TOREX XC6603 User Manual

XC6603 Series
ETR03070-001
1A, 0.5V Low Input Voltage, High Speed LDO Regulator Adjustable Soft-start time with an external component
GENERAL DESCRIPTION
The XC6603 series is a low voltage input (0.5V) operation and provides high accuracy ±15mV / ±20mV and can supply large
The series is ideally suited to the applications which require high current in low input/output voltages and consists of a N-ch driver transistor, a voltage reference, an error amplifier, a current limiter, a foldback circuit, a thermal shutdown (TSD) circuit, an under voltage lock out (UVLO) circuit, a soft-start circuit and a phase compensation circuit.
Output voltage is selectable in 0.1V increments within a range of 0.5V to 1.8V using laser trimming technology and ceramic capacitors can be used for the output stabilization capacitor (C start-up can be reduced and makes the V The inrush current conflicts with the soft-start time, therefore if soft-start is set longer, the inrush current is decreased.
The CE function enables the output to be turned off and the series to be put in stand-by mode resulting in greatly reduced
power consumption. At the time of entering the stand-by mode, the series enables the electric charge at the output capacitor
) to be discharged via the internal switch. As a result the V
(C
L
The CE pull-down function keeps the IC to be in stand-by mode even if the CE pin is left open.
■APPLICATIONS
Mobile phones / Smart Phones
Digital still cameras / Video cameras
Note PCs / Tablet PCs
E-book Readers
Wireless LAN
TYPICAL APPLICATION CIRCUIT
stable. Soft-start time can be adjustable with connecting a capacitor to the SS pin.
IN
). The inrush current (I
L
pin quickly returns to the VSS level.
OUT
) from VIN to V
RUSH
OUT
FEATURES
Maximum Output Current
ON Resistance Bias Voltage Range Input Voltage Range Output Voltage Range Output Voltage Accuracy ±0.020V@V
Ripple Rejection 75dB@f=1kHz (V Low Power Consumption Stand-by Current Under-voltage Lockout Thermal Shutdown Protection Circuit Function
Output Capacitor
Operating Ambient Temperature Packages
Environmentally Friendly
1A (1.3A Limit)
: : 0.15V : 2.5V6.0V : 0.5V3.0V : 0.5V1.8V (0.1V increments) : ±0.015VV
: 60dBf=1kHz (V
: 100μA (V : 0.01μA (V
1.8V (V
: : 150℃@detect, 125℃@release
Foldback Current Limit, TSD, UVLO
:
Adjustable Soft-start time with an external component
:
CE Pull-Down (Active High)
C
: Ceramic Capacitor Compatible (2.2μF) : -40℃~+85
USP-6C, SOT-26W
:
EU RoHS Compliant, Pb Free
:
BIAS
BIAS
Auto Discharge
L
TYPICAL PERFORMANCE
CHARACTERISTICS
4
(V)
2
CE
0
-2
XC6603A121xR-G
V
=3.6V, VCE=0V→3.6V(tr=5μs), VIN=1.5V
BIAS
I
=100mA, C
OUT
BIAS=CIN
=1.0μF, CL=2.2μF, Ta=25℃
CE Input Voltage
Output Voltage
for charging CL at
=3.6V, V
1.2V
OUT
1.2V
OUT
), 6.5μA (VIN)V
BIAS
), 0.01μA (VIN)
BIAS
), 0.4V (VIN)
OUT
BIAS_PSRR
IN_PSRR
4
3
2
1
=1.2V
)
)
(V)
OUT
OUT
=1.2V
-4
CE Input Voltage: V
-6 Time (1ms/ div)
0
-1
Output Voltage: V
1/29
XC6603 Series
BLOCK DIAGRAMS
Type A
PRODUCT CLASSIFICATION
Ordering Information
XC6603①②③④⑤⑥-⑦
DESIGNATOR ITEM SYMBOL DESCRIPTION
②③
⑤⑥-⑦
(*1)
The “-G” suffix denotes Halogen and Antimony free as well as being fully RoHS compliant.
(*1)
Output Voltage Accuracy 1
Packages (Order Unit)
Selection Guide
TYPE SOFT-START
A Adjustable Yes Yes Yes Yes Yes
Type A Refer to Selection Guide
Output Voltage
0518 e.g. 1.2V → ②=1, =2
±0.015V (V
OUT
ER-G USP-6C (3,000/Reel)
MR-G SOT-26W (3,000/Reel)
CURRENT
LIMITTER
THERMAL
SHUTDOWN
UVLO
CE PULL-DOWN
RESISTOR
1.2V)±0.020V (V
CL AUTO DISCHARGE
OUT
1.2V)
2/29
XC6603
Series
PIN CONFIGURATION
*The dissipation pad for the USP-6C package should be solder-plated in recommended mount pattern and metal masking so as to enhance
mounting strength and heat release. If the pad needs to be connected to other pins, it should be connected to the V
(No. 2) pin.
SS
PIN ASSIGNMENT
PIN NUMBER
PIN NAME FUNCTIONS
USP-6C SOT-26W
1 6 V
Power Supply Input
BIAS
3 4 VIN Driver Transistor Input
4 3 V
Output
OUT
5 2 SS Soft-Start Capacitor Connection
2 5 VSS Ground
6 1 CE ON/OFF Control
FUNCTION CHART
PIN NAME SIGNAL STATUS
L Stand-by
CE
H Active
OPEN Stand-by
3/29
XC6603 Series
ABSOLUTE MAXIMUM RATINGS
PARAMETER SYMBOL RATINGS UNITS
Ta =2 5
Bias Voltage V
Input Voltage VIN
Output Current I
Output Voltage
(*2)
V
CE Input Voltage VCE
SS Pin Voltage
(*3)
SS
USP-6C
Power Dissipation
SOT-26W
Operating Ambient Temperature Topr
Storage Temperature Tstg
* All voltages are described based on the VSS pin. (*1) I
Pd/VIN-V
OUT
(*2) The maximum value should be either V (*3) The maximum value should be either V (*4) The power dissipation measured with the test board condition is listed as reference data.
