600mA Synchronous Step-Down DC/DC Converter + 500mA LDO
with Delay Function Voltage Detector
GENERAL DESCRIPTION
The XCM524 series is a multi combination module IC which comprises of a 600mA driver transistor built-in synchronous
step–down DC/DC converter and a high speed, high current LDO regulator with voltage detector function. The device is
housed in small USP-12B01 package which is ideally suited for space conscious applications. The DC/DC converter and the
LDO blocks are isolated in the package so that noise interference from the DC/DC to the LDO regulator is minimal.
The DC/DC converter block with a built-in 0.42ΩP-channel MOS driver transistor and 0.52ΩN-channel MOS switching
transistor, designed to allow the use of ceramic capacitors. The DC/DC enables a high efficiency, stable power supply with an
output current of 600mA to be configured using only a coil and two capacitors connected externally.
The LDO regulator block is precise, low noise, high ripple rejection, low dropout positive voltage regulators with built-in voltage
detector. The LDO is also compatible with low ESR ceramic output capacitors. Good output stability is maintained during
load fluctuations due to its excellent transient response. The current limiter's fold back circuit also operates as a short circuit
protection for the output current.
The voltage detector block of the contains delay circuit. The delay time can be controlled by an external capacitor.
The detector monitors the input voltage of the voltage regulator.
■APPLICATIONS
●BD, DVD drives
●HDD drives
●Cameras, Video recorders
●Mobile phones, Smart phones
●Various general-purpose power supplies
TYPICAL APPLICATION CIRCUIT
(TOP VIEW)
FEATURES
<DC/DC Convertor Block>
Input Voltage Range : 2.7V ~ 6.0V
Output Voltage Options : 0.8V ~ 4.0V (±2%)
High Efficiency : 92% (TYP.)
Output Current : 600mA (MAX.)
Oscillation Frequency : 1.2MHz, 3.0MHz (+15%)
Current Limiter Circuit Built-In : Constant Current & Latching
Control Methods : PWM
PWM/PFM Auto
*Performance depends on external components and wiring on PCB wiring.
<Regulator Block>
Maximum Output Current
Dropout Voltage : 200mV@I
Operating Voltage Range
Output Voltage Options : 0.9V ~ 5.1V (0.1V increments, ±2%)
Detect Voltage Options : 2.0V ~ 5.5V (0.1V increments, ±2%)
VR.VD Temperature Stability :±100ppm/℃ (TYP.)
High Ripple Rejection : 65dB (@10kHz)
Low ESR Capacitor : Ceramic Capacitor
Operating Temperature Range
Package : USP-12B01
Environmentally Friendly : EU RoHS Compliant, Pb Free
: 500mA (Limiter 600mA TYP.)
(2.5V≦V
: 2.0V ~ 6.0V
: -40℃ ~ +85℃
≦4.9V)
ROUT
=100mA (TYP.)
ROUT
1/52
■
■
XCM524 Series
PIN CONFIGURATIOIN
*DC/DC Ground pin (No.5 and 8) should be short before using the IC.
* A dissipation pad on the reverse side of the package should be electrically isolated.
*1: Voltage level of the VDR’s dissipation pad should be V
*2: Voltage level of the DC/DC’s dissipation pad should be V
Care must be taken for an electrical potential of each dissipation pad so as to enhance mounting strength and heat release
when the pad needs to be connected to the circuit.
PIN ASSIGNMENT
PIN No XCM524 FUNCTIONS
1 VDOUT VDR Block: VD Output Voltage
2 VSS VDR Block: Ground
3 Cd VDR Block: Delay Capacitor connection
4 V
5 PGND DC/DC Block: Power Ground
6 Lx DC/DC Block: Switching Connection
7 DCOUT DC/DC Block: Output Voltage
8 AGND DC/DC Block: Analog Ground
9 EN2 DC/DC Block: ON/OFF Control
10 V
11 NC No Connection
12 V
(TOP VIEW)
(BOTTOM VIEW)
SS
DC/DC Block: Power Input
IN2
VDR Block: Power Input
IN1
VDR Block: LDO Output
ROUT
PIN NoXCM524 VDR DC/DC
level.
level.
SS
1 V
2 VSS V
3 Cd Cd -
4 V
5 PGND - PGND
6 Lx - Lx
7 DCOUT - VOUT
8 AGND - AGND
9 EN2 - CE
10 V
11 NC - -
12 V
V
DOUT
- VIN
IN2
V
IN1
V
ROUT
DOUT
SS
IN1
ROUT
-
-
-
-
2/52
X
■
PRODUCT CLASSIFICATION
●Ordering Information
XCM524A①②③④⑤-⑥
XCM524B①②③④⑤-⑥
(*1)
DC/DC Block: PWM fixed control
(*1)
DC/DC Block: PWM/PFM automatic switching control
DESIGNATOR DESCRIPTION SYMBOLDESCRIPTION
① Oscillation Frequency and Options - See the chart below
②③ Output Voltage - See the chart below
CM524
Series
④⑤-⑥
(*1)
The XCM524 series is Halogen and Antimony free as well as being fully RoHS compliant.
(*2)
The device orientation is fixed in its embossed tape pocket.
Packages
Taping Type
(*2)
DR-G USP-12B01
●DESIGNATOR①
DC/DC BLOCK VDR BLOCK
①
A 1.2M Not Available Standard Available VIN
B 3.0M Not Available Standard Available VIN
C 1.2M Available High Speed Available VIN
D 3.0M Available High Speed Available VIN
OSCILLATION
FREQUENCY
CL
DISCHARGE
SOFT START
VD DELAY
FUNCTION
VD SENSE PIN
Active Low Detect
Active Low Detect
Active Low Detect
Active Low Detect
The voltage divided by resistors R1 & R2 is compared with the internal reference voltage by the error amplifier. The
P-channel MOSFET which is connected to the V
at the V
●Detector Function with the XC524 Series
The series' detector function monitors the voltage divided by resistors R3 & R4, which are connected to the VR
V
IN1 pin or the VSEN pin, as well as monitoring the voltage of the internal reference voltage source via the comparator. The
VDSEN pin has options. A 'High' or 'Low' signal level can be output from the VD
below the detect voltage. The VD output logic has options. As VD
of about 220kΩis needed to achieve a voltage output.
Because of hysteresis at the detector function, output at the VD
above the release voltage (105% of the detect voltage).
By connecting the Cd pin to a capacitor, the XCM524 series can apply a delay time to VDOUT voltage when releasing voltage.
The delay time can be calculated from the internal resistance, Rdelay (500kΩ fixed) and the value of Cd as per the following
equation.
pin is controlled & stabilized by a system of negative feedback.
ROUT
Delay Time = Cd x Rdelay x 0.7 …(1)
Delay Time
Rdelay standard : 300 ~ 700kΩTYP : 500kΩ
Cd DELAY TIME (TYP.)
0.01μF
0.022μF
0.047μF
0.1μF
0.22μF
0.47μF
1μF
<Low ESR Capacitor>
With the XCM524 series, a stable output voltage is achievable even if used with low ESR capacitors, as a phase
compensation circuit is built-in. The output capacitor (CL1) should be connected as close to V
stable phase compensation. Also, please connect an input capacitor (C
Output Capacitor Chart
* The release delay time values above are calculated by using the formula (1).
*1: The release delay time is influenced by the delay capacitance Cd.
V
0.9 ~1.2V 1.3 ~ 1.7V 1.8 ~ 5.1V
ROUT
pin is then driven by the subsequent output signal. The output voltage
ROUT
OUT pin or the
OUT pin when the VD pin voltage level goes
OUT is an open-drain N-channel output, a pull-up resistor
OUT pin will invert when the detect voltage level increases
DELAY TIME (MIN.~MAX.)
3.5 ms 2.1 ~ 4.9 ms
7.7 ms 4.62 ~ 10.8 ms
16.5 ms 9.87 ~ 23.0 ms
35 ms 21.0 ~ 49.0 ms
77 ms 46.2 ~ 108.0 ms
165 ms 98.7 ~ 230.0 ms
350 ms 210.0 ~ 490.0 ms
pin and VSS pin to obtain
ROUT
IN1) of 1.0μF between the VIN1 pin and the VSS pin.
CL1
<Current Limit, Short-Circuit Protection>
The XCM524 series’ fold-back circuit operates as an output current limiter and a short protection of the output pin. When the
load current reaches the current limit level, the fixed current limiter circuit operates and output voltage drops. When the
output pin is shorted to the V
SS
≧4.7μF ≧2.2μF ≧1.0μF
level, current flows about 50mA.
12/52
X
CM524
Series
■OPERATIONAL EXPLANATION (Continued)
●DC/DC BLOCK
The DC/DC block of the XCM524 series consists of a reference voltage source, ramp wave circuit, error amplifier, PWM
comparator, phase compensation circuit, output voltage adjustment resistors, P-channel MOSFET driver transistor, N-channel
MOSFET switch transistor for the synchronous switch, current limiter circuit, UVLO circuit and others. (See the block diagram
above.)
The series ICs compare, using the error amplifier, the voltage of the internal voltage reference source with the feedback voltage
from the DCOUT pin through split resistors, R1 and R2. Phase compensation is performed on the resulting error amplifier
output, to input a signal to the PWM comparator to determine the turn-on time during PWM operation. The PWM comparator
compares, in terms of voltage level, the signal from the error amplifier with the ramp wave from the ramp wave circuit, and
delivers the resulting output to the buffer driver circuit to cause the Lx pin to output a switching duty cycle. This process is
continuously performed to ensure stable output voltage.
The current feedback circuit monitors the P-channel MOS driver transistor current for each switching operation, and modulates
the error amplifier output signal to provide multiple feedback signals. This enables a stable feedback loop even when a low
ESR capacitor such as a ceramic capacitor is used ensuring stable output voltage.
<Reference Voltage Source>
The reference voltage source provides the reference voltage to ensure stable output voltage of the DC/DC converter.
<Ramp Wave Circuit>
The ramp wave circuit determines switching frequency. The frequency is fixed internally and can be selected from 1.2MHz or
3.0MHz. Clock pulses generated in this circuit are used to produce ramp waveforms needed for PWM operation, and to
synchronize all the internal circuits.
<Error Amplifier>
The error amplifier is designed to monitor output voltage. The amplifier compares the reference voltage with the feedback
voltage divided by the internal split resistors, R1 and R2. When a voltage is lower than the reference voltage is fed back, the
output voltage of the error amplifier increases. The gain and frequency characteristics of the error amplifier output are fixed
internally to deliver an optimized signal to the mixer.
<Current Limit>
The current limiter circuit of the XCM524series monitors the current flowing through the P-channel MOS driver transistor
connected to the Lx pin, and features a combination of the current limit mode and the operation suspension mode.
①When the driver current is greater than a specific level, the current limit function operates to turn off the pulses from the Lx pin
at any given timing.
②When the driver transistor is turned off, the limiter circuit is then released from the current limit detection state.
③At the next pulse, the driver transistor is turned on. However, the transistor is immediately turned off in the case of an over
current state.
④When the over current state is eliminated, the IC resumes its normal operation.
