If a problem inoperation is noted in any mode,
you may leave the system in that mode for up to one
hour while troubleshooting. Refer to the sequence of
38RT-SVX38B-EN
Procedure
“System Status” is checked by using one of the following
two methods:
Method 1
If the Zone Sensor Module (ZSM) is equipped with a
remote panel with LED status indication, you can check the
unit within the space. If the ZSM does not have LED’s, use
Method 2. BAYSENS110*, BAYSENS109*, BAYSENS119*,
BAYSENS023A all have the remote panel indication
feature.The LED descriptions are listed below.
LED 1 (System)
“On” during normal operation.
“Off” if a system failure occurs or the LED fails.
“Flashing” indicates test mode.
LED 2 (Heat)
“On” when the heat cycle is operating.
“Off” when the heat cycle terminates or the LED fails.
“Flashing” indicates a heating failure.
LED 3 (Cool)
“On” when the cooling cycle is operating.
“Off” when the cooling cycle terminates or the LED fails.
“Flashing” indicates a cooling failure.
LED 4 (Service)
“On” indicates a clogged filter.
“Off” during normal operation.
“Flashing” indicates an evaporator fan failure or
condensate overflow switch failure.
Below is the complete listing of failure indication causes.
System failure
Check the voltage between terminals 6 and 9 on J6, it
should read approximately 32 VDC. If no voltage is
present, a System failure has occurred. Refer to Step 4 in
the previous section for the recommended
troubleshooting procedure.
Page 39
Trouble Shooting
Heating Failure
Verify Heat Failure by Ignition Module (IGN) LED indicator:
OFF: No Power or Failure
ON: Normal
Slow Flash: Normal, Heat Call
Fast Flash: Error Code:
1 Flash: Communication Failure
2 Flashes: System Lockout
3 Flashes: Pressure Switch Fail
4 Flashes: TC01 orTC02 Open
5 Flashes: Flame w/o Gas Valve
6 Flashes: Flame Rollout Open
Cooling Failure
•Cooling and heating set point (slide pot) on the zone
sensor has failed. Refer to the “Zone SensorTest
Procedure” section.
•Zone temperature thermistor ZTEMP on ZTS failed.
Refer to the “Zone SensorTest Procedure” section.
•CC1 or CC2 24 VAC control circuit has opened, check
CC1 & CC2 coils, and any of the controls below that
apply to the unit (HPC1, HPC2).
•LPC1 has opened during the 3 minute minimum “on
time” during 4 consecutive compressor starts, check
LPC1 or LPC2 by testingvoltage between theJ1-1 & J32 terminals on the RTRM and ground. If 24 VAC is
present, the LPC’s has not tripped. If no voltage is
present, LPC’s has tripped.
Service Failure
•If the supply fanproving switchhas closed, the unit will
not operate (when connected to RTOM), check the fan
motor, belts, and proving switch.
•Clogged filter switch has closed, check the filters.
•If the condensate overflow switch is closed, the unit
will not operate, check the float position is not in a
tripped condition and verify an "open" between wires
connecting to RTOM J6-1, J6-2 (ReliaTel controls).
Simultaneous Heat and Cool Failure
•Emergency Stop is activated
Method 2
The second method for determining system status is done
by checking voltage readings at the RTRM (J6).The system
indication descriptions and the approximate voltages are
listed below.
System Failure
•Measure the voltage between terminals J6-9 & J6-6.
•Normal Operation = approximately 32 VDC
•System Failure = less than 1 VDC, approximately 0.75
VDC
• Test Mode = voltage alternates between 32VDC & 0.75
VDC
Heat Failure
•Measure the voltage between terminals J6-7 & J6-6.
•Heat Operating = approximately 32 VDC
•Heat Off = less than 1 VDC, approximately 0.75 VDC
•Heating Failure = voltage alternates between 32 VDC &
0.75 VDC
Cool Failure
•Measure the voltage between terminals J6-8 & J6-6.
•Cool Operating = approximately 32 VDC
•Cool Off = less than 1 VDC, approximately 0.75 VDC
•Cooling Failure = voltage alternates between 32 VDC &
0.75 VDC
Service Failure
•Measure the voltage between terminals J6-10 & J6-6.
•Clogged Filter = Approximately 32VDC.
•Normal = Less than 1 VDC, approximately 0.75 VDC
Fan Failure =voltage alternates between 32VDC & 0.75
VDC.