Please refer to page 2526 for details.
OUT
BIAS
BIAS
BIAS
-0.3+6.5
-0.3+6.5
OUT
OUT
-0.3~V
-0.3~VIN+0.3 or +6.5
(*1)
1.65
+0.3 or +6.5
BIAS
-0.3+6.5
Pd
-0.3~V
1000 (PCB mounted)
+0.3 or +6.5
BIAS
120
250
600 (PCB mounted)
-40+85
-55+125
+0.3, VIN+0.3 or +6.5 in the lowest. +0.3 or +6.5 in the lowest.
(*4)
(*4)
V
V
A
V
V
V
mW
4/29
ELECTRICAL CHARACTERISTICS
PARAMETER SYMBOL CONDITIONS MIN. TYP. MAX. UNITS CIRCUIT
Bias Voltage V
Input Voltage V
Output Voltage V
(*3
Maximum Output Current
)
I
Load Regulation ΔV
Dropout Voltage Vdif
Supply Current 1
(*6)
I
Supply Current 2 IIN I
Stand-by Current 1 I
Stand-by Current 2 I
Bias Line Regulation
Input Line Regulation
Bias UVLO Voltage V
Bias UVLO Release Voltage
Input UVLO Voltage VIN_
Input UVLO Release Voltage
Output Voltage
Temperature Characteristics
Bias Ripple Rejection R
atio V
Input Ripple Rejection Ratio
Current Limit
(*3)
I
Short - Circuit Current I
Thermal Shutdown
Detect Temperature
Thermal Shutdown
Release Temperature
Thermal Shutdown
Hysteresis Width
CL Auto-Discharge Resistance
CE "H" Level Voltage V
CE "L" Level Voltage V
CE "H" Level Current I
CE "L" Level Current I
SS Pin Current Isoft SS Pin=V
Soft-Start
Threshold Voltage
NOTE: Unless otherwise stated, V (*1) V (*2) V (*3) Mount conditions affect heat dissipation. Maximum output current is not guaranteed when TSD starts to operate earlier. (*4) Vdif={V
(*5) Please refer to the table E-1 named DROPOUT VOLTAGE CHART (*6) Supply current 1 (I (*7) Design value
= Effective output voltage
OUT(E)
= Nominal output voltage
OUT(T)
IN1-VOUT1
is an input voltage when V
V
IN1
V
is a voltage equal to 98% of the output voltage where V
OUT1
(*7)
BIAS=VCE
}
) may be fluctuated because that some bias current flows into the output.
BIAS
2.5 - 6.0 V
BIAS
0.5 - 3.0 V
IN
V
1.2V -0.015 +0.015
(*1)
I
OUT(E)
OUTMAX
1mAI
OUT
(*4)
I
I
BIAS
V
BIAS_STB
V
IN_STB
ΔV
/
OUT
(ΔV
V
BIAS
OUT
ΔV
/
OUT
(ΔVIN・
V
OUT
BIAS_UVLOD
V
BIAS_UVLOR
UVLOD
VIN_
UVLOR
ΔV
/
OUT
V
(ΔTopr
OUT
BIAS_PSRR
V
IN_PSRR
V
LIM
V
SHORT
T
Junction Temperature - 150 -
TSD
T
Junction Temperature - 125 -
TSR
T
TSD-TTSR
R
VCE=VSS, V
DCHG
0.65 - 6.00 V
CEH
V
CEL
V
CEH
V
CEL
=100mA
OUT
V
1.2V, V
OUT(T)
V
1.2V, V
OUT(T)
=0A
OUT
=6.0V, VIN=3.0V, VCE=VSS - 0.01 0.10 μA
BIAS
=6.0V, VIN=3.0V, VCE=VSS - 0.01 0.15 μA
BIAS
V
1.2V, VCE=V
OUT(T)
V
1.2V, VCE=V
OUT(T)
V
OUT(T)
V
2.5 - 6.0 V
V
0.5 - 3.0 V
-40℃≦Topr85
V
BIAS=VCE
I
=100mA, f=1kHz, C
OUT
VIN=V
OUT(T)
I
=100mA, f=1kHz, CIN=OPEN
OUT
={V
OUT
Junction Temperature - 25 -
BIAS=VCE
BIAS
OUT(T)
V
1.2V -0.020
OUT(T)
=2.5V
BIAS=VCE
BIAS=VCE=VOUT(T)
1A - 37 68 mV
OUT
=1A - E-1
OUT
=0A 76 100 143 μA
OUT
V
OUT(T)
V
OUT(T)
, 2.5V
BIAS
, V
BIAS
OUT(T)
+1.3V
1.2V 0.1 - 8.7
1.2V 3.9 - 14.2
≦V
6.0V
BIAS
+1.3V
≦V
6.0V
BIAS
1.0 - - A
- 0.01 0.10 %/V
V
OUT(T)
(*2)
+0.020
(*5)
mV
+0.1V≦VIN≦3.0V - 0.01 0.10 %/V
- 1.28 V
SS
- 0.23 V
SS
I
=100mA
OUT
=3.6VDC+0.2V
+0.3VDC+0.2V
OUT@IOUT
=1A}×0.95 1.0 1.3 - A
- 90 - mA
OUT=VSS
OUT=VOUT(T)
p-pAC
=OPEN
BIAS
p-pAC
130 190 255
- ±30 - ppm/
- 60 - dB
- 75 - dB
- 0.41 V
SS
=6.0V 3.2 6.0 10.6 μA
=6.0V,VCE=V
-0.1 - 0.1 μA
SS
3.60 5.00 6.55 μA
SS
Vsoft (0.927) (1.085) (1.243) V -
=3.6V, VIN=V
appears at the output during decreasing input voltage gradually.