The IC waits for the over current state to end by repeating the steps ①through ③. If an over current state continues for a
few ms and the above three steps are repeatedly performed, the IC performs the function of latching the OFF state of the
P-channel driver transistor, and goes into operation suspension mode. Once the IC is in suspension mode, operations can be
resumed by either turning the IC off via the CE/MODE pin, or by restoring power to the V
not mean a complete shutdown, but a state in which pulse output is suspended; therefore, the internal circuitry remains in
operation. The current limit of the XCM524 series can be set at 1050mA at typical. Besides, care must be taken when laying
out the PC Board, in order to prevent miss-operation of the current limit mode. Depending on the state of the PC Board, latch
time may become longer and latch operation may not work. In order to avoid the effect of noise, the board should be laid out
so that input capacitors are placed as close to the IC as possible.
Limit<#ms
Limit<数ms
Limit>#ms
Limit>数ms
ILx
V
DCOUT
Lx
VEN2
VIN2
pin. The suspension mode does
IN2
Current Limit LEVEL
0mA
VSS
Restart
13/52
XCM524 Series
■OPERATIONAL EXPLANATION (Continued)
<Short-Circuit Protection>
The short-circuit protection circuit monitors the internal R1 and R2 divider voltage from the DCOUT pin. In case where
output is accidentally shorted to the Ground and when the FB point voltage decreases less than half of the reference
voltage (Vref) and a current more than the I
turn off and to latch the P-channel MOS driver transistor. In latch state, the operation can be resumed by either turning the
IC off and on via the EN2 pin, or by restoring power supply to the V
When sharp load transient happens, a voltage drop at the DCOUT pin is propagated to FB point through C
circuit protection may operate in the voltage higher than 1/2 V
<UVLO Circuit>
When the V
IN2 pin voltage becomes 1.4V or lower, the P-channel output driver transistor is forced OFF to prevent false pulse
output caused by unstable operation of the internal circuitry. When the V
operation takes place. By releasing the UVLO function, the IC performs the soft start function to initiate output startup
operation. The soft start function operates even when the VIN pin voltage falls momentarily below the UVLO operating voltage.
The UVLO circuit does not cause a complete shutdown of the IC, but causes pulse output to be suspended; therefore, the
internal circuitry remains in operation.
<PFM Switch Current>
In the PFM control operation, until coil current reaches to a specified level (I
case, on-time (t
t
= L×I
ON
PFM
) that the P-ch MOSFET is kept on can be given by the following formula.
ON
/(V
IN2-VDCOUT
) →I
PFM
①
<PFM duty Limit>
In the PFM control operation, the PFM duty limit (DTY
duty increases (e.g. the condition that the step-down ratio is small), it’s possible for P-ch MOSFET to be turned off even when
coil current doesn’t reach to I
flows to the driver transistor, the short-circuit protection quickly operates to
LIM
pin.
IN2
voltage.
OUT
pin voltage becomes 1.8V or higher, switching
IN2
) , the IC keeps the P-ch MOSFET on. In this
PFM
) is set to 200% (TYP.). Therefore, under the condition that the
PFM Duty Limit
I
② I
PFM
PFM
LIMIT_PFM
②
, as a result, short
FB
X
CM524
Series
■OPERATIONAL EXPLANATION (Continued)
High Speed Discharge>
<C
L
XCM524 series can quickly discharge the electric charge at the output capacitor (CL2) when a low signal to the CE pin which
enables a whole IC circuit put into OFF state, is inputted via the N-channel MOS switch located between the L
pin. When the IC is disabled, electric charge at the output capacitor (C
malfunction. Discharge time of the output capacitor (C
) is set by the CL auto-discharge resistance (R) and the output capacitor
L
) is quickly discharged so that it may avoid application
L
(CL). By setting time constant of a CL auto-discharge resistance value [R] and an output capacitor value (CL2) as
τ(τ=C x R), discharge time of the output voltage after discharge via the N channel transistor is calculated by the following
formula.
-t /
V = V
DCOUT(T)
τ
×e
or t = τLn ( V
DCOUT(T)
/V)
V : Output voltage after discharge,
V
: Output voltage after discharge
DCOUT(T)
t: Discharge time
τ: C×R
C = Capacitance of Output capacitor(C
auto-discharge resistance
R = C
L
)
L2
pin and the VSS
X
100
)
e
u
l
a
V
e
v
i
t
a
l
e
R
(
e
g
a
t
l
o
V
t
u
p
t
u
O
90
e
80
u
l
a
V
70
e
g
60
a
t
l
o
50
V
g
n
i
40
t
t
e
30
S
=
20
0
0
1
10
0
0 102030405060708090100
CL=10uF
CL=20uF
CL=50uF
■NOTE ON USE
When the DC/DC converter and the VR are connected as V
DCOUT=VIN1
1. When larger value is used in DC/DC output capacitor CL2, the larger value is also used in C
noted that when C
capacitance of the VR is getting large, an inrush current increases at VR start-up, DC/DC short circuit
L2
protection starts to operate, as a result, the IC may happen to stop.
DCOUT(1V/div)
IIN2(500mA/div)
VROUT(1V/div)
short-circuit protection to start
短絡保護動作
EN2(5V/div)
50us/div
* VR inrush current I
start, as a result, the IC may happen to stop.
The left waver forms are taken at C
contrast to the recommended 1.0μF).
, the following points should be noted.
makes DC/DC short-circuit protection to
IN1
as in proportional. Please be
L1
=10μ, CL2=10μF(in
L1
15/52
XCM524 Series
■NOTE ON USE (Continued)
<VDR BLOCK>
1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be
exceeded.
2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output
current. Especially, V
3. Please wire the input capacitor (C
Care shall be taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence.
<DC/DC BLOCK>
1. The XCM524 series is designed for use with ceramic output capacitors. If, however, the potential difference is too large
between the input voltage and the output voltage, a ceramic capacitor may fail to absorb the resulting high switching
energy and oscillation could occur on the output. If the input-output potential difference is large, connect an electrolytic
capacitor in parallel to compensate for insufficient capacitance.
2. Spike noise and ripple voltage arise in a switching regulator as with a DC/DC converter. These are greatly influenced by
external component selection, such as the coil inductance, capacitance values, and board layout of external components.
Once the design has been completed, verification with actual components should be done.
3. As a result of input-output voltage and load conditions, oscillation frequency goes to 1/2, 1/3, and continues, then a ripple
may increase.
4. When input-output voltage differential is large and light load conditions, a small duty cycle comes out. After that, 0%duty
cycle may continue in several periods.
5. When input-output voltage differential is small and heavy load conditions, a large duty cycle comes out and may
continues100% duty cycle in several periods.
6. With the IC, the peak current of the coil is controlled by the current limit circuit. Since the peak current increases when
dropout voltage or load current is high, current limit starts operation, and this can lead to instability. When peak current
becomes high, please adjust the coil inductance value and fully check the circuit operation. In addition, please calculate
the peak current according to the following formula:
Ipk =(V
L:Coil Inductance Value
f
7. When the peak current which exceeds limit current flows within the specified time, the built-in P-channel MOS driver
transistor turns off. During the time until it detects limit current and before the P-channel built-in transistor can be turned
off, the current for limit current flows; therefore, care must be taken when selecting the rating for the external components
such as a coil.
8. Depending on the state of the PC Board, latch time may become longer and latch operation may not work. In order to avoid
the effect of noise, the board should be laid out so that input capacitors are placed as close to the IC as possible.
9. Use of the IC at voltages below the recommended voltage range may lead to instability.
10. This IC should be used within the stated absolute maximum ratings in order to prevent damage to the device.
11. When the IC is used in high temperature, output voltage may increase up to input voltage level at no load because of the
leak current of the P-channel MOS driver transistor.
IN2-VDCOUT
:Oscillation Frequency
OSC
and VSS wiring should be taken into consideration for reinforcement.
IN1
) and the output capacitor (CL1) as close to the IC as possible.
IN1
)×OnDuty/(2×L×f
OSC
) + I
OUT2
16/52
X
CM524
Series
■NOTE ON USE (Continued)
12. The current limit is set to 1350mA (MAX.)
In case that the current limit functions while the DCOUT pin is shorted to the GND pin, when P-channel MOSFET is ON,
the potential difference for input voltage will occur at both ends of a coil. For this, the time rate of coil current becomes
large. By contrast, when N- channel MOSFET switch is ON, there is almost no potential difference at both ends of the coil
since the DCOUT pin is shorted to the GND pin. Consequently, the time rate of coil current becomes quite small.
According to the repetition of this operation, and the delay time of the circuit, coil current will be converged on a certain
current value, exceeding the amount of current, which is supposed to be limited originally. Even in this case, however,
after the over current state continues for several ms, the circuit will be latched. A coil should be used within the stated
absolute maximum rating in order to prevent damage to the device.
①Current flows into P-channel MOS driver transistor to reach the current limit (I
②The current of I
OFF of P-channel MOS driver transistor.
③Because of no potential difference at both ends of the coil, the time rate of coil current becomes quite small.
④Lx oscillates very narrow pulses by the current limit for several ms.
⑤The circuit is latched, stopping its operation.
or more flows since the delay time of the circuit occurs during from the detection of the current limit to
LIM
at typical. However, the current of 1350mA or more may flow.
).
LIM
# ms
13. In order to stabilize V
connected as close as possible to the V
14. High step-down ratio and very light load may lead an intermittent oscillation.
15. During PWM / PFM automatic switching mode, operating may become unstable at transition to continuous mode.
Please verify with actual parts.
’s voltage level and oscillation frequency, we recommend that a by-pass capacitor (CIN2) be
IN1
IN2 & VSS pins.
<External Components>
17/52
XCM524 Series
■NOTE ON USE (Continued)
16. Please note the L value of the coil. The IC may enter unstable operation if the combination of ambient temperature, setting
voltage, oscillation frequency, and L value are not adequate.
The Range of L Value
<External Components>
17. Under input-output voltage differential is large, operating may become unstable at transition to continuous mode.
Please verify with actual parts.
●
f
V
OSC
3.0MHz
1.2MHz
*When a coil less value of 4.7μH is used at when a coil
less value of 1.5μH is used at f
current more easily reach the current limit ILMI. In this
case, it may happen that the IC can not provide 600mA
output current.
0.8V≦V
V
DCOUT
2.5V<V
L Value
DCOUT
≦4.0V 1.0μH〜2.2μH
DCOUT
≦2.5V 3.3μH〜6.8μH
4.7μH〜6.8μH
DCOUT
=3.0MHz, peak coil
OSC
<External Components>
●Instructions of pattern layouts
1. Please use this IC within the stated absolute maximum ratings. The IC is liable to malfunction should the ratings be
exceeded.
2. In order to stabilize V
C
) be connected as close as possible to the V
L2
IN1・VIN2
・DCOUT・V
3. Please mount each external component as close to the IC as possible.
4. Wire external components as close to the IC as possible and use thick, short connecting traces to reduce the circuit
impedance.
5. V
(AGND・PGND・VSS)ground wiring is recommended to get large area. The IC may goes into unstable operation as
SS
a result of V
voltage level fluctuation during the switching.
SS
6. This series’ internal driver transistors bring on heat because of the output current (I
transistors.