To use LED’s for quick status information at the unit,
purchase a BAYSENS110* ZSM and connect wires with
alligator clamps to terminals 6 through10.Connected each
respective terminal wire (6 through 10) from the Zone
Sensor to the unit J6 terminals 6 through 10.
Note: If the system is equipped with a programmable
zone sensor, (BAYSENS119*, or BAYSENS023A),
the LED indicators will not function while the
BAYSENS110* is connected.
Resetting Cooling and Ignition Lockouts
Cooling Failures and Heating Lockouts are reset in an
identical manner. Method 1 explains resetting the system
from the space; Method 2 explains resetting the system at
the unit.
Note: Before resetting Cooling Failures and Ignition
Lockouts check the Failure Status Diagnostics by
the methods previously explained. Diagnostics will
be lost when the power to the unit is disconnected.
Method 1
To reset the system from the space, turn the “Mode”
selection switch at the zone sensor to the “Off” position.
After approximately 30 seconds, turn the “Mode”
selection switch to the desired mode, i.e. Heat, Cool or
Auto.
RT-SVX38B-EN39
Page 40
Trouble Shooting
Method 2
To reset the system at the unit, cycle the unit power by
turning the disconnect switch “Off” and then “On”.
Lockouts can be cleared through the building
management system. Refer to the building management
system instructions for more information.
Zone Temperature Sensor (ZTS)
Service Indicator
The ZSM SERVICE LED is a generic indicator, that will
signal the closing of a Normally Open switch at any time,
providing the Indoor Motor (IDM) is operating.This
indicator is usually used to indicate a clogged filter, or an
air side fan failure.
The RTRM will ignore the closing of this Normally Open
switch for 2 (±1) minutes.This helps prevent nuisance
SERVICE LED indications.The exception is the LED will
flash 40 seconds after the fan is turned “On” if the Fan
Proving Switch is not made.
Clogged Filter Switch
This LED will remain lit the entire time that the Normally
Open switch is closed.The LED will be turned off
immediately after resetting the switch (to the Normally
Open position), or any time that the IDM is turned “Off”.
If the switch remains closed, and the IDM is turned “On”,
the SERVICE LED will be turned “On” again after the 2 (±1)
minute ignore delay.
This LED being turned “On”, will have no other affect on
unit operation. It is an indicator only.
Fan Failure Switch
When the “Fan Failure” switch is wired to the RTOM, the
LED will remain flashing the entire time the fan proving
switch is closed, indicating a fan failure,and itwill shutthe
unit operations down.
Zone Temperature Sensor (ZTS)
Test
Note: These procedures are not for programmable or
digital models and are conducted with the Zone
Sensor Module electrically removed from the
system.
Test 1 - ZoneTemperatureThermistor
(ZTEMP)
This component is tested by measuring the resistance
between terminals 1 and 2 on the ZoneTemperature
Sensor. Below are some typical indoor temperatures, and
corresponding resistive values.
The resistance of these potentiometers are measured
between the following ZSM terminals. Refer to the chart
above for approximate resistances at the given setpoints.
Cool SP =Terminals 2 and 3
Range = 100 to 900 Ohms approximate
Heat SP =Terminals 2 and 5
Range = 100 to 900 Ohms approximate
Nominal ZTEMP
Resistance
Condensate Overflow Switch
When the “Condensate Overflow Switch” is closed, a
drain pan overflow condition is indicated and it will shut
unit operations down.
40RT-SVX38B-EN
Test3-SystemMode and Fan Selection
The combined resistanceof the Mode selection switch and
the Fan selection switch can be measured between
terminals 2 and 4 on the Zone Sensor.The possible switch
combinations are listed below with their corresponding
resistance values.
Page 41
Trouble Shooting
Test 4 - LED IndicatorTest, (SYS ON, HEAT,
COOL & SERVICE)
Method 1
Testing the LED usinga meter with diode test function.Test
both forward and reverse bias. Forward bias should
measure a voltage drop of 1.5 to 2.5 volts, depending on
your meter. Reverse bias will show an Over Load, or open
circuit indication if LED is functional.
Method 2
Testing the LED with an analog Ohmmeter. Connect
Ohmmeter across LED in one direction, then reverse the
leads for the opposite direction.The LED should have at
least 100 times more resistance in reverse direction, as
compared with the forward direction. If high resistance in
both directions, LED is open. If low in both directions, LED
is shorted.
Method 3
To test LED’s with ZSM connected to unit, test voltages at
LED terminals on ZSM. A measurement of 32VDC, across
an unlit LED, means the LED has failed.