OUT1
OUT(T)
+0.3V, I
=1mA, C
OUT
BIAS=CIN
BIAS=VCE
=1.0μF, CL=2.2μF, SS Pin=OPEN
=3.6 and VIN=V
OUT(T)
+0.3V at I
=1A is input to the VIN pin.
OUT
XC6603
Series
Ta =2 5
V
μA
5/29
XC6603 Series
ELECTRICAL CHARACTERISTICS (Continued)
Dropout Voltage Chart
E-1
NOMINAL
OUTPUT
VOLTAGE
V
OUT(T)
0.5 2.5 152 218 2.8 3.1 3.7 4.5
0.6 2.4 2.7 3.0 3.6 4.4
0.7 2.3
0.8 2.2 158 228 2.5 152 218 2.8 3.4 4.2
0.9 2.1 162 233 2.4 2.7 3.3
1.0 2.0 165 238 2.3
1.1 1.9 167 243 2.2 158 228 2.5 152 218 3.1 3.9
1.2 1.8 169 253 2.1 162 233 2.4 3.0 3.8
1.3 1.7 179 268 2.0 165 238 2.3
1.4 1.6 189 283 1.9 167 243 2.2 158 228 2.8 3.6
1.5 1.5 202 303 1.8 169 253 2.1 162 233 2.7 3.5
1.6 1.4 213 328 1.7 179 268 2.0 165 238 2.6
1.7 1.3 225 373 1.6 189 283 1.9 167 243 2.5 152 218 3.3
1.8 1.2 255 423 1.5 202 303 1.8 169 253 2.4 155 223 3.2 146 213
* Dropout voltage is defined as the VGS(=V
V
BIAS
VGS
(V)
TYP. MAX.
155 223
=3.0V V
Vdif(mV) Vdif(mV) Vdif(mV) Vdif(mV) Vdif(mV)
V
(V)
2.6
=3.3V V
BIAS
GS
TYP. MAX.
146 213
155 223
BIAS–VOUT(E)
DROPOUT VOLTAGE (mV)
=3.6V V
BIAS
V
GS
(V)
TYP. MAX.
2.9 3.5 4.3 146 213
2.6
155 223
V
(V)
3.2 4.0
2.9 3.7
=4.2V V
BIAS
GS
TYP. MAX.
140 208
146 213
) of the driver transistor.
BIAS
VGS
(V)
TYP. MAX.
137 206
4.1
140 208
3.4
=5.0V
6/29
TEST CIRCUITS
CIRCUIT
CIRCUIT
CIRCUIT
XC6603
Series
7/29
XC6603 Series
TEST CIRCUITS (Continued)
CIRCUIT
CIRCUIT
8/29
XC6603
Series
OPERATIONAL DESCRIPTION
The voltage divided by resistors R1 and R2 is compared with the internal reference voltage by the error amplifier. The V
by the subsequent output signal. The output voltage at the V
V
pin is power supply pin for output voltage control circuit, protection circuit and CE circuit. Also, the V
BIAS
output current. V
pin is connected to a driver transistor and provides output current.
IN
In order to obtain high efficient output current through low on-resistance, please take enough V
pin is controlled and stabilized by a system of negative feedback.
OUT
pin supplies some current as
BIAS
(=V
BIAS
– V
GS
) of the driver transistor.
OUT(E)
Figure1: XC6603 Series, Type A
<Soft-Start Function>
With the XC6603 (Type A), the inrush current (I
) from VIN to V
RUSH
for charging CL at start-up can be reduced and makes the VIN stable.
OUT
With connecting a soft-start capacitor to the SS pin, rise time of the reference voltage (Vref) is adjusted, then soft-start time can be set freely.
The inrush current conflicts with the soft-start time, so that the inrush current is decreased if the soft-start time is set longer.
Please also note that the inrush current is depended on C
L
. When CL or V
BIAS
is larger, the inrush current becomes larger. Please set
BIAS
or V
an appropriate soft-start time under the conditions of use.
When the SS pin is left open, soft-start circuit will not operate.
Soft-start time is calculated by the following formulas.
t
= CSS × Vsoft / Isoft
SS
t
: Soft-start time
SS
C
: Soft-start capacitance
SS
Vsoft: Soft-start threshold voltage Isoft: SS pin current
Figure2: XC6603 Series, C
SOFT-START
CAPACITOR
Range of use
SS
SOFT-START TIME
CSS tSS (TYP.)
pin is then driven
OUT
0.01μF2.17ms
XC6603 Series, Soft-start
9/29
XC6603 Series
OPERATIONAL DESCRIPTION (Continued)
<Current Limiter, Short-Circuit Protection>
The XC6603 series includes a combination of a fixed current limiter circuit and a foldback short-circuit protection. When the output current
reaches the current limit, the output voltage drops and this operation makes the output current foldback to be decreased.
<Thermal Shutdown Circuit (TSD) >
When the junction temperature of the built-in driver transistor reaches the temperature limit, the thermal shutdown circuit operates and the
driver transistor will be set to OFF. The IC resumes its operation when the thermal shutdown function is released and the IC’s operation is
automatically restored because the junction temperature drops to the level of the thermal shutdown release temperature.
<Under Voltage Lock Out(UVLO)>
When the V
unstable operation of the internal circuitry. When the V
released. The driver transistor is turned ON and start to operate voltage regulation.
<CE Pin>
The XC6603 internal circuitry can be shutdown via the signal to the CE pin. In shutdown mode with CE low level voltage, the V
pulled down to the V
The CE pin has pull-down circuitry so that CE input current flows during IC operation. If the CE pin voltage is taken from V
then logic is fixed and the IC will operate normally. However, supply current may increase as a result of through current in the IC's internal
circuitry when medium voltage is input.