●Recommended Pattern Layout
voltage level, we recommend that a by-pass capacitor (C
ROUT
IN1・VIN2
・DCOUT・V
and GND・V
ROUT
pins.
SS
) and ON resistance of driver
OUT
IN1・CIN2・CL1
・
Front Back
18/52
X
■
TEST CIRCUITS
Outpur Capacitor
V
ROUT
CL
CM524
Series
0.9 ~1.2V 1.3 ~ 1.7V 1.8V ~ 5.1V
≧4.7μF ≧2.2μF ≧1.0μF
19/52
XCM524 Series
■TEST CIRCUITS (Continued)
20/52
X
■
TYPICAL PERFORMANCE CHARACTERISTICS
CM524
Series
●1ch:VDR Block
(1)VR Output Voltage vs. VR Output Current
)
V
(
(V)
ROUT
Output Voltage VROUT
Output Voltage: V
2.5
2.0
1.5
1.0
0.5
0.0
XC6405Series (VR:1.8V)XC6405 Series (VR:1.8V)
V
=1.8V
ROUT
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
Topr= 25
Top r = - 40
Topr= 85
℃
℃
℃
0100200300 400500600700
Output Current IROUT(mA)
3.0
Output Current: I
XC6405 Series(VR:2.5V)
V
ROUT
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
ROUT
=2.5V
(mA)
VIN=3.8V,
V
=3.8V
IN1
V
=4.5V
VIN=4.5V,
IN1
V
=1.8V
ROUT
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
)
V
(
(V)
ROUT
2.5
2.0
1.5
1.0
0.5
Output Voltage VROUT
Output Voltage: V
0.0
0100200300400500600700
Output Current IROUT(mA)
3.0
Output Current: I
V
XC6405 Series (VR:2.5V)
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
IN1
ROUT
=1.0μF(ceramic), CL1=1.0μF(ceramic)
ROUT
=2.5V
(mA)
VIN= 3.8V
VIN= 2.1V
VIN= 6.0V
2.5
)
V
(
(V)
ROUT
2.0
1.5
Topr= 25
Topr= - 40
Topr= 85
℃
℃
℃
1.0
Output Voltage VROUT
0.5
Output Voltage: V
0.0
0100200300400500600700
4.0
Output Current: I
Output CurrentIROUT(mA)
XC6405 Series(VR:3.0V)
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
V
ROUT
ROUT
=3.0V
3.5
)
V
3.0
(
(V)
ROUT
2.5
2.0
Topr= 25
Top r = - 40
Topr= 85
℃
℃
℃
1.5
1.0
Output Voltage VROUT
0.5
Output Voltage: V
0.0
0100200300400500600700
Output Current: I
Output Current IROUT(mA)
ROUT
(mA)
(mA)
VIN=5.0V,
V
=5.0V
IN1
2.5
)
V
(
(V)
2.0
ROUT
1.5
VIN= 4.5V
VIN= 2.8V
VIN= 6.0V
1.0
Output Voltage VROUT
0.5
Output Voltage: V
0.0
0100200300400500600700
)
V
(
(V)
ROUT
4.0
3.5
3.0
2.5
Output Current: I
Output Current IROUT(mA)
XC6405 Series (VR:3.0V)
V
ROUT
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
ROUT
=3.0V
(mA)
2.0
1.5
1.0
Output Voltage VROUT
0.5
Output Voltage: V
VIN= 5.0V
VIN= 6.0V
0.0
0100200300400500600700
Output Current IROUT(mA)
Output Current: I
ROUT
(mA)
21/52
■
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(1)VR Output Voltage vs. VR Output Current (Continued)
6.0
XC6405 Series (VR:5.0V)
V
=5.0V
ROUT
VIN=6.0V,
V
=6.0V
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
IN1
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
6.0
C
V
XC6405 Series (VR:5.0V)
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
ROUT
=5.0V
5.0
)
V
(
(V)
ROUT
Output Voltage VROUT
4.0
3.0
2.0
1.0
Topr= 25
Topr= - 40
Topr= 85
℃
℃
℃
Output Voltage: V
0.0
0100 200300400500600700
Output Current IROUT(mA)
)
V
(
(V)
ROUT
Output Current: I
XC6405 Series (VR:0.9V)
CIN=1.0μF (ceramic), CL=4.7μF (ceramic)
C
=1.0μF(ceramic), CL1=4.7μF(ceramic)
1.5
1.2
0.9
0.6
IN1
Top r = 2 5
Top r = - 4 0
Top r = 8 5
V
ROUT
ROUT
=0.9V
℃
℃
℃
(mA)
VIN=2.9V,
V
=2.9V
)
5.0
V
(
(V)
4.0
ROUT
3.0
2.0
1.0
Output Voltage VROUT
Output Voltage: V
0.0
0100 200300 400500 600 700
1.5
)
1.2
V
(
(V)
0.9
ROUT
0.6
VIN= 6.0V
Output Current IROUT (mA)
Output Current: I
XC6405 Series(VR:0.9V)
V
ROUT
CIN=1.0μF (ceramic), CL=4.7μF (ceramic)
C
=1.0μF(ceramic), CL1=4.7μF(ceramic)
IN1
ROUT
=0.9V
(mA)
0.3
Output Voltage VROUT
Output Voltage: V
0.0
0100 200 300 400 500 600 700
Output Current IROUT(mA)
Output Current: I
ROUT
(mA)
ROUT
VIN= 2.0V
VIN= 2.9V
VIN= 6.0V
(mA)
0.3
Output Voltage VROUT
Output Voltage: V
0.0
0100 200 300 400 500 600 700
Output CurrentIROUT(mA)
Output Current: I
22/52
X
℃
℃
℃
℃
℃
℃
■
℃
(
(
)
℃
(
(
)
℃
(
(
)
(
(
)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2)VR Output Voltage vs. Input Voltage
V
ROUT
=0.9V
Topr=25
Ta =2 5 ℃
IOUT =0mA
1mA
30mA
100mA
)
V
(
(V)
ROUT
1.00
CIN=1.0μF (ceramic), CL=4.7μF (ceramic)
=1.0μF(ceramic), CL1=4.7μF(ceramic)
C
IN1
)
V
(
(V)
ROUT
1.5
1.3
1.1
XC6405 Series(VR:0.9V)XC6405 Series(VR:0.9V)
CIN=1.0μF (ceramic),CL=4.7μF (ceramic)
C
=1.0μF(ceramic), CL1=4.7μF(ceramic)
IN1
0.80
0.9
V
ROUT
=0.9V
Topr=25
IOUT =0mA
1mA
30mA
100mA
CM524
Series
Ta =2 5 ℃
0.7
Output Voltage VROUT
Output Voltage: V
0.5
0.51.01.52.02.5
2.0
)
1.8
V
(
Input Voltage VIN ( V)
Input Voltage: V
XC6405 Series(VR:1.8V)
V
ROUT
CIN=1.0μF (ceramic),CL=1.0μF (ceramic)
C
=1.0μF
IN1
ceramic), C
IN1
=1.8V
(V)
=1.0μF
L1
(V)
1.6
ROUT
IOUT =0mA
1.4
1.2
Output Voltage VROUT
Output Voltage: V
1.0
1.31.82.3
Input Voltage VIN (V)
Input Voltage: V
(V)
IN1
Topr=25
Ta =2 5
ceramic
1mA
30mA
100mA
Output Voltage VROUT
Output Voltage: V
0.60
2.03.04.05.06.0
CIN=1.0μF (ceramic),CL=1.0μF (ceramic)
)
V
(
(V)
ROUT
1.90
1.85
1.80
1.75
Input Voltage VIN ( V)
Input Voltage: V
V
=1.0μF
IN1
ROUT
ceramic), C
XC6405 Series (VR:1.8V)
C
=1.8V
(V)
IN1
L1
Topr=25
=1.0μF
IOUT =0mA
Ta =2 5
ceramic
1mA
1.70
Output Voltage VROUT
30mA
100mA
Output Voltage: V
1.65
3.03.54.04.55.05.56.0
Input Voltage VIN (V)
Input Voltage: V
(V)
IN1
V
=2.5V
ROUT
XC6405 Series(VR:2.5V)
CIN=1.0μF (ceramic),CL=1.0μF (ceramic)
C
=1.0μF
IN1
ceramic), C
=1.0μF
L1
Topr=25
Ta =2 5
ceramic
)
V
(
(V)
ROUT
2.7
2.5
2.3
XC6405 Series(VR:2.5V)
V
=2.5V
ROUT
CIN=1.0μF (ceramic),CL=1.0μF (ceramic)
C
=1.0μF
IN1
ceramic), C
=1.0μF
L1
Top r =25
Ta =2 5 ℃
ceramic
2.60
)
V
2.55
(
(V)
ROUT
2.50
IOUT =0mA
2.1
1.9
Output Voltage VROUT
Output Voltage: V
1.7
2.02.53.0
Input Voltage VIN (V)
Input Voltage: V
IN1
(V)
1mA
30mA
100mA
IOUT =0mA
2.45
Output Voltage VROUT
Output Voltage: V
2.40
3.03.54.04.55.05.56.0
Input Voltage VIN (V)
Input Voltage: V
(V)
IN1
1mA
30mA
100mA
23/52
)
)
■
℃
(
(
)
℃
(
(
)
℃
(
(
)
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(2)VR Output Voltage vs. Input Voltage (Continued)
V
=3.0V
ROUT
3.2
XC6405 Series (VR:3.0V)
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF
IN1
ceramic), C
=1.0μF
L1
Topr=25
Ta =2 5
ceramic
℃
3.10
XC6405 Series(VR:3.0V)
V
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF
IN1
=3.0V
ROUT
ceramic), C
=1.0μF
L1
Topr=25
Ta =2 5
ceramic
℃
3.0
(V)
2.8
ROUT
IOUT= 0mA
2.6
2.4
Output Voltage VROUT (V
Output Voltage: V
2.2
2.53.03.5
Input Voltage VIN (V)
Input Voltage: V
V
XC6405 Series (VR:5.0V)
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
5.2
IN1
ROUT
IN1
=5.0V
(V)
5.0
(V)
4.8
ROUT
IOUT= 0mA
4.6
4.4
Output Voltage VROUT (V
Output Voltage: V
4.2
4.55.05.5
Input Voltage: V
Input Voltage VIN (V)
IN1
(V)
1mA
30mA
100mA
Topr=25
Ta =2 5 ℃
1mA
30mA
100mA
)
3.05
V
(
(V)
3.00
ROUT
2.95
2.90
Output Voltage VROUT
IOUT =0mA
1mA
30mA
100mA
Output Voltage: V
2.85
4.04.55.05.56.0
℃
5.10
)
5.05
V
(
Input Voltage VIN (V)
Input Voltage: V
V
ROUT
XC6405 Series(VR:5.0V)
