TOREX XC61C User Manual

XC61C Series
ETR0201_015
Low Voltage Detectors (VDF= 0.8V~1.5V) Standard Voltage Detectors (V
GENERAL DESCRIPTION
The XC61C series are highly precise, low power consumption voltage detectors, manufactured using CMOS and laser
trimming technologies.
Detect voltage is extremely accurate with minimal temperature drift.
Both CMOS and N-ch open drain output configurations are available.
■APPLICATIONS
Microprocessor reset circuitry
Memory battery back-up circuits
Power-on reset circuits
Power failure detection
System battery life and charge voltage monitors
TYPICAL APPLICATION CIRCUITS
TYPICAL PERFORMANCE CHARACTERISTICS
1.6V~6.0V)
DF
FEATURES
Highly Accurate : ± 2%
± 1%(Standard Voltage VD: 2.6V~5.1V)
Low Power Consumption : 0.7μA (TYP.) [V Detect Voltage Range : 0.8V ~ 6.0V in 0.1V increments Operating Voltage Range : 0.7V ~ 6.0V (Low Voltage)
0.7V10.0V (Standard Voltage)
Detect Voltage Temperature Characteristics
: ±100ppm/℃ (TYP.)
Output Configuration : N-ch open drain or CMOS Packages : SSOT-24
SOT-23 SOT-89 TO-92
Environmentally Friendly : EU RoHS Compliant, Pb Free
:
IN=1.5V]
1/18
XC61C Series
PIN CONFIGURATION
PIN ASSIGNMENT
TO-92
(SIDE VIEW)
PIN NUMBER
SSOT-24 SOT-23 SOT-89 TO-92
PIN NAME FUNCTION
2 3 2 2 VIN Supply Voltage Input
4 2 3 3 VSS Ground
1 1 1 1 V
Output
OUT
3 - - - NC No Connection
PRODUCT CLASSIFICATION
Ordering Information
XC61C①②③④⑤⑥⑦-⑧
DESIGNATOR ITEM SYMBOL DESCRIPTION
Output Configuration
②③ Detect Voltage 08 ~ 60
Output Delay 0 No delay
Detect Accuracy
⑥⑦-⑧
(*1)
The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.
(*1)
Packages (Order Unit)
(*1)
C CMOS output N N-ch open drain output
e.g.0.9V → ②0, 9 e.g.1.5V → ②1, 5
1 Within ±1% (V
=2.6V~5.1V)
DF(T)
2 Within ±2%
NR SSOT-24 (SC-82) (3,000/Reel)
NR-G SSOT-24 (SC-82) (3,000/Reel)
MR SOT-23 (3,000/Reel)
MR-G SOT-23 (3,000/Reel)
PR SOT-89 (1,000/Reel)
PR-G SOT-89 (1,000/Reel)
TH TO-92 Taping Type: Paper type (2,000/Tape)
TH-G TO-92 Taping Type: Paper type (2,000/Tape)
TB TO-92 Taping Type: Bag (500/Bag)
TB-G TO-92 Taping Type: Bag (500/Bag)
2/18
BLOCK DIAGRAMS
(1) CMOS Output (2) N-ch Open Drain Output
■ABSOLUTE MAXIMUM RATINGS
PAR AMETER SYMBOL RATINGS UNITS
Input Voltage
*1 VSS-0.3 ~ 9.0
*2
VIN
VSS-0.3 ~ 12.0
Output Current IOUT 50 mA
CMOS VSS -0.3 ~ VIN +0.3
Output Voltage
N-ch Open Drain Output *1 VSS -0.3 ~ 9.0
N-ch Open Drain Output *2
VOUT
VSS -0.3 ~ 12.0
SSOT-24 150
Power Dissipation
SOT-23 150
SOT-89 500
TO-92
Operating Temperature Range Topr
Storage Temperature Range Tstg
Pd
300
-40+85
-40+125
*1: Low voltage: VDF(T)=0.8V~1.5V
*2: Standard voltage: VDF(T)=1.6V~6.0V
Ta = 25OC
V
V
mW
XC61C
Series
3/18
XC61C Series
ELECTRICAL CHARACTERISTICS
VDF (T) = 0.8V to 6.0V ± 2%
VDF (T) = 2.6V to 5.1V ± 1%
PAR AMETER SYMBOL CONDITIONS MIN. TYP. MAX.