High Speed Auto-Discharge>
<C
L
XC6603 series can quickly discharge the electric charge at the output capacitor (C
pin when a low signal to the CE pin which enables a whole IC circuit put into OFF state. When the IC is disabled, electric charge at the
the V
SS
output capacitor (C
auto-discharge resistance (R
an output capacitor value (C
formula. Please also note R
V: Output voltage during discharge
: Initial Output voltage
V
OUT(E)
t: Discharge time
τ: C
L×RDCHG
<Low ESR Capacitor>
With the XC6603 series, a stable output voltage is achievable even if used with low ESR capacitors, as a phase compensation circuit is built-in.
The output capacitor (C
phase compensation are as the table below.
For a stable power input, please connect a bias capacitor (C
) between the VIN pin and the VSS pin. In order to ensure the stable phase compensation while avoiding run-out of values, please use the
(C
IN
capacitor (C
and CL.
C
IN
Figure 3: Recommended Values of C
OUTPUT VOLTAGE
pin and VIN pin voltage drops, the output driver transistor is set to OFF by UVLO function to prevent false output caused by
BIAS
pin voltage and the VIN pin voltage rises at release voltage, the UVLO function is
BIAS
level via CL discharge resistance (R
SS
) is quickly discharged so that it could avoids malfunction. Discharge time of the output capacitor (CL) is set by the CL
L
) and the output capacitor (CL). By setting time constant of a CL auto-discharge resistance value (R
DCHG
) as τ(τ= C
L
is depended on V
DCHG
x R
L
), the output voltage after discharge via the internal transistor is calculated by the following
DCHG
BIAS
) placed in parallel to R1 and R2.
DCHG
. When V
is larger, R
BIAS
DCHG
BIAS
) via the internal transistor located between the V
L
is smaller.
V = V
e-t/τ or t=τln(V
OUT(E)
OUT(E)
/ V)
×
) should be connected as close to V
L
, CIN and CL) which does not depend on bias or temperature too much. The table below (Figure 3) shows recommended values of C
BIAS
, CIN and CL (MIN.)
BIAS
RANGE
V
C
OUT(T)
BIAS CAPACITOR INPUT CAPACITOR
CIN CL
BIAS
pin and VSS pin to obtain stable phase compensation. Values required for the
OUT
) between the V
BIAS
pin and the VSS pin. Also, please connect an input capacitor
BIAS
OUTPUT
CAPACITOR
0.5V1.8V 1.0μF 1.0μF 2.2μF
pin will be
OUT
pinor V
OUT
DCHG
pin
SS
pin and
) and
BIAS
,
10/29
XC6603
Series
NOTES ON USE
1. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
2. Where wiring impedance is high, operations may become unstable due to noise and/or phase lag depending on output current. Please keep the resistance low for the V
3. Please wire the C
4. Capacitances of these capacitors (C
taken for capacitor selection to ensure stability of phase compensation from the point of ESR influence.
5. When it is used in a quite small input / output dropout voltage, output may go into unstable operation. Please test it thoroughly before using
it in production.
6. Torex places an importance on improving our products and their reliability.
We request that users incorporate fail-safe designs and post-aging protection treatment when using Torex products in their systems.
, CIN and CL as close to the IC as possible.
BIAS
, VIN and VSS wiring in particular.
BIAS
, C
BIAS
) are decreased by the influences of bias voltage and ambient temperature. Care shall be
IN, CL
11/29
XC6603 Series
TYPICAL PERFORMANCE CHARACTERISTICS
* Unless otherwise stated, V
(1) Output Voltage vs. Output Current (2) Output Voltage vs. Bias Voltage
XC6603A051MR-G
0.6
0.5
(V)
OUT
0.4
0.3
0.2
0.1
Output Voltage: V
0.0
00.511.5
VIN=0.8V
VIN=1.0V
Output Current: I
XC6603A121MR-G
1.4
1.2
(V)
OUT
1.0
0.8
0.6
0.4
0.2
Output Voltage: V
0.0
00.511.5
VIN=1.5V
VIN=1.7V
Output Current: I
XC6603A181MR-G
2.0
(V)
1.5
OUT
1.0
VIN=2.1V
VIN=2.3V
0.5
Output Voltage: V
0.0
00.511.5 Output Current: I
* Mount conditions affect heat dissipation. Thermal shutdown may start to operate before reaching the current limit.
BIAS=VCE
=3.6V, VIN=V
(A)
OUT
(A)
OUT
(A)
OUT
OUT(T)
+0.3V, I
=1mA, SS Pin=OPEN, C
OUT
0.6
(V)
0.5
OUT
0.4
0.3
0.2
0.1
Output Voltage: V
0.0 0123456
1.4
1.2
(V)
OUT
1.0
0.8
0.6
0.4
0.2
Output Voltage: V
0.0 0123456
2.0
1.8
(V)
1.6
OUT
1.4
1.2
1.0
0.8
0.6
0.4
Output Voltage: V
0.2
0.0 0123456
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
XC6603A051xR-G
Bias Voltage: V
XC6603A121xR-G
Bias Voltage: V
XC6603A181xR-G
Bias Voltage: V
(V)
BIAS
(V)
BIAS
IOUT=0mA IOUT=1mA IOUT=100m A
(V)
BIAS
IOUT=0mA IOUT=1mA IOUT=100mA
IOUT=0mA IOUT=1mA IOUT=100m A
12/29
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(3) Output Voltage vs. Input Voltage (4) Dropout Voltage vs. Output Current
XC6603A051xR-G
0.6
0.5
(V)
OUT
0.4
0.3
0.2
0.1
Output Voltage: V
0.0 0123
Input Voltage: V
XC6603A121xR-G
1.4
1.2
(V)
OUT
1.0
0.8
0.6
0.4
Output Voltage: V
0.2
0.0 0123
Input Voltage: V
XC6603A181xR-G
2.0
(V)
1.5
OUT
1.0
0.5
Output Voltage: V
0.0 0123
Input Voltage: V
BIAS=VCE
=3.6V, VIN=V
IOUT=0mA IOUT=1mA IOUT=100mA
(V)
IN
IOUT=0mA IOUT=1mA IOUT=100mA
(V)
IN
IOUT=0mA IOUT=1mA IOUT=100mA
(V)
IN
OUT(T)
+0.3V, I
=1mA, SS Pin=OPEN, C
OUT
250
200
150
100
50
Dro pout Voltage: Vdif(mV)
0
0 200 400 600 800 1000
350
300
250
200
150
100
50
Dro pout Voltage : Vdif(mV)
0
123456
(*1)
VGS is a Gate –Source voltage of the driver transistor that is defined as
the value of V
A value of the dropout voltage is determined by the value of the V
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
XC6603A121MR-G
VBIAS=3.0V VBIAS=3.3V
VBIAS=3.6V VBIAS=4.2V
VBIAS=5.0V
Output Current: I
XC6603Axx1MR-G
(*1)
V
(V)
GS
- V
BIAS
OUT(E)
.