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF
IN1
ceramic), C
IN1
=5.0V
(V)
=1.0μF
L1
Topr=25
Ta =2 5
ceramic
℃
(V)
5.00
ROUT
4.95
4.90
Output Voltage VROUT
IOUT= 0mA
1mA
30mA
100mA
Output Voltage: V
4.85
5.25.3 5.45.55.65.7 5.85.96.0
Input Voltage: V
Input Voltage VIN (V)
IN1
(V)
24/52
X
■
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(3)Dropout Voltage vs. VR Output Current
XC6405 Series(VR:0.9V)
V
=0.9V
ROUT
CIN=1.0μF (ceramic), CL=4.7μF (ceramic)
C
=1.0μF(ceramic), CL1=4.7μF(ceramic)
1.6
IN1
1
XC6405 Series (VR:1.8V)
V
ROUT
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
CM524
Series
=1.8V
1.4
1.2
1
0.8
Dropout Voltage Vdif (V)
Dropout voltage: Vdif (V)
0.6
050100150200
1
0.8
)
V
(
0.6
0.4
Topr= 85
Output Current: I
VR OutputCurrent IROUT(mA)
XC6405Series (VR:2.5V)XC6405 Series(VR:3.0V)
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
Top r = 8 5
V
25
- 40
ROUT
25
- 40
℃
℃
℃
ROUT
=2.5V
℃
℃
℃
(mA)
0.8
0.6
0.4
0.2
Dropout Voltage Vdif (V)
Dropout voltage: Vdif (V)
0
050100150200
1
0.8
0.6
0.4
Topr= 85
VR Output CurrentIROUT (mA)
Output Current: I
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
Topr= 85
- 40
-40℃
V
25
- 40
25
ROUT
℃
℃
℃
℃
℃
℃
ROUT
=3.0V
(mA)
Dropout Voltage Vdif
Dropout voltage: Vdif (V)
0.2
0
050100150200
Output Current: I
VR Output Current IROUT (mA)
XC6405 Series(VR:5.0V)
V
ROUT
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
1
0.8
0.6
0.4
Dropout Voltage Vdif (V)
0.2
Dropout voltage: Vdif (V)
0
050100150200
IN1
Topr= 85
25
- 40
VR Output Current IROUT (mA)
Output Current: I
=5.0V
℃
℃
℃
ROUT
ROUT
(mA)
(mA)
Dropout Voltage Vdif (V)
0.2
Dropout voltage: Vdif (V)
0
050100150200
Output Current: I
VR OutputCurrent IROUT(mA)
ROUT
(mA)
25/52
■
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4)Supply Current vs. Input Voltage
V
=0.9V
ROUT
XC6405 Series (VR:0.9)XC6403 Series (VR:1.8V)
CIN=1.0μF (ceramic), CL=4.7μF (ceramic)
C
=1.0μF(ceramic), CL1=4.7μF(ceramic)
120
IN1
120
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
IN1
V
=1.0μF(ceramic), CL1=1.0μF(ceramic)
ROUT
=1.8V
100
)
A
(μ
(μA)
80
DD
60
V
ROUT
Topr= 85
- 40
IN1
=2.5V
Topr= 85
40
Supply Current ISS
20
Supply Current: I
0
0.01.02.03.04.05.06.0
Input Voltage: V
Input Voltage VIN (V)
XC6405 Series (VR:2.5V)XC6405 Series(VR:3.0V)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
120
100
)
A
(μA)
80
(μ
DD
60
40
消費電流Iss (μA)
Supply Current: I
Supply Current ISS
20
IN1
25
(V)
- 40
25
100
)
A
(μ
80
(μA)
DD
60
℃
℃
℃
℃
℃
℃
40
Supply Current ISS
20
Supply Current: I
0
0.01.02.03.04.05.06.0
120
100
A)
μ
80
(μA)
DD
60
40
Supply Current ISS (
Supply Current: I
20
Input Voltage VIN (V)
Input Voltage: V
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
V
ROUT
Topr= 85
IN1
=3.0V
25
- 40
(V)
Topr= 85
℃
℃
℃
℃
25
℃
- 40
℃
0
0.01.02.03.04.05.06.0
Input Voltage: V
Input Voltage VIN (V)
XC6405 Series(VR:5.0V)
V
ROUT
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
120
100
A)
μ
(μA)
80
DD
60
40
Supply Current ISS (
Supply Current: I
20
0
IN1
0.01.02.03.04.05.06.0
Input Voltage VIN (V)
Input Voltage: V
IN1
=5.0V
IN1
(V)
Topr= 85
25
- 40
(V)
0
0.01.02.03.04.05.06.0
Input Voltage: V
Input Voltage VIN (V)
℃
℃
℃
(V)
IN1
26/52
X
■
A
A
A
A
A
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5)VR Output Voltage vs. Ambient Temperature
V
=0.9V
XC6405 Series (VR:0.9)
C
=1.0μF(ceramic), CL1=4.7μF(ceramic)
IN1
CIN=1.0μF (ceramic), CL=4.7μF (ceramic)
-50-25 0 255075100
Operating Temperature Topr (℃)
mbient Temperature: Ta (℃)
)
V
(
(V)
ROUT
Output Voltage VROUT
Output Voltage: V
1.10
1.00
0.90
0.80
0.70
0.60
ROUT
VIN=2.0V
V
IOUT =0mA
=30mA
=100mA
IN1
=2.0V
2.00
1.95
)
V
(
1.90
(V)
1.85
ROUT
1.80
1.75
1.70
Output Voltage VROUT
Output Voltage: V
1.65
1.60
-50-250255075100
XC6403 Series (VR:1.8V)
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IN1
CIN=1.0μF(ceramic), CL=1.0μF (ceramic)
Operating Temperature Topr (℃)
mbient Temperature: Ta (℃)
V
ROUT
=1.8V
VIN=2.8V
V
IOUT =0mA
=30mA
=100mA
IN1
CM524
Series
=2.8V
XC6405 Series (VR:2.5V)
C
IN1
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
-50-250255075100
)
V
(
(V)
ROUT
Output Voltage VROUT
Output Voltage: V
2.70
2.65
2.60
2.55
2.50
2.45
2.40
2.35
2.30
mbient Temperature: Ta (℃)
XC6405 Series (VR:5.0V)
C
IN1
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
)
V
(
(V)
ROUT
5.20
5.15
5.10
5.05
5.00
V
=2.5V
ROUT
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IOUT= 0mA
=30mA
=100mA
Operating Temperature Topr (℃)
V
=5.0V
ROUT
=1.0μF(ceramic), CL1=1.0μF(ceramic)
IOUT =0mA
=30mA
=100mA
VIN=3.5V
V
=3.5V
IN1
VIN=6.0V
V
=6.0V
IN1
XC6405 Series (VR:3.0V)
V
=3.0V
ROUT
C
=1.0μF(ceramic), CL1=1.0μF(ceramic)
CIN=1.0μF (ceramic), CL=1.0μF (ceramic)
3.20
3.15
)
V
3.10
(
(V)
3.05
ROUT
3.00
2.95
2.90
Output Voltage VROUT
Output Voltage: V
2.85
2.80
-50-250255075100
IN1
IOUT= 0mA
=100mA
Operating Temperature Topr (℃)
mbient Temperature: Ta (℃)
VIN=4.0V
V
=30mA
IN1
=4.0V
4.95
4.90
Output Voltage VROUT
Output Voltage: V
4.85
4.80
-50-25 0 25 50 75100
Operating Temperature Topr (℃)
mbient Temperature: Ta (℃)
27/52
■
pp
y
DD
(
μ
)
A
pp
y
(
μ
)
A
A
A
A
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(6)Supply Current vs. Ambient Temperature
V
=0.9V
ROUT
V
=2.0V
IN1
V
ROUT
=1.8V
V
=2.8V
IN1
A
Current: I
l
Su
(μA)
DD
mbient Temperature: Ta (℃)
V
=2.5V
ROUT
A
DD
Current: I
l
Su
mbient Temperature: Ta (℃)
V
=3.0V
ROUT
V
=3.5V
IN1
(μA)
DD
V
=4.0V
IN1
Supply Current: I
mbient Temperature: Ta (℃)
(μA)
DD
Supply Current: I
mbient Temperature: Ta (℃)
V
ROUT
=5.0V
Supply Current: I
mbient Temperature: Ta (℃)
V
=6.0V
IN1
28/52
X
■
)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(7)Rdelay vs. Ambient Temperature (8)Output Noise Density
C
=1.0μF(セラミック), CL1=1.0μF(ceramic)
800
700
600
500
400
300
Rdelay (kΩ)
200
100
0
-50-250255075100
Ambient Temperature: Ta(℃)
Output Noise Density (μV/RootHz)
10
1
0.1
0.01
IN1
0.1110100
Frequency: (kHz)
(9)Detect Voltage, Release Voltage vs. Ambient Temperature
2.20
(V)
DR
,V
2.15
DF
2.10
2.05
VDF=2.0V
XC6405 Series(VD:2.0V)
VDR
)
V
(
(V)
DR
,V
DF
2.90
2.85
2.80
2.75
XC6405 Series(VD:2.7V)
VDF=2.7V
V
=4.0V
VIN=4.0V
IOUT=10mACL=10uF(セラミック
VDR
IN1
CM524
Series
2.00
1.95
1.90
Detect Voltage, Release Voltage VDF,VDR (V)
-50-250255075100
Detect Voltage, Release Voltage: V
Operating Temperature Topr(OC)
Operating Temperature Topr(℃)
Ambient Temperature: Ta (℃)
VDF
VDF=3.6V
)
3.80
V
(
(V)
DR
3.75
,V
DF
3.70
3.65
3.60
3.55
3.50
Detect Voltage, Release Voltage VDF,VDR
-50-250255075100
Detect Voltage, Release Voltage: V
Ambient Temperature: Ta (℃)
Operating Temperature Topr (℃)
VDR
VDF
2.70
2.65
2.60
Detect Voltage, Release Voltage VDF,VDR
-50-250255075100
Detect Voltage, Release Voltage: V
)
5.40
V
(
(V)
DR
,V
5.30
DF
5.20
5.10
5.00
4.90