Programmable & Digital Zone Sensor Test
Testing serial communication voltage
1. Verify 24VAC is present between terminals J6-14 & J6-
11.
2. Disconnect wires from J6-11 and J6-12. Measure the
voltage between J6-11 and J6-12, should be about 32
VDC.
3. Reconnect wires toterminals J6-11 and J6-12. Measure
voltage again betweenJ6-11 and J6-12, voltage should
flash high and low every 0.5 seconds.The voltage on
the low end will measure about 19VDC, while the
voltage on the high end will measure from
approximately 24 to 38 VDC.
4. Verify all modes of operation, by running the unit
through all of the steps in the “Test Modes” section
discussed in “Unit Start-Up”.
5. After verifying proper unit operation, exit the test
mode.Turn the fan on continuously at the ZSM, by
pressing the button with the fan symbol. If the fan
comes on and runs continuously, the ZSM is good. If
you are not able to turn the fan on, the ZSM is
defective.
If the RTCI loses input from the building management
system, the RTRM will control in the default mode after
approximately 15 minutes. If the RTRM loses the Heating
and Cooling setpoint input, the RTRM will control in the
default mode instantaneously.The temperature sensing
thermistor in the Zone Sensor Module is the only
component required for the “Default Mode” to operate.
Unit Operation without a Zone Sensor
This procedure is for temporary operation only.The
economizer and condenser fan cycling functions are
disabled.
WARNING
Hazardous Voltage!
Disconnect all electric power, including remote
disconnects before servicing. Follow proper lockout/
tagout procedures to ensure the power can not be
inadvertently energized. Failure to disconnect power
before servicing could result in death or serious injury.
1. Open and Lock the unit disconnect switch.
2. Remove the Outside Air Sensor (OAS) from the
condenser section of unit.
3. Use two (2) wire nuts, to individually cap the wires.
4. Locate the RTRM (J6). Connect two (2) wires to
terminals J6-1 and 2.
5. Connect the sensor (OAS) using two wire nuts to the
two (2) field supplied wires that were connected to
terminals 1 and 2 on J6.
Unit Economizer Control (ECA)
Troubleshooting
ReliaTel Control
Verify Economizer Status by Economizer Actuator (ECA)
LED indicator:
OFF: No Power or Failure
ON: Normal, OK to Economize
Slow Flash: Normal, Not OK to Economize
Fast Flash - 1/2 Second On/2Seconds Off:
Error Code:
Communications Failure
Pulse Flash:2 Seconds On / 1/2 Second Off:
Error Code:
1 Flash: Actuator Fault
2 Flashes: CO
3 Flashes: RA Humidity Sensor
4 Flashes: RATemp Sensor
5 Flashes: OA Quality Sensor
6 Flashes: OA Humidity Sensor
7 Flashes: OATemp Sensor
8 Flashes: MATemp Sensor
9 Flashes:RAM Fault
Sensor
2
RT-SVX38B-EN41
Page 42
Trouble Shooting
10 Flashes:ROM Fault
11 Flashes:EEPROM Fault
Heating Failure
Verify Heat Failure by Ignition Module (IGN) LED indicator:
OFF: No Power or Failure
ON:Normal
Slow Flash: Normal, Heat Call
Fast Flash:Error Code:
1 Flash:No Communication
2 Flashes:System Lockout
3 Flashes:Pressure Switch Fail
4 FlashesTC01 orTC02 Open
5 Flashes:Flame w/o Gas Valve
6 Flashes:Flame Rollout Open
Cooling Failure
•Cooling and heating set point (slide pot) on the
thermostat has failed.
•CC1 or CC2 24 VAC control circuit has opened, check
CC1 & CC2 coils, and any of the controls below that
apply to the unit (HPC1, HPC2, LPC1, LPC2, Frostat™).
Resetting Cooling and Ignition
Lockouts
Cooling Failures and Ignition Lockouts are reset in an
identical manner. Method 1 explains resetting the system
from the space; Method 2 explains resetting the system at
the unit.
Method 1
To reset the system from the space, turn the “Mode”
selection switch at the thermostat to the “Off” position.
After approximately 30 seconds, turn the “Mode”
selection switch to the desired mode, i.e. Heat, Cool or
Auto.
Method 2
To reset the system at the unit, cycle the unit power by
turning the disconnect switch “Off” and then “On”.