OUT
(mA)
Ta=-40℃
Ta=25℃
Ta=85℃
I
OUT
=1A
XC6603
Series
.
GS
13/29
XC6603 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(5) Supply Bias Current vs. Bias Voltage (6) Supply Input Current vs. Input Voltage
XC6603A051xR-G
160
(μA)
140
BIA S
120 100
80 60 40 20
Su pply Bias Current: I
0
0123456
Bias Voltage: V
XC6603A121xR-G
160
(μA)
140
BIA S
120 100
80 60 40 20
Su pply Bias Current: I
0
0123456
Bias Voltage: V
XC6603A181xR-G
160
(μA)
140
BIA S
120 100
80 60 40 20
Su pply Bias Current: I
0
0123456
Bias Voltage: V
BIAS=VCE
=3.6V, VIN=V
CIN=C V
CE=VBIAS
Ta=-40℃ Ta=25℃ Ta=85℃
(V)
BIA S
CIN=C V
CE=VBIAS, IOUT
Ta=-40℃ Ta=25℃ Ta=85℃
(V)
BIA S
CIN=C
V
CE=VBIAS
(V)
BIA S
OUT(T)
BIAS=CL
BIAS=CL
BIAS=CL
Ta=-40℃ Ta=25℃ Ta=85℃
+0.3V, I
=OPEN
, I
OUT
=OPEN
=OPEN
, I
OUT
=0mA
=0mA
=0mA,
=1mA, SS Pin=OPEN, C
OUT
20
(μA)
IN
15
10
5
Supply Input Current: I
0
0 0.5 1 1.5 2 2 .5 3
20
(μA)
IN
15
10
5
Supply Input Current: I
0
0 0.5 1 1.5 2 2 .5 3
20
(μA)
IN
15
10
5
Supply Input Current: I
0
0 0.5 1 1.5 2 2 .5 3
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
XC6603A051xR-G
Input Voltage: V
XC6603A121xR-G
Input Voltage: V
XC6603A181xR-G
Input Voltage: V
IN
IN
IN
(V)
(V)
(V)
CIN=C
BIAS=CL
Ta=-40℃ Ta=25℃ Ta=85℃
CIN=C
BIAS=CL
Ta=-40℃ Ta=25℃ Ta=85℃
CIN=C
BIAS=CL
Ta=-40℃ Ta=25℃ Ta=85℃
=OPE N
I
OUT
=OPE N
I
OUT
=OPE N
I
OUT
=0mA
=0mA
=0mA
14/29
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(7) Output Voltage vs. Ambient Temperature (8) Supply Bias Current vs. Ambient Temperature
XC6603A051xR-G
0.52
(V)
0.51
OUT
0.5
0.49
Output Voltage: V
0.48
-50 0 50 100 Ambient Temperature: Ta(℃)
XC6603A121xR-G
1.22
(V)
1.21
OUT
1.2
1.19
Output Voltage: V
1.18
-50 0 50 100 Ambient Temperature: Ta(℃)
XC6603A181xR-G
1.82
(V)
1.81
OUT
1.8
1.79
Output Voltage: V
1.78
-50 0 50 100 Ambient Temperature: Ta(℃)
BIAS=VCE
=3.6V, VIN=V
IOUT=1mA
IOUT=100mA
IOUT=1mA
IOUT=100mA
OUT(T)
IOUT=1mA
IOUT=100mA
+0.3V, I
=1mA, SS Pin=OPEN, C
OUT
160
(μA)
140
BIAs
120
100
80
60
Supply Bias Current: I
40
-50 0 50 100
160
(μA)
140
BIAs
120
100
80
60
Su pply Bias Current: I
40
-50 0 50 100
160
(μA)
140
BIAs
120
100
80
60
Su pply Bias Current: I
40
-50 0 50 100
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
XC6603A051xR-G
CIN=C
Ambient Temperature: Ta(℃)
XC6603A121xR-G
CIN=C
Ambient Temperature: Ta(℃)
XC6603A181xR-G
CIN=C
Ambient Temperature: Ta(℃)
BIAS=CL
BIAS=CL
= CL=OPE N
BIAS
=OPE N
I
OUT
=OPE N
I
OUT
I
OUT
=0mA
=0mA
=0mA
XC6603
Series
15/29
A
A
A
XC6603 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(9) Supply Input Current vs. Ambient Temperature
XC6603A051xR-G
3
(μA)
IN
2
1
Supply Input Current: I
0
-50 0 50 100 Ambient Temperature: Ta(℃)
XC6603A121xR-G
12
(μA)
10
IN
8
6
4
2
Supply Input Current: I
0
-50 0 50 100 Ambient Temperature: Ta(℃)
XC6603A181xR-G
16
(μA)
14
IN
12
10
8
6
Supply Input Current: I
4
-50 0 50 100 Ambient Temperature: Ta(℃)
BIAS=VCE
=3.6V, VIN=V
CIN=C
CIN=C
CIN=C
OUT(T)
BIAS=CL
BIAS=CL
BIAS=CL
+0.3V, I
=OPEN
I
=0m
OUT
=OPEN
I
=0m
OUT
=OPEN
=0m
I
OUT
=1mA, SS Pin=OPEN, C
OUT
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
16/29
A
A
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(10) Bias Transient Response (11) Input Transient Response
0.58
(V)
0.56
OUT
0.54
0.52
0.5
Output Voltage: V
0.48
XC6603A051xR-G
=3.0V→4. 0V(tr=tf=5μs), I
V
BIAS
Time (200μs/div)
1.28
XC6603A121xR-G
V
BIAS
(V)
1.26
OUT
1.24
1.22
1.2
Output Voltage: V
1.18
Time (200μs/ div)
1.88
XC6603A181xR-G
=3.6V→4.6V(tr=tf=5μs) I
V
BIAS
(V)
1.86
OUT
1.84
1.82
1.8
Output Voltage: V
1.78
Time (200μs/ div)
=3.6V, VIN=V
BIAS=VCE
Bias Voltage
Output Voltage
=3.0V→4.0V(tr=tf=5μs) I
Bias Voltage
Output Voltage
C
Bias Voltage
Output Voltage
C
C
BIAS
OUT
=OPE N
BIAS
=100m
OUT
=OPEN
BIAS
=100mA
OUT