Detect Voltage, Release Voltage VDF,VDR
-50-25 0 25 50 75100
Detect Voltage, Release Voltage: V
Operating Temperature Topr(℃)
Ambient Temperature: Ta (℃)
XC6405 Series(VD:5.0V)XC6405 Series(VD:3.6V)
Ambient Temperature: Ta (℃)
Operating Temperature Topr (℃)
VDF
VDF=5.0V
VDR
VDF
29/52
℃
℃
℃
■
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10)VD N-channel Driver Transistor Output Current vs. VDS
VDF=2.0V
XC6405 Series(VD:2.0V)XC6405 Series (VD:2.7V)
Ta =2 5 ℃
8
7
)
6
mA
(mA)
(
5
DOUT
4
3
2
Output Current IOUT
Output Current: I
1
0
00.511.522.5
VDS (V)
VDS (V)
Topr=25
VIN=2.0V
16
14
)
12
mA
(mA)
(
10
DOUT
8
6
4
Output Current IOUT
Output Current: I
2
0
00.511.522.53
VDF=2.7V
VIN=1.0V
VDS (V)
VDS (V)
Ta =2 5 ℃
VIN=2.5V
VIN=2.0V
VIN=1.5V
VDF=3.6V
Ta =2 5 ℃
24
21
)
18
mA
(mA)
(
15
DOUT
12
9
VIN=1.5V
VDS (V)
VDS (V)
VIN=2.0V
6
Output Current IOUT
Output Current: I
3
0
01234
Topr=25
VIN=3.0V
VIN=2.5V
XC6405 Series(VD:5.0V)XC6405 Series (VD:3.6V)
VDF=5.0V
Ta =2 5 ℃
32
28
)
24
mA
(mA)
(
20
DOUT
16
12
8
Output Current IOUT
Output Current: I
4
0
01234
VIN=2.0V
VIN=1.5V
VDS (V)
VDS (V)
Topr=25
VIN=4.5V
VIN=3.5V
VIN=2.5V
30/52
X
℃
℃
℃
■
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(11)VD N-channel Driver Transistor Output Current vs. Input Voltage
XC6405 Series ( VD:2.0V )
XC6405 Series (VD:2.7V)
VDF=2.7V VDF=2.0V
CM524
Series
8
)
mA
6
(mA)
(
DOUT
4
2
Output Current IOUT
Output Current: I
0
20
16
)
mA
(mA)
(
DOUT
12
VDS=0.5V
00.511.522.5
Input Voltage VIN (V)
Input Voltage: V
XC6405 Series (VD:3.6V)
VDF=3.6V VDF=5.0V
VDS=0.5V
25
-40
℃
25
85
℃
(V)
IN1
-40
℃
℃
15
)
12
mA
(mA)
(
DOUT
9
6
3
Output Voltage IOUT
Output Current: I
0
01234
25
)
20
mA
(mA)
(
15
DOUT
VDS=0.5V
-40
℃
25
85
℃
Input Voltage VIN(V)
Input Voltage: V
XC6405 Series (V D:5.0V)
VDS=0.5V
25
℃
IN1
(V)
-40
℃
8
4
Output Current IOUT
Output Current: I
0
01234
Input Voltage VIN (V)
Input Voltage: V
85
(V)
IN1
10
5
Output Current IOUT
Output Current: I
0
01234 56
Input Voltage VIN(V)
Input Voltage: V
85
℃
(V)
IN1
31/52
■
入力電圧
入力電圧
入力電圧
(
)
(
)
(
)
(
)
(
)
(
)
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12)Input Transient Response
V
=0.9V
ROUT
C
=4.7μF
L1
Input Voltage
I
=1mA, tr=tf=5.0μs
ROUT
ceramic
, Ta=25℃
V
=0.9V
ROUT
I
ROUT
=4.7μF
C
L1
Input Voltage
=30mA, tr=tf=5.0μs
ceramic
, Ta=25℃
(V)
IN1
Input Voltage: V
(V)
IN1
Input Voltage: V
Output Voltage
Time (40μs/div)
V
=0.9V
ROUT
I
=100mA, tr=tf=5.0μs
ROUT
C
=4.7μF
L1
Input Voltage
Output Voltage
ceramic
, Ta=25℃
(V)
ROUT
Output Voltage: V
(V)
ROUT
Output Voltage: V
(V)Input Voltage: V
IN1
Input Voltage: V
(V)
IN1
Output Voltage
Time (40μs /div)
V
=1.8V
ROUT
I
=1mA, tr=tf=5.0μs
ROUT
=1.0μF
C
L1
Input Voltage
Output Voltage
ceramic
(V)
ROUT
Output Voltage: V
, Ta=25℃
(V)
ROUT
Output Voltage: V
(V)
IN1
Input Voltage: V
Time (40μs /div)
V
=1.8V
ROUT
I
=30mA, tr=tf=5.0μs
ROUT
C
=1.0μF
L1
Input Voltage
出力電圧
Output Voltage
Time (40μs /div)
ceramic
, Ta=25℃
(V)
ROUT
出力電圧VOUT(V)
Output Voltage: V
(V)
IN1
Input Voltage: V
Time (40μs /div)
V
=1.8V
ROUT
I
=100mA, tr=tf=5.0μs
ROUT
C
=1.0μF
L1
Input Voltage
Output Voltage
ceramic
Time (40μs /div)
, Ta=25℃
(V)
ROUT
Output Voltage: V
32/52
X
)
■
入力電圧
(
)
(
)
(
)
(
)
(
)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12)Input Transient Response (Continued)
V
XC6405 Series (VR:2.5V)XC6405 Series (VR:2.5V)
6
=2.5V
ROUT
IOUT=1mA, tr=tf=5.0μsec,
I
=1mA, tr=tf=5.0μs
ROUT
CL=1.0μF (ceramic),Topr=25
=1.0μF
ceramic
C
L1
, Ta=25℃
℃
2.58
6
V
=2.5V
ROUT
IOUT=30mA, tr=tf=5.0μsec,
CL=1.0μF (ceramic),Topr=25
=1.0μF
C
L1
I
=30mA, tr=tf=5.0μs
ROUT
ceramic
, Ta=25℃
CM524
Series
℃
2.58
5
(V)
4
IN1
3
2
Input Voltage VIN (V
Input Voltage: V
1
0
6
5
)
(V)
V
(
4
IN1
3
2
Input Voltage VIN
Input Voltage: V
1
0
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (40μs /div)
Time(40μsec/div)
V
XC6405 Series (VR:2.5V)
=2.5V
ROUT
IOUT=100mA, tr=tf=5.0μsec,
I
=100mA, tr=tf=5.0μs
ROUT
CL=1.0μF (ceramic),Topr=25
C
=1.0μF
L1
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (40μsec/div)
Time (40μs /div)
ceramic
℃
, Ta=25℃
2.56
2.54
2.52
2.50
2.48
2.46
2.58
2.56
2.54
2.52
2.50
2.48
2.46
(V)
ROUT
OutputVoltageVOUT(V)
Output Voltage: V
)
V
(V)
(
ROUT
出力電圧VOUT(V) 出力電圧VOUT(V)
Output Voltage VOUT
Output Voltage: V
5
)
(V)
V
(
4
IN1
3
2
Input Voltage VIN
Input Voltage: V
1
0
6
5
)
V
(V)
(
4
IN1
3
2
Input Voltage VIN
Input Voltage: V
1
0
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (40
Time (40μs /div)
V
XC6405 Series (VR:3.0V)
Input Voltage
Output Voltage
Time (40μsec/div)
Time (40μs /div)
sec/div)
μ
=3.0V
ROUT
IOUT=1mA, tr=tf=5.0μsec,
I
=1mA, tr=tf=5.0μs
CL=1.0μF (ceramic), Topr=25
Output Voltage
ROUT
=1.0μF
C
L1
Input Voltage
ceramic
℃
, Ta=25℃
2.56
2.54
2.52
2.50
2.48
2.46
3.08
3.06
3.04
3.02
3.00
2.98
2.96
)
V
(
(V)
ROUT
Output Voltage VOUT
Output Voltage: V
)
V
(
(V)
ROUT
Output Voltage VOUT
Output Voltage: V
V
=3.0V
ROUT
XC6405 Series(VR:3.0V)
I
=100mA, tr=tf=5.0μs
IOUT=100mA, tr=tf=5.0μsec,
ROUT
=1.0μF(ceramic), Ta=25℃
C
CL=1.0μF (ceramic), Topr=25
L1
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (40μsec/div)
Time (40μs /div)
℃
3.08
3.06
)
V
(
(V)
3.04
ROUT
3.02
3.00
Output Voltage VOUT
2.98
Output Voltage: V
2.96
6
5
)
V
(V)
(
4
IN1
3
2
Input Voltage VIN
Input Voltage: V
1
0
V
XC6405 Series (VR:3.0V)
Input Voltage
=3.0V
ROUT
IOUT=30mA, tr=tf=5.0μsec,
I
=30mA, tr=tf=5.0μs
ROUT
CL=1.0μF (ceramic), Topr=25
C
=1.0μF
L1
Input Voltage
Output Voltage
Output Voltage
Time (40μsec/div)
時間(40μsec/div)
Time (40μs /div)
ceramic
, Ta=25℃
℃
3.08
3.06
)
V
(
(V)
3.04
ROUT
3.02
3.00
Output Voltage VOUT
2.98
Output Voltage: V
2.96
6
5
)
V
(V)
(
4
IN1
3
2
Input Voltage VIN
Input Voltage: V
1
0
33/52
■
(
)
(
)
(
)
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12)Input Transient Response (Continued)
V
=5.0V
ROUT
8
7
)
(V)
V
(
IN1
6
5
4
Input Voltage VIN
Input Voltage: V
3
2
XC6405 Series(VR:5.0V)
IOUT=1mA, tr=tf=5.0μsec,
I
=1mA, tr=tf=5.0μs
ROUT
CL=1.0μF (ceramic),Topr=25
=1.0μF
ceramic
C
L1
Input Voltage
Input Voltage
Output Voltage
Output Voltage
時間(40μsec/div)時間(40μsec/div)
Time (40μsec/div)
Time (40μs /div)
, Ta=25℃
℃
5.08
5.06
5.04
5.02
5.00
4.98
4.96
)
V
(V)
(
ROUT
出力電圧VOUT(V) 出力電圧VOUT(V) 出力電圧VOUT(V)
Output Voltage VOUT
Output Voltage: V
8
7
(V)
6
IN1
5
4
入力電圧VIN(V)
Input Voltage VIN (V)
Input Voltage: V
3
2
XC6405 Series(VR:5.0V)
V
=5.0V
ROUT
IOUT=30mA, tr=tf=5.0μsec,
I
ROUT
CL=1.0μF (ceramic),Topr=25
=1.0μF
C
L1
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (40μs /div)
Time (40μsec/div)
=30mA, tr=tf=5.0μs
ceramic
, Ta=25℃
℃
5.08
5.06
)
V
(
5.04
5.02
5.00
4.98
(V)
ROUT
Output Voltage VOUT
Output Voltage: V
4.96
8
7
)
V
(V)
(
6
IN1
5
4
Input Voltage VIN
Input Voltage: V
3
2
V
XC6405 Series(VR:5.0V)
=5.0V
ROUT
IOUT=100mA, tr=tf=5.0μsec,
I
=100mA, tr=tf=5.0μs