42RT-SVX38B-EN
Page 43
Unit Wiring Diagrams Numbers
Note: Wiring diagrams can be accessed using e-Library
by entering the diagram number in the literature
order number search field or by contacting
technical support.
This limited warranty is extended byTrane to the original
purchaser and to any succeeding owner of the real
property to which the Combination Gas Electric Air
Conditioner is originally affixed, and applies to products
purchased and retained for use within the U.S.A. and
Canada.
If any part of your Combination Gas Electric Air
Conditioner fails becauseof a manufacturing defectwithin
five years from the date of the original purchase,
Warrantor will furnish without charge the required
replacement part.Any local transportation, related service
labor, diagnosis calls, air filters, refrigerant and related
items are not included.
If the sealed motor-compressor fails because of a
manufacturing defect within five years from the date of
original purchase, Warrantor will furnish without charge
the required replacement compressor. Any local
transportation, related service labor, diagnosis calls,
refrigerant and related items are not included.
In addition, if theoptional, factory installed, stainless steel
heat exchanger fails because of a manufacturing defect
within ten years from the date of start-up, Warrantor will
furnish without chargea replacement heat exchanger. Any
local transportation, related service labor and diagnosis
calls are not included.
This limited warranty does not cover failure of your
combination gas electric air conditioner if it is damaged
while in your possession, failure attributable or caused by
unreasonable use of the combination gas electric air
conditioner and/or failure to properly maintain the
combination gas electric air conditioner as set forth in the
Use and Care manual.
This limited warranty applies to product installed on or
after 10/1/2001 where product is manufactured after 1/1/
2000.This limited warranty is not retroactive to any
installations prior to 10/1/2001 or on product produced
prior to 2000.
THE LIMITED WARRANTY AND LIABILITY SET FORTH
HEREIN ARE IN LIEU OF ALL OTHER WARRANTIES AND
LIABILITIES, WHETHER IN CONTRACT OR IN
NEGLIGENCE, EXPRESS ORIMPLIED, IN LAW OR IN FACT,
INCLUDING IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR PARTICULAR
USE, AND IN NO EVENT SHALL WARRANTOR BE LIABLE
FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES.
Some states do not allow limitations on how long an
implied limited warranty lasts or do not allow the
exclusion or limitation of incidental or consequential
damages, so the above limitation or exclusion may not
apply to you.This limited warranty gives you specific legal
rights, and youmay also have otherrights whichvary from
state to state.
Parts will be provided by our factory organization through
an authorized service organizationin your area listedin the
yellow pages. If you wish further help or information
concerning this limited warranty, contact:
Trane
2701 Wilma Rudolph Blvd.
Clarksville,TN 37040-1008
Attention: Manager, Product Service
GW-618-4001
*This limited warranty is for residential usage of this
equipment and not applicable when this equipment is
used for a commercial application. A commercial use is
any application where the end purchaser uses the product
for other than personal, family or household purposes.
Combination Gas Electric Air
Conditioner
YCZ, YCY, YCX,YCC, YCD,YCH,YCP, YHC
and YSC (Parts Only)
Models LessThan 20 Tons for Commercial
Use*
This warranty is extended byTrane to the original
purchaser and to any succeeding owner of the real
property to which the Combination Gas Electric Air
Conditioner is originally affixed, and applies to products
purchased and retained for use within the U.S.A. and
Canada.There is no warranty against corrosion, erosion or
deterioration.
If any part of your Combination Gas Electric Air
Conditioner fails becauseof a manufacturing defectwithin
one year from the date of the original purchase, Warrantor
will furnish without charge the required replacement part.
In addition, if the sealed motor-compressor fails because
of a manufacturing defect within the second through fifth
year from the date of original purchase, Warrantor will
furnish without charge the required replacement
compressor.
In addition, if theoptional, factory installed, stainless steel
heat exchanger fails because of a manufacturing defect
within ten years from the date of start-up, Warrantor will
furnish without chargea replacement heat exchanger. Any
local transportation, related service labor and diagnosis
calls are not included.
44RT-SVX38B-EN
Page 45
Page 46
Page 47
Page 48
The manufacturer optimizes the performance of homes and buildings around the world. A business of Ingersoll Rand,
the leader in creating and sustaining safe, comfortable and energy efficient environments,the manufacturer offers a
broad portfolio of advanced controls and HVAC systems, comprehensive building services, and parts. For more
information, visit www.IRCO.com.
The manufacturer has a policy of continuous product and product data improvement and reserves the right to change design and specifications without notice.