=OPEN
=100mA
OUT(T)
+0.3V, I
5
4
3
2
1
0
5
4
3
2
1
0
5
4
3
2
1
0
=1mA, SS Pin=OPEN, C
OUT
(V)
BIAS
Bias Voltage: V
(V)
BIAS
Bias Voltage: V
(V)
BIAS
Bias Voltage: V
(V)
OUT
Output Voltage: V
(V)
OUT
Output Voltage: V
(V)
OUT
Output Voltage: V
0.58
0.56
0.54
0.52
0.5
0.48
1.28
1.26
1.24
1.22
1.2
1.18
1.88
1.86
1.84
1.82
1.8
1.78
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
XC6603A051xR-G
=0.8V→1. 8V(tr=tf=5μs), I
V
IN
Input Voltage
Output Voltage
Time (200μs/div)
XC6603A121xR-G
=1.5V→2. 5V(tr=tf=5μs), I
V
IN
Input Voltage
Output Voltage
Time (200μs/div)
XC6603A181xR-G
=2.1V→3.1V(tr=tf=5μs), I
V
IN
Input Voltage
Output Voltage
Time (200μs/ div)
CIN=OPE N
=100m
OUT
CIN=OPEN
=100mA
OUT
CIN=OPE N
=100mA
OUT
3
2
1
0
-1
-2
3.5
2.5
1.5
0.5
-0.5
-1.5
4
3
2
1
0
-1
XC6603
Series
(V)
IN
Input Voltage: V
(V)
IN
Input Voltage: V
(V)
IN
Input Voltage: V
17/29
)
)
)
XC6603 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(12) Load Transient Response
XC6603A051xR-G
0.66
(V)
0.62
OUT
0.58
0.54
0.5
Output Voltage: V
0.46
Time (200μs/div)
XC6603A121xR-G
1.36
(V)
1.32
OUT
1.28
1.24
1.2
Output Voltage: V
1.16
Time (200μs/div)
XC6603A181xR-G
1.96
(V)
1.92
OUT
1.88
1.84
1.8
Output Voltage: V
1.76
Time (200μs/div)
=3.6V, VIN=V
BIAS=VCE
I
=1mA⇔100mA(tr=tf=5μs
OUT
Output Current
Output Voltage
I
=1mA⇔100mA(tr=tf=5μs
OUT
Output Current
Output Voltage
I
=1mA⇔100mA(tr=tf=5μs
OUT
Output Current
Output Voltage
OUT(T)
0.2
0.1
0
-0.1
-0.2
-0.3
0.2
0.1
0
-0.1
-0.2
-0.3
0.2
0.1
0
-0.1
-0.2
-0.3
+0.3V, I
(A)
OUT
Outpur Current: I
(A)
OUT
Outpur Current: I
(A)
OUT
Outpur Current: I
=1mA, SS Pin=OPEN, C
OUT
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
18/29
)
F
A
F
)
F
F
)
F
F
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(13) CE Input Response
XC6603A051xR-G
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6 Time (0.1ms/div)
XC6603A051xR-G
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6
Time (0.1ms/ div)
XC6603A051xR-G
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6 Time (0.1ms/div)
=3.6V, VIN=V
BIAS=VCE
VCE=0V→3.6V(tr=5μs
CL=10μF, CSS=100p
CE Input Voltage
Input Current
VCE=0V→3.6V(tr=5μs
CL=10μF, CSS=470p
CE In pu t Voltage
Input Current
VCE=0V→3.6V(tr=5μs
CL=10μF, CSS=1n
CE In pu t Voltage
Input Current
OUT(T)
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
+0.3V, I
(A)
IN
Input Current: I
(A)
IN
Input Current: I
(A)
IN
Input Current: I
=1mA, SS Pin=OPEN, C
OUT
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
XC6603A051xR-G
VCE=0V→3.6V(tr=5μs), I
CE Input Voltage
Input Current
Time (0.1ms/div)
XC6603A051xR-G
VCE=0V→3.6V(tr=5μs), I
C
CE Input Voltage
Input Current
Time (0.1ms/ div)
XC6603A051xR-G
VCE=0V→3.6V(tr=5μs ), I
CE Input Voltage
Input Current
Time (0.1ms/ div)
=100m
OUT
CL=10μF, CSS=100p
=100mA
OUT
=10μF, CSS=470p
L
0.8
0.6
0.4
0.2
0
-0.2
=100mA
OUT
=10μF, CSS=1n
C
L
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
XC6603
Series
(A)
IN
Input Current: I
(A)
IN
Input Current: I
(A)
IN
Input Current: I
19/29
)
F
A
F
)
F
A
F
)
F
A
F
XC6603 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(13) CE Input Response (Continued)
XC6603A121xR-G
4
(V)
2
CE
0
-2
-4
CE In pu t Voltage: V
-6 Time (0.1ms/div)
XC6603A121xR-G
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6 Time (0.1ms/ div)
XC6603A121xR-G
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6 Time (0.1ms/ div)
=3.6V, VIN=V
BIAS=VCE
VCE=0V→3.6V(tr=5μs
CL=10μF, CSS=100p
CE Input Voltage
Input Current
VCE=0V→3.6V(tr=5μs
CL=10μF, CSS=470p
CE Input Voltage
Input Current
VCE=0V→3.6V(tr=5μs
CL=10μF, CSS=1n
CE Input Voltage
Input Current
OUT(T)
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
+0.3V, I
(A)
IN
Input Current: I
(A)
IN
Input Current: I
(A)
IN