ROUT
CL=1.0μF (ceramic), Topr=25
C
=1.0μF
L1
Input Voltage
Input Voltage
Output Voltage
Output Voltage
Time (40μs/div)
Time (40μsec/div)
ceramic
, Ta=25℃
℃
5.08
5.06
5.04
5.02
5.00
4.98
4.96
)
V
(
(V)
ROUT
Output Voltage VOUT
Output Voltage: V
34/52
X
■
(
)
時間
(
(
)
(
)
(
)
(
)
(
)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(13)Load Transient Response
V
=0.9V
ROUT
V
=2.0V, tr=tf=5.0μs, Ta=25℃
C
IN1
IN1
=1.0μF(ceramic), CL1=4.7μF(ceramic)
C
V
ROUT
V
=2.0V, tr=tf=5.0μs, Ta=25℃
IN1
=1.0μF(ceramic), CL1=4.7μF(ceramic)
IN1
CM524
Series
=0.9V
(V)
ROUT
Output Voltage: V
(V)
ROUT
入力電圧VIN(V)
Output Voltage: V
Output Voltage
Output Current
Time
20μs /div
V
ROUT
V
=2.0V, tr=tf=5.0μsec, Ta=25℃
C
IN1
=1.0μF(ceramic), CL1=4.7μF(ceramic)
IN1
入力電圧
Output Voltage
Output Current
=0.9V
(mA)
ROUT
Output Current: I
(mA)
ROUT
出力電圧VOUT (V)
Output Current: I
(V)
ROUT
入力電圧VIN(V)
Output Voltage: V
(V)
ROUT
Output Voltage: V
Output Voltage
Output Current
Time
20μs /div
V
=1.8V
ROUT
V
=2.8V, tr=tf=5.0μs
IN1
=1.0μF(ceramic), Ta=25℃
C
IN1=CL1
Output Voltage
Output Current
(mA)
ROUT
Output Current: I
(mA)
ROUT
Output Current: I
(V)
ROUT
Output Voltage: V
時間(20μsec/div)
40μsec/div)
Time
20μs /div
V
=1.8V
ROUT
V
IN1
=1.0μF(ceramic), Ta=25℃
C
IN1=CL1
Output Voltage
Output Current
Time
20μs /div
=2.8V, tr=tf=5.0μs
(mA)
ROUT
Output Current: I
(V)
ROUT
Output Voltage: V
Time
20μs /div
V
=1.8V
ROUT
V
=2.8V, tr=tf=5.0μs
IN1
=1.0μF(ceramic), Ta=25℃
C
IN1=CL1
Output Voltage
Output Current
Time
20μs /div
(mA)
ROUT
Output Current: I
35/52
■
(
)
(
)
(
)
(
)
(
)
(
)
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(13)Load Transient Response (Continued)
V
)
V
(V)
(
ROUT
2.55
2.50
2.45
XC6405 Series (VR:2.5V)XC6405 Series (VR:2.5V)
C
IN1=CL1
CIN=CL=1.0μF (ceramic), Topr=25
Output Voltage
V
=3.5V, tr=tf=5.0μs
VIN=2.5V, tr=tf=5.0μsec
IN1
=1.0μF(ceramic), Ta=25℃
Output Voltage
℃
250
)
200
mA
(mA)
(
ROUT
150
2.55
2.50
)
V
(V)
(
ROUT
2.45
=2.5V
ROUT
V
ROUT
=1.0μF(ceramic), Ta=25℃
C
CIN=CL=1.0μF (ceramic), Topr=25
IN1=CL1
Output Voltage
Output Voltage
=2.5V
V
=3.5V, tr=tf=5.0μs
VIN=2.5V, tr=tf=5.0μsec
IN1
℃
250
200
)
mA
(mA)
(
ROUT
150
Output Voltage VOUT
Output Voltage: V
(V)
ROUT
OutputVoltageVOUT(V)
Output Voltage: V
2.40
2.35
2.30
2.55
2.50
2.45
2.40
2.35
2.30
Output Current
Output Current
Time
20μs /div
Time (20μsec/div)
XC6405 Series (VR:2.5V)
V
=2.5V
ROUT
V
VIN=2.5V, tr=tf=5.0μsec
=1.0μF(ceramic), Ta=25℃
C
IN1=CL1
CIN=CL=1.0μF (ceramic), Topr=25
Output Voltage
Output Voltage
Output Current
Output Current
Time(20μsec/div)
Time
20μs /div
=3.5V, tr=tf=5.0μs
IN1
100
50
Output Current IOUT
Output Current: I
0
℃
250
200
(mA)
150
ROUT
100
OutputCurrentIOUT(mA)
50
Output Current: I
0
2.40
Output Voltage VOUT
2.35
Output Voltage: V
2.30
)
V
(V)
(
ROUT
Output Voltage VOUT
Output Voltage: V
3.05
3.00
2.95
2.90
2.85
2.80
Output Current
Output Current
Time (20μsec/div)
Time
20μs /div
V
XC6405 Series (VR:3.0V)
C
CIN=CL=1.0μF (ceramic), Topr=25
Time
=3.0V
ROUT
VIN=4.0V, tr=tf=5.0μsec
=1.0μF(ceramic), Ta=25℃
IN1=CL1
Output Voltage
Output Voltage
Output Current
Output Current
Time (20μsec/div)
20μs /div
V
=4.0V, tr=tf=5.0μs
IN1
100
Output Current IOUT
50
Output Current: I
0
℃
250
200
)
(mA)
mA
(
150
ROUT
100
50
Output Current IOUT
Output Current: I
0
36/52
(V)
ROUT
OutputVoltageVOUT(V)
Output Voltage: V
3.05
3.00
2.95
2.90
2.85
2.80
V
XC6405 Series (VR:3.0V)
C
CIN=CL=1.0μF (ceramic), Topr=25
IN1=CL1
Output Voltage
Output Current
Time
Time(20μsec/div)
=3.0V
ROUT
VIN=4.0V, tr=tf=5.0μsec
V
=4.0V, tr=tf=5.0μs
IN1
=1.0μF(ceramic), Ta=25℃
Output Voltage
Output Current
20μs /div
V
=3.0V
XC6405 Series (VR:3.0V)
℃
250
200
(mA)
ROUT
150
100
50
OutputCurrentIOUT (mA)
Output Current: I
0
3.05
3.00
)
V
(V)
(
ROUT
2.95
2.90
2.85
Output Voltage VOUT
Output Voltage: V
2.80
ROUT
V
=4.0V, tr=tf=5.0μs
VIN=4.0V, tr=tf=5.0μsec
IN1
=1.0μF(ceramic), Ta=25℃
C
CIN=CL=1.0μF (ceramic), Topr=25
IN1=CL1
Output Voltage
Output Voltage
Output Current
Output Current
Time
20μs /div
Time (20μsec/div)
℃
250
200
)
mA
(
(mA)
150
ROUT
100
50
Output Current IOUT
Output Current: I
0
X
■
(
)
(
)
(
)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(13)Load Transient Response (Continued)
V
=5.0V
ROUT
V
IN1
=1.0μF(ceramic), Ta=25℃
C
IN1=CL1
=6.0V, tr=tf=5.0μs
V
C
IN1=CL1
ROUT
=5.0V
V
=6.0V, tr=tf=5.0μs
IN1
=1.0μF(ceramic), Ta=25℃
CM524
Series
(V)
ROUT
Output Voltage: V
(V)
ROUT
Output Voltage: V
Output Voltage
Output Current
Time
20μs /div
V
=5.0V
ROUT
V
IN1
=1.0μF(ceramic), Ta=25℃
C
IN1=CL1
Output Voltage
Output Current
=6.0V, tr=tf=5.0μs
(mA)
ROUT
Output Current: I
(mA)
ROUT
Output Current: I
(V)
ROUT
Output Voltage: V
Output Voltage
Output Current
Time
20μs /div
(mA)
ROUT
Output Current: I
Time
20μs /div
37/52
■
(
(
(
(
(
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(14)Ripple Rejection Rate
90
80
70
60
50
40
30
リップル除去率 RR
20
10
ripple rejection ratio: RR (dB)
0
0.010.1110100
Ripple Frequency: f (kHz)
V
=0.9V
ROUT
V
=2.25VDC+0.5Vp-pAC
IN1
I
ROUT
VIN=2.5VDC+0.5Vp-PAC
=50mA, C
=1.0μF(ceramic)
L1
IOUT=50mACL=4.7μF(セラミック)
リップル周波数f (kHz)
リップル周波数 f(kHz)
V
ROUT
V
VIN=2.8VDC+0.5Vp-PAC
=50mA, C
I
ROUT
90
IOUT=50mACL=1.0μF(セラミック)
80
70
60
50
40
30
リップル除去率 RR
20
10
ripple rejection ratio: RR (dB)
0
0.010.1110100
リップル周波数f (kHz)
リップル周波数 f(kHz)
Ripple Frequency: f (kHz)
=1.8V
=2.8VDC+1.0Vp-pAC
IN1
=1.0μF(ceramic)
L1
V
=2.5V
ROUT
V
=3.5VDC+1.0Vp-pAC
IN1
VIN=3.5VDC+0.5Vp-PAC
=50mA, C
I
ROUT
90
IOUT=50mACL=1.0μF(セラミック)
=1.0μF(ceramic)
L1
80
70
60
50
40
30
リップル除去率 RR
20
10
ripple rejection ratio: RR (dB)
0
0.010.1110100
90
リップル周波数f (kHz)
リップル周波数 f(kHz)
Ripple Frequency: f (kHz)
V
=5.0V
ROUT
V
=5.75VDC+0.5Vp-pAC
IN1
VIN=5.75VDC+0.5Vp-PAC
=50mA, C
I
ROUT
IOUT=50mACL=1.0μF(セラミック)
=1.0μF(ceramic)
L1
80
70
60
50
40
30
リップル除去率 RR
20
10
ripple rejection ratio: RR (dB)
0
リップル周波数f (kHz)
0.010.1110100
リップル周波数 f(kHz)
Ripple Frequency: f (kHz)
V
=3.0V
ROUT
V
=4.0VDC+1.0Vp-pAC
IN1
VIN=4.0VDC+0.5Vp-PAC
=50mA, C
I
ROUT
90
IOUT=50mACL=1.0μF(セラミック)
=1.0μF(ceramic)
L1
80
70
60
50
40
30
リップル除去率 RR
20
ripple rejection ratio: RR (dB)
10
0
リップル周波数f (kHz)
0.010.1110100
リップル周波数 f(kHz)
Ripple Frequency: f (kHz)
38/52
X
■
(
)
(
)
(
)
(
)
(
)
(
)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15)Input Voltage Rising Response Time
V
V
=0.9V
ROUT
I
=1mA, tr= 5.0μs
=0→2.0V, CL1=4.7μF
V
4
IN1
ROUT
ceramic
5
4
ROUT
I
ROUT
=0→2.0V, CL1=4.7μF
V
IN1
=0.9V
=30mA, tr= 5.0μs
ceramic
CM524
Series
5
(V)
IN1
Input Voltage: V
(V)
IN1
Input Voltage: V
-2
-4
-6
-2
-4
-6
2
0
Inpit Voltage
Output Voltage
Time (20μs/div)
V
=0.9V
ROUT
I
=100mA, tr= 5.0μs
V
4
IN1
ROUT
=0→2.0V, CL1=4.7μF
ceramic
2
0
Inpit Voltage
Output Voltage
Time (20μs/div)
4
(V)
ROUT
3
2
1
Output Voltage: V
0
(V)
IN1
Input Voltage: V
-2
-4
-6
2