Input Current: I
=1mA, SS Pin=OPEN, C
OUT
4
(V)
2
CE
0
-2
-4
CE In put Voltage: V
-6
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
XC6603A121xR-G
VCE=0V→3.6V(tr=5μs), I
CE Input Voltage
Input Current
Time (0.1ms/ div)
XC6603A121xR-G
VCE=0V→3.6V(tr=5μs), I
CL=10μF, CSS=470p
CE Input Voltage
Input Current
Time (0.1ms/ div)
XC6603A121xR-G
VCE=0V→3.6V(tr=5μs), I
CE Input Voltage
Input Current
Time (0.1ms/ div)
=100m
OUT
CL=10μF, CSS=100p
=100m
OUT
=100m
OUT
CL=10μF, CSS=1n
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
(A)
IN
Input Current: I
(A)
IN
Input Current: I
(A)
IN
Input Current: I
20/29
)
F
F
)
F
F
)
F
A
F
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(13) CE Input Response (Continued)
XC6603A181xR-G
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6 Time (0.1ms/div)
XC6603A181xR-G
4
(V)
2
CE
CE Input Voltage
0
-2
-4
CE Input Voltage: V
-6 Time (0.1ms/div)
XC6603A181xR-G
4
(V)
2
CE
0
-2
-4
CE In put Voltage: V
-6
CE In pu t Voltage
Time (0.1ms/div)
=3.6V, VIN=V
BIAS=VCE
VCE=0V→3.6V(tr=5μs
CL=10μF, CSS=100p
CE Input Voltage
Input Current
VCE=0V→3.6V(tr=5μs
CL=10μF, CSS=470p
Input Current
VCE=0V→3.6V(tr=5μs
CL=10μF, CSS=1n
Input Current
OUT(T)
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
+0.3V, I
(A)
IN
Input Current: I
(A)
IN
Input Current: I
(A)
IN
Input Current: I
=1mA, SS Pin=OPEN, C
OUT
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
XC6603A181xR-G
VCE=0V→3.6V(tr=5μs), I
C
L
CE Input Voltage
Input Current
Time (0.1ms/div)
XC6603A181xR-G
VCE=0V→3.6V(tr=5μs), I
C
CE In put Voltage
Input Current
Time (0.1ms/div)
XC6603A181xR-G
VCE=0V→3.6V(tr=5μs), I
CE Input Voltage
Input Current
Time (0.1ms/div)
=100mA
OUT
=10μF, CSS=100p
=100mA
OUT
=10μF, CSS=470p
L
=100m
OUT
CL=10μF, CSS=1n
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
0.8
0.6
0.4
0.2
0
-0.2
XC6603
Series
(A)
IN
Input Current: I
(A)
IN
Input Current: I
(A)
IN
Input Current: I
21/29
)
)
)
)
XC6603 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(14) CE Rising Response Time (15) Adjustable Soft-start Time
XC6603A051xR-G
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6
Time (1ms/div)
XC6603A121xR-G
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6 Time (1ms/ div)
XC6603A181xR-G
4
(V)
2
CE
0
-2
-4
CE Input Voltage: V
-6 Time (1 ms/div)
BIAS=VCE
CE Input Voltage
Output Voltage
VCE=0V→3.6V(tr=5μs
CE I npu t Volt age
Output Voltage
CE Input Voltage
Output Voltage
=3.6V, VIN=V
VCE=0V→3.6V(tr=5μs
I
=100mA
OUT
I
=100mA
OUT
VCE=0V→3.6V(tr=5μs
I
=100mA
OUT
4.0
3.0
2.0
1.0
0.0
-1.0
OUT(T)
1.6
1.2
0.8
0.4
0
-0.4
4.0
3.0
2.0
1.0
0.0
-1.0
+0.3V, I
(V)
OUT
Output Voltage: V
(V)
OUT
Output Voltage: V
(V)
OUT
Output Voltage: V
=1mA, SS Pin=OPEN, C
OUT
2.5
2
1.5
1
0.5
So ft-Start Time : tss(ms)
0
0 0.002 0.004 0.006 0.008 0.01
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
XC6603Axx1xR-G
VCE=0V→3.6V(tr=5μs
Soft-Start Capacitor: Css(μF)
22/29
A
A
A
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
* Unless otherwise stated, V
(16) Bias Voltage Ripple Rejection Rate (17) Input Voltage Ripple Rejection Rate
XC6603A051xR-G
100
90 80 70
(dB)
60 50 40
BIAS_ PSRR
V
30 20 10
0
0.01 0.1 1 10 100 1000 10000
Frequency (kHz)
XC6603A121xR-G
100
90 80 70
(dB)
60 50 40
BIAS _PSRR
V
30 20 10
0
0.01 0.1 1 10 100 1000 10000
Frequency (kHz)
XC6603A181xR-G
100
90 80 70
(dB)
60 50 40
BIAS _PSRR
V
30 20 10
0
0.01 0.1 1 10 100 1000 10000
Frequency (kHz)
BIAS=VCE
V
V
V
=3.6V, VIN=V
=3.6VDC+0.2Vp-p
BIAS
=3.6VDC+0.2Vp-pAC, I
BIAS
=3.6VDC+0.2Vp-pAC, I
BIAS
OUT(T)
C
AC, IOUT
C
C
+0.3V, I
=OPEN
BIAS
=100m
=OPEN
BIAS
=100m
OUT
=OPEN
BIAS
=100m
OUT
=1mA, SS Pin=OPEN, C
OUT
100
90 80 70 60
(dB)
50
IN _PSRR
40
V
30 20 10
0
0.01 0.1 1 10 100 1000 10000
100
90 80 70 60
(dB)
50 40
IN _PSRR
V
30 20 10
0
0.01 0.1 1 10 100 1000 10000
100
90 80 70 60
(dB)
50 40
IN _PSRR
V
30 20 10
0
0.01 0.1 1 10 100 1000 10000
=1.0μF, CL=2.2μF, Ta = 25
BIAS=CIN
XC6603A051xR-G
V
=0.8VDC+0.2Vp-pAC, I
IN
Frequency (kHz)
XC6603A121xR-G
=1.5VDC+0.2Vp-pAC, I
V
IN
Frequency (kHz)
XC6603A181xR-G
=2.1VDC+0.2Vp-pAC, I
V
IN
Frequency (kHz)
CIN=OPEN
=100mA
OUT
CIN=OPEN
=100mA
OUT
CIN=OPEN
=100mA
OUT
XC6603
Series
23/29
XC6603 Series
PACKAGING INFORMATION
2.0±0.05
0.6MAX
0.25±0.05
1.0±0.1
0.70±0.05
USP-6C Reference Pattern Layout (unit: mm) USP-6C Reference Metal Mask Design (unit: mm)
24/29
SOT-26W
(unit : mm)
+0.1
0.4
-0.05
6
1
(0.95)
2.9±0.2
5
2
1.9±0.2
4
0~0.1
3
+0.1
0.15
-0.05
XC6603
Series
PACKAGING INFORMATION (Continued)
USP-6C Power Dissipation
Power dissipation data for the USP-6C is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1. Measurement Condition (Reference data)
Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free
Board: Dimensions 40 x 40 mm (1600 mm
Copper (Cu) traces occupy 50% of the board area
Material: Glass Epoxy (FR-4)
Thickness: 1.6 mm
Through-hole: 4 x 0.8 Diameter
2. Power Dissipation vs. Ambient temperature
Board Mount (Tj max = 125℃)
In top and back faces
Package heat-sink is tied to the copper traces
Ambient Temperature(℃) Power Dissipation Pd(mW) Thermal Resistance (℃/W)
2
in one side)
Evaluation Board (Unit: mm)
Power Dissipation: Pd (mW)
25 1000
85 400
Pd-Ta
グラフ
Pd vs. Ta
1200 1000
800 600 400 200
許容損失Pd(mW
0
25 45 65 85 105 125
Ambient Temperature: Ta (℃)
辺温度
Ta(℃
100.00
25/29
p
(
)
XC6603 Series
PACKAGING INFORMATION (Continued)
SOT-26W Power Dissipation
Power dissipation data for the SOT-26W is shown in this page.
The value of power dissipation varies with the mount board conditions.
Please use this data as one of reference data taken in the described condition.
1. Measurement Condition (Reference data)
Condition: Mount on a board
Ambient: Natural convection
Soldering: Lead (Pb) free
Board: Dimensions 40 x 40 mm (1600 mm
Copper (Cu) traces occupy 50% of the board area
Material: Glass Epoxy (FR-4)
Thickness: 1.6 mm
Through-hole: 4 x 0.8 Diameter
2. Power Dissipation vs. Ambient temperature
Board Mount (Tj max = 125℃)
Ambient Temperature(℃) Power Dissipation Pd(mW) Thermal Resistance (℃/W)
In top and back faces
Package heat-sink is tied to the copper traces
(Board of SOT-26 is used.)
2
in one side)
評価基板レイア(単位:mm)
Evaluation Board (Unit: mm)
25 600
85 240
Pd-Ta特性グ
Pd vs. Ta
700
mW
600
166.67
500 400
ation: Pd
300 200 100
許容損失Pd(mW)
Power Dissi
0
25 45 65 85 105 125
Ambient Temperature: Ta (℃)
周辺温度Ta(℃)
26/29
r
MARKING RULE
represents product series
MARK PRODUCT SERIES
S XC6603A*****-G
represents output voltage
MARK OUTPUT VOLTAGE (V) MARK OUTPUT VOLTAGE (V)
A 0.5 K 1.2 B 0.6 L 1.3 C 0.7 M 1.4 D 0.8 N 1.5 E 0.9 P 1.6
F 1.0 R 1.7
H 1.1 S 1.8
③④ represents production lot numbe
01 to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to Z9, B1 to ZZ in order. (G, I, J, O, Q, W excluded) *No character inversion used.
XC6603
Series
SOT-26W
64
5
① ② ③ ④
123
27/29
r
XC6603 Series
MARKING RULE (Continued)
represents product series
MARK PRODUCT SERIES
S
represents regulator type
MARK PRODUCT SERIES
A
represents output voltage
MARK OUTPUT VOLTAGE (V) MARK OUTPUT VOLTAGE (V)
A 0.5 K 1.2 B 0.6 L 1.3 C 0.7 M 1.4 D 0.8 N 1.5 E 0.9 P 1.6
F 1.0 R 1.7
H 1.1 S 1.8
④⑤ represents production lot numbe
01 to 09, 0A to 0Z, 11 to 9Z, A1 to A9, AA to Z9, B1 to ZZ in order. (G, I, J, O, Q, W excluded) *No character inversion used.
XC6603******-G
XC6603A*****-G
28/29
USP-6C
1
④ ⑤
2
3
6
② ③
5
4
XC6603
Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics. Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
29/29
Loading...