Inpit Voltage
0
4
(V)
ROUT
3
2
Output Voltage
1
Output Voltage: V
0
Time (20μs/div)
V
=1.8V
ROUT
I
=1mA, tr= 5.0μs
V
=0→2.8V, CL1=1.0μF
IN1
(V)
IN1
Input Voltage: V
4
2
0
-2
-4
5
(V)
4
ROUT
3
2
1
Output Voltage: V
0
-6
ROUT
Inpit Voltage
Output Voltage
ceramic
5
(V)
4
ROUT
3
2
1
Output Voltage: V
0
Time (20μs/div)
(V)
IN1
Input Voltage: V
-2
-4
-6
V
=1.8V
ROUT
I
=30mA, tr= 5.0μs
V
IN1
4
2
0
ROUT
=0→2.8V, CL1=1.0μF
Inpit Voltage
Output Voltage
ceramic
5
4
(V)
ROUT
3
2
1
Output Voltage: V
0
(V)
IN1
Input Voltage: V
4
2
0
-2
-4
-6
Time (20μs/div)
V
=1.8V
ROUT
I
=100mA, tr= 5.0μs
V
IN1
ROUT
=0→2.8V, CL1=1.0μF
Inpit Voltage
Output Voltage
Time (20μs/div)
ceramic
5
4
(V)
ROUT
3
2
1
Output Voltage: V
0
39/52
■
(
(
)
(
)
(
)
(
)
(
XCM524 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15)Input Voltage Rising Response Time (Continued)
(V)
IN1
XC6405 Series (VR:2.5V)
V
=2.5V
ROUT
IOUT=1mA, tr=5.0μsec
I
=1mA, tr= 5.0μs
VIN=0→3.5V, CL=4.7μF (ceramic)
=0→3.5V, CL1=1.0μF
V
5
3
1
IN1
ROUT
Input Voltage
Inpit Voltage
ceramic)
(V)
IN1
5
3
1
5
)
4
V
(
(V)
ROUT
3
XC6405 Series (VR:2.5V)
V
ROUT
IOUT=30mA, tr=5.0μsec
I
VIN=0→3.5V, CL=4.7μF (ceramic)
V
IN1
ROUT
=0→3.5V, CL1=1.0μF
Inp u t V oltag e
Inpit Voltage
=2.5V
=30mA, tr= 5.0μs
ceramic
5
)
4
V
(V)
(
ROUT
3
-1
Input Voltage VIN (V)
-3
Input Voltage: V
-5
(V)
IN1
Input Voltage VIN (V)
Input Voltage: V
Input Voltage VIN(V)
Input Voltage: V
(V)
IN1
Input Voltage VIN (V)
Input Voltage: V
-1
Output Voltage
-3
-5
XC6405 Series (VR:3.0V)XC6405 Series(VR:2.5V)
VIN=0→4.0V, CL=1.0μF (ceramic)
5
3
1
-1
-3
-5
V
Output Voltage
Time (20μsec/div)
Time (20μs/div)
V
=3.0V
ROUT
I
IOUT=1mA, tr=5.0μsec
=0→4.0V, CL1=1.0μF
IN1
Time (20μsec/div)
Time (20μs/div)
ROUT
Inp u t V oltag e
Inpit Voltage
Output Voltage
Output Voltage
=1mA, tr= 5.0μs
ceramic
2
Output Voltage
Output Voltage
Time (20μsec/div)
Time (20μs/div)
V
=2.5V
ROUT
IOUT=100mA, tr=5.0μsec
I
=100mA, tr= 5.0μs
VIN=0→3.5V, CL=4.7μF (ceramic)
V
5
3
1
-1
-3
-5
IN1
Time (20μsec/div)
ROUT
=0→3.5V, CL1=1.0μF
Input Voltage
Inpit Voltage
Output Voltage
Output Voltage
Time (20μs/div)
ceramic
1
Output Voltage VOUT
Output Voltage: V
0
5
)
V
4
(
(V)
ROUT
3
2
1
Output Voltage VOUT
Output Voltage: V
0
2
1
Output Voltage VOUT
Output Voltage: V
0
5
)
4
V
(
(V)
ROUT
3
2
1
Output Voltage VOUT
Output Voltage: V
0
40/52
5
3
)
V
(V)
(
IN1
1
-1
Input Voltage VIN
-3
Input Voltage: V
-5
XC6405 Series (VR:3.0V)XC6405 Series (VR:3.0V)
V
=3.0V
ROUT
IOUT=30mA, tr=5.0μsec
I
=30mA, tr= 5.0μs
VIN=0→4.0V, CL=1.0μF (ceramic)
V
IN1
Time (20μsec/div)
ROUT
=0→4.0V, CL1=1.0μF
Input Voltage
Inpit Voltage
Output Voltage
Output Voltage
Time (20μs/div)
ceramic)
)
V
(V)
(
IN1
-1
Input Voltage VIN
-3
Input Voltage: V
-5
5
3
1
5
)
4
V
(
(V)
ROUT
3
2
1
Output Voltage VOUT
Output Voltage: V
0
V
=3.0V
ROUT
IOUT=100mA, tr=5.0μsec
I
=100mA, tr= 5.0μs
VIN=0→4.0V, CL=1.0μF (ceramic)
V
IN1
ROUT
=0→4.0V, CL1=1.0μF
Input Voltage
Inpit Voltage
Output Voltage
Output Voltage
Time (20μsec/div)
Time (20μs/div)
ceramic
5
)
4
V
(
(V)
ROUT
3
2
1
Output Voltage VOUT
Output Voltage: V
0
X
■
(
)
(
)
(
)
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15)Input Voltage Rising Response Time (Continued)
XC6405 Series (VR:5.0V)
7
V
=5.0V
ROUT
IOUT=1mA, tr=5.0μsec
I
=1mA, tr= 5.0μs
VIN=0→6.0V, CL=1.0μF (ceramic)
=0→6.0V, CL1=1.0μF
V
IN1
ROUT
ceramic
XC6405 Series (VR:5.0V)
10
7
V
ROUT
VIN=0→6.0V, CL=1.0μF (ceramic)
=0→6.0V, CL1=1.0μF
V
IN1
=5.0V
IOUT=30mA, tr=5.0μsec
I
=30mA, tr= 5.0μs
ROUT
ceramic
CM524
Series
10
5
)
V
(V)
(
IN1
3
1
Input Voltage VIN
-1
Input Voltage: V
-3
7
5
)
V
(V)
(
IN1
3
1
Input Voltage VIN
-1
Input Voltage: V
-3
Input Voltage
Inpit Voltage
Output Voltage
Output Voltage
Time (20μsec/div)
Time (20μs/div)
XC6405 Series (VR:5.0V)
V
=5.0V
ROUT
IOUT=100mA, tr=5.0μsec
I
=100mA, tr= 5.0μs
VIN=0→6.0V, CL=1.0μF (ceramic)
V
IN1
Output Voltage
Output Voltage
Time (20μsec/div)
Time (20μs/div)
ROUT
=0→6.0V, CL1=1.0μF
Input Voltage
Inpit Voltage
ceramic
)
8
V
(V)
(
ROUT
6
4
2
Output Voltage VOUT
Output Voltage: V
0
10
)
8
V
(V)
(
ROUT
6
4
2
Output Voltage VOUT
Output Voltage: V
0
5
)
V
(V)
(
IN1
3
1
Input Voltage VIN
-1
Input Voltage: V
-3
Input Voltage
Inpit Voltage
Output Voltage
Output Voltage
Time (20μsec/div)
Time (20μs/div)
8
)
V
(
(V)
ROUT
6
4
2
Output Voltage VOUT
Output Voltage: V
0
41/52
)
)
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
●2ch:DC/DC Convertor Block
(1) Efficiency vs. Output Current
V
=1.8V, f
DCOUT
V
IN2
3.6V
Output Current: I
= 4.2V
100
PWM/ PFM A ut o ma tic Sw i t c hin g Co nt r ol
90
80
70
60
50
40
30
Efficency:EFFI (%
20
10
0
0.11101001000
(2) Output Voltage vs. Output Current
V
=1.8V, f
2.1
DCOUT
2.0
(V)
1.9
DCOUT
PWM/ PFM A ut o ma t ic Sw i t c hing Co nt r ol
1.8
1.7
1.6
Output Voltage: V
1.5
0.11101001000
Output Current: I
(3) Ripple Voltage vs. Output Current
V
100
DCOUT
=1.8V, f
=1.2MHz
OSC
L=4. 7μH( NR 4018) C
PWM Control
V
3.6V
OUT 2
=1.2MHz
OSC
L=4. 7μH( NR 4018) C
V
PWM Control
OUT 2
=1.2MHz
OSC
L=4. 7μH( NR 4018) C
=4.7μF CL2=10μ F
IN2
= 4.2V
IN2
(mA)
=4.7μF CL2=10μ F
IN2
4.2V,3.6V
=
IN2
(mA)
=4.7μF CL2=10μ F
IN2
V
=1.8V, f
DCOUT
100
PWM/ PFM A ut o ma t ic Sw itc hing Co n tr o l
90
=3.0MHz
OSC
L=1. 5μH( NR 3015) C
=4.7μF CL2=10μ F
IN2
80
70
60
50
40
30
Efficency: EFFI (%
20
V
3.6V
IN2
= 4.2V
PWM Control
V
IN2
3.6V
10
0
0.11101001000
Output Current: I
V
=1.8V, f
DCOUT
2.1
2.0
(V)
1.9
DCOUT
PWM/ PFM A ut o ma t ic Sw itc hing Co n tr o l
OSC
L=1. 5μH( NR 3015) C
(mA)
OUT 2
=3.0MHz
IN2
V
IN2
=4.7μF CL2=10μF
=
1.8
1.7
PWM Control
1.6
Output Voltage: V
1.5
0.11101001000
100
Output Current: I
V
=1.8V, f
DCOUT
OSC
L=1. 5μH( NR 3015) C
(mA)
OUT 2
=3.0MHz
IN2
=4.7μF CL2=10μF
= 4.2V
4.2V,3.6V
80
60
PWM Control
40
20
Ripple Voltage: Vr (mV)
V
IN2
=
4.2V,3.6V
PWM/ PFM A ut o ma t ic
Sw itching Control
V
4.2V
=
IN2
3.6V
0
0.11101001000
Output Current: I
OUT 2
(mA)
80
60
PWM Control
V
4.2V,3.6V
=
IN2
40
20
Ripple Voltage: Vr (mV)
PWM/ PFM A uto ma t ic
Sw itching Control
V
4.2V
=
IN2
3.6V
0
0.11101001000
Output Current: I
OUT 2
(mA)
42/52
X
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(4) Oscillation Frequency vs. Ambient Temperature
1.5
1.4
(MHz)
OSC
1.3
1.2
1.1
1.0
0.9
Os cillation Frequency : f
0.8
V
DCOUT
=1.8V, f
=1.2MHz
OSC
L=4. 7μH( NR 4018) C
V
=3.6V
IN2
=4.7μF CL2=10μ F
IN2
-50-250255075100
Ambient Temperature: Ta (℃)
3.5
3.4
(MHz)
3.3
OSC
3.2
3.1
3.0
2.9
2.8
2.7
2.6
Oscillation F requency: f
2.5
(5) Supply Current vs. Ambient Temperature
(μA)
DD
Supply Current: I
V
DCOUT
=1.8V, f
=1.2MHz
OSC
40
35
V
=6.0V
IN2
30
V
=4.0V
25
IN2
20
15
10
5
0
-50-250255075100
Ambient Temperature: Ta (℃)
(μA)
DD
Supply Current: I
(6) Output Voltage vs. Ambient Temperature(7) UVLO Voltage vs. Ambient Temperature
V
=1.8V, f
2.1
2.0
(V)
1.9
DCOUT
DCOUT
1.8
V
OSC
IN2
=3.0MHz
=3.6V
1.8
1.5
1.2
0.9
V
DCOUT
=1.8V, f
=3.0MHz
OSC
L=1. 5μH( NR 3015) C
V
=3.6V
IN2
=4.7μF CL2=10μF
IN2
-50-250255075100
Ambient Temperature: Ta (℃)
V
DCOUT
=1.8V, f
=3.0MHz
OSC
40
V
=6.0V
35
V
=4.0V
IN2
IN2
30
25
20
15
10
5
0
-50-250255075100
Ambient Temperature: Ta (℃)
V
DCOUT
=1.8V, f
=3.0MHz
OSC
EN2 =V
IN2
CM524
Series
1.7
1.6
Output Voltage: V
1.5
-50-250255075100
Ambient Temperature: Ta (℃)
0.6
0.3
UVLO Voltage: UVLO (V)
0.0
-50-250255075100
Ambient Temperature: Ta (℃)
43/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(8) EN "H" Voltage vs. Ambient Temperature (9) EN" L" Voltage vs. Ambient Temperature
1.0
0.9
(V)
0.8
ENH
0.7
0.6
0.5
0.4
0.3
EN "H" Voltage: V
0.2
0.1
0.0
(10) Soft Start Time vs. Ambient Temperature
(ms)
SS
Soft Star t T ime: t
(11) "P-channel/N-channel" Driver on Resistance vs. Input Voltage
1.0
(Ω)
LxL
0.9
,R
0.8
LxH
0.7
0.6
0.5
0.4
0.3
0.2
0.1
Lx SW ON Resistance: R
0.0
V
DCOUT
=1.8V, f
V
OSC
IN2
=3.0MHz
=5.0V
V
IN2
=3.6V
-50-250255075100
Ambient Temperature: Ta (℃)
V
=1.8V, f
DCOUT
5
=1.2MHz
OSC
L=4. 7μH( NR 4018) C
=4.7μF CL2=10μF
IN2
4
3
2
V
=3.6V
IN2
1
0
-50-250255075100
Ambient Temperature: Ta (℃)
V
DCOUT
=1.8V, f
=3.0MHz
OSC
Nch on Resistance
Pc h on Resistanc e
0123456
Input Voltage: V
IN2
(V)
V
DCOUT
=1.8V, f
=3.0MHz
OSC
1.0
0.9
0.8
(V)
0.7
ENL
V
=5.0V
IN2
0.6
0.5
0.4
0.3
0.2
EN "L" Voltage: V
V
=3.6V
IN2
0.1
0.0
-50-250255075100
Ambient Temperature: Ta (℃)
V
=1.8V, f
DCOUT
5
=3.0MHz
OSC
L=1. 5μH( NR 3015) C
4
(ms)
SS
3
2
V
=3.6V
IN2
1
Soft Start Time: t
0
-50-250255075100
Ambient Temperature: Ta (℃)
=4.7μF CL2=10μF
IN2
44/52
X
V
f
V
f
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(12) XCM524xC/ XCM524xD Series Rise Wave Form
V
=5.0V
IN2
I
=1.0mA
OUT2
V
DCOUT
(13) XCM524xC/ XCM524xD Series Soft-Start Time vs. Ambient Temperature
500
V
DCOUT
400
(μs)
SS
300
200
100
Soft Star t T ime: t
0
V
I
OUT 2
-50-250255075100
(14) XCM524xC/ XCM524xD Series CL Discharge Resistance vs. Ambient Temperature
V
600
500
400
300
200
CL Discharge Resistance: Rdischg(Ω )
100
DCOUT
-50-250255075100
DCOUT
=1.2V,
L=4.7μH(NR4018) C
=1.2MHz
OSC
=4.7μF C
:0.5V/div
EN2:0.0V⇒1.0V
100μs/div
=1.2V, f
=5.0V
IN2
=1.0mA
Ambient Temperature: Ta (℃)
=3.3V, f
Ambient Temperature: Ta (℃)
=1.2MHz
OSC
L=4. 7μH( NR 4018) C
=3.0MHz
OSC
=4.7μF CL2=10μ F
IN2
VIN2=6.0V
VIN2=4.0V
=10μF
DCOUT
V
=5.0V
IN2
I
=1.0mA
OUT2
V
:1.0V/div
DCOUT
=3.3V,
L=1.5μH(NR3015) C
=3.0MHz
OSC
=4.7μF C
EN2:0.0V⇒1.0V
100μs/div
V
500
DCOUT
=3.3V, f
=3.0MHz
OSC
L=1. 5μH( NR 3015) C
IN2
400
(μs)
SS
300
200
V
=5.0V
100
Soft Star t T ime: t
I
OUT 2
IN2
=1.0mA
0
-50-250255075100
Ambient Temperature: Ta (℃)
=4.7μF CL2=10μ F
CM524
Series
=10μF
45/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response
V
=1.2V, f
DCOUT
L=4.7μH(NR4018), C
=3.6V, EN2=V
V
IN2
I
=1mA → 100mA
OUT2
=1.2MHz(PWM/PFM Automatic Switching Control)
OSC
=4.7μF(ceramic), CL2=10μF(ceramic), Ta=25℃
IN2
IN2
1ch : I
OUT2
I
=1mA → 300mA
OUT2
1ch : I
OUT2
V
(50mV/div)
DCOUT
I
=100mA → 1mA
OUT2
V
(50mV/div)
DCOUT
1ch : I
2ch:
OUT2
2ch:
50μs/div
200μs/div
V
DCOUT
I
=300mA → 1mA
OUT2
V
DCOUT
2ch:
(50mV/div)
1ch : I
OUT2
2ch:
(50mV/div)
50μs/div
200μs/div
46/52
X
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued)
V
=1.2V, f
DCOUT
L=4.7μH(NR4018), C
=3.6V, EN2=V
V
IN2
I
=1mA → 100mA
OUT2
V
(50mV/div)
DCOUT
=1.2MHz (PWM Control)
OSC
=4.7μF(ceramic), CL2=10μF(ceramic), Ta=25℃
IN2
IN2
1ch : I
OUT2
2ch:
I
=1mA → 300mA
OUT2
V
(50mV/div)
DCOUT
1ch : I
OUT2
2ch:
CM524
Series
I
=100mA → 1mA
OUT2
V
DCOUT
1ch : I
OUT2
2ch:
(50mV/div)
50μs/div
200μs/div
I
=300mA → 1mA
OUT2
V
(50mV/div)
DCOUT
1ch : I
50μs/div
OUT2
2ch:
200μs/div
47/52
XCM524 Series
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued)
V
=1.8V, f
DCOUT
L=1.5μH(NR3015), C
=3.6V, EN=V
V
IN2
I
=1mA → 100mA
OUT2
V
(50mV/div)
DCOUT
I
=100mA → 1mA
OUT2
V
(50mV/div)
DCOUT
=3.0MHz (PWM/PFM Automatic Switching Control)
OSC
=4.7μF(ceramic), CL2=10μF(ceramic),Ta=25℃
IN2
IN2
1ch : I
OUT2
2ch:
50μs/div
1ch : I
OUT2
2ch:
200μs/div
I
=1mA → 300mA
OUT2
V
(50mV/div)
DCOUT
I
=300mA → 1mA
OUT2
V
(50mV/div)
DCOUT
1ch : I
1ch : I
OUT2
2ch:
50μs/div
OUT2
2ch:
200μs/div
48/52
X
■TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(15) Load Transient Response (Continued)
V
=1.8V, f
DCOUT
L=1.5μH(NR3015), C
=3.6V, EN2=V
V
IN2
I
=1mA → 100mA
OUT2
V
(50mV/div)
DCOUT
I
=100mA → 1mA
OUT2
V
DCOUT
(50mV/div)
=3.0MHz (PWM Control)
OSC
=4.7μF(ceramic), CL2=10μF(ceramic), Ta=25℃
IN2
IN2
1ch : I
OUT2
2ch:
1ch : I
OUT2
2ch:
50μs/div
200μs/div
I
=1mA → 300mA
OUT2
V
DCOUT
I
=300mA → 1mA
OUT2
V
(50mV/div)
DCOUT
1ch : I
OUT2
2ch:
(50mV/div)
1ch : I
OUT2
2ch:
50μs/div
200μs/div
CM524
Series
49/52
■
XCM524 Series
PACKAGING INFORMATION
●USP-12B01
2.3±0.08
MAX0.6
0.25±0.11.3±0.10.25±0.1
0.25±
0.05
●USP-12B01 Reference Pattern Layout●USP-12B01 Reference Metal Mask Design
0.95
0.55
0.65
1.05
0 .0250.025
0.30
0.25 0.15
0.25
0 . 0250.025
0.200.200.50
2.8±0.08
(0.4) (0.4) (0.4) (0.4) (0.4)
(0.15) (0.25)
0.2±
0.05
0.2±
0.05
0.2±
0.05
0.2±
0.05
0.2±
0.05
123456
0.4±0.1
1.2±0.1
0.7±0.050.7±0.05
1.35
0.450.45
0.90
0.650.65
0.250.25
1.2±0.1
78912 11 10
1.35
0.90
1.30
0.350.35
0.95
0.55
1.30
0.95
0.55
0.250.25
0.05
0.200.05
1.60
1.30
0.95
0.55
0.10 0.10
1.30
1.60
0.25 0.15
0.150.050.05
0.65
1.05
0.150.150.40
1.55
1.10
0.60
0.60
1.10
1.55
50/52
X
■PACKAGING INFORMATION (Continued)
● USP-12B01 Power Dissipation
Power dissipation data for the USP-12B01 is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1. Measurement Condition (Reference data)
Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free
Board: Dimensions 40 x 40 mm (1600 mm
st
Layer: Land and a wiring pattern
1
nd
Layer: Connecting to approximate 50% of the 1
2
rd
Layer: Connecting to approximate 50% of the 2
3
th
Layer: Noting
4
Material: Glass Epoxy (FR-4)
Thickness: 1.6 mm
Through-hole: 2 x 0.8 Diameter (each TAB needs one through-hole)
2. Power Dissipation vs. Ambient Temperature
●Only 1ch heating, Board Mount (Tj max = 125℃)
Ambient Temperature(℃) Power Dissipation Pd(mW) Thermal Resistance (℃/W)
25 800
85 320
1000
●Both 2ch heating same time, Board Mount (Tj max = 125℃)
800
600
400
200
許容損失Pd(mW)
0
25456585105125
Power Dissipation: Pd (mW)
Pd-Ta特性
Pd vs. Ta
Ambient Temperature: Ta (℃)
周囲温度
Ambient Temperature(℃) Power Dissipation Pd(mW) Thermal Resistance (℃/W)
25 600
85 240
許容損失Pd(mW)
Power Dissipation: Pd (mW)
1000
800
600
400
200
0
25456585105125
Pd-Ta特性グラフ
Pd vs. Ta
Ambient Temperature: Ta (℃)
周囲温度Ta(℃)
グラフ
Ta(℃)
2
in one side)
st
heat sink
nd
heat sink
Evaluation Board (Unit: mm)
125.00
166.67
CM524
Series
51/52
XCM524 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics. Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.