VDF(T)=0.8V~1.5V *1 V
Detect Voltage VDF
DF(T)=1.6V~6.0V *2
DF(T)=2.6V~5.1V *2
V
Hysteresis Range VHYS
VIN = 1.5V
VIN = 2.0V
Supply Current ISS
VIN = 3.0V VIN = 4.0V
VIN = 5.0V Operating Voltage *1 VDF(T) = 0.8V to 1.5V 0.7 - 6.0 Operating Voltage *2
Output Current *1
VIN
CMOS, P-ch V
V
DF(T) = 1.6V to 6.0V 0.7 - 10.0
N-ch VDS = 0.5V
DS = 2.1V VIN = 6.0V - -7.5 -1.5 4
VIN = 0.7V
IN = 1.0V 0.85 2.70
V
VIN = 1.0V
OUT
Output Current *2
I
N-ch VDS = 0.5V
VIN = 2.0V 3.0
VIN = 3.0V 5.0 10.1
VIN = 4.0V 6.0 11.5
IN = 5.0V 7.0 13.0
V
CMOS, P-ch VDS = 2.1V VIN = 8.0V
CMOS Output
Leakage
Current
(Pch)
N-ch Open Drain
Temperature
Characteristics
Delay Time
(VDR→
V
OUT
inversion)
NOTE: *1: Low Voltage: V *2: Standard Voltage: V
DF (T): Nominal detect voltage
V Release Voltage: V
DF(T)=0.8V~1.5V
I
LEAK
ΔV
/
DF
Δ
To pr・VDF)
t
Inverts from VDR to VOUT - 0.03 0.20 ms 5
DLY
DF(T)=1.6V~6.0V
DR = VDF + VHYS
V
V
VIN=10.0V, V
IN=VDF
=6.0V, V
IN
x0.9, V
OUT
=6.0V*1
OUT
=10.0V*2
OUT
=0V - -10 -
-40℃ ≦ Topr 85
DF(T)
V x 0.98 VDF(T) x 0.99
VDF
x 0.02
DF(T)
V
DF(T)
V
VDF
x 0.05
- 0.7 2.3
- 0.8 2.7
- 0.9 3.0
- 1.0 3.2
- 1.1 3.6
0.10 0.80 -
1.0
2.2
7.7 -
- -10.0 -2.0
- 10 100
-
±100
VDF(T) x 1.02 VDF(T) x 1.01
VDF
x 0.08
-
-
-
-
-
-
Ta =2 5
CIRCUITS
UNITS
V 1
V 1
V 1
μA
2
V 1
3
mA
3
4
nA 3
ppm/
1
4/18
OPERATIONAL EXPLANATION
(Especially prepared for CMOS output products)
When input voltage (VIN) is higher than detect voltage (VDF), output voltage (V
(A condition of high impedance exists with N-ch open drain output configurations.)
When input voltage (V
) falls below detect voltage (VDF), output voltage (V
IN
level.
When input voltage (V
) falls to a level below that of the minimum operating voltage (V
IN
unstable. (As for the N-ch open drain product of XC61CN, the pull-up voltage goes out at the output voltage.)
When input voltage (V
minimum operating voltage (V
) rises above the ground voltage (VSS) level, output will be unstable at levels below the
IN
). Between the V
MIN
and detect release voltage (VDR) levels, the ground voltage (VSS)
MIN
level will be maintained.
When input voltage (V
) rises above detect release voltage (VDR), output voltage (V
IN
(A condition of high impedance exists with N-ch open drain output configurations.)
The difference between V
and VDF represents the hysteresis range.
DR
Timing Chart
XC61C
) will be equal to VIN.
OUT
) will be equal to the ground voltage (VSS)
OUT
), output will become
MIN
) will be equal to VIN.
OUT
Series
5/18
XC61C Series
NOTES ON USE
1. Please use this IC within the stated absolute maximum ratings. For temporary, transitional voltage drop or voltage rising phenomenon, the IC is liable to malfunction should the ratings be exceeded.
2. When a resistor is connected between the VIN pin and the power supply with CMOS output configurations, oscillation may
occur as a result of voltage drops at R
3. When a resistor is connected between the V
N-ch open-drain output configurations, oscillation may occur as a result of through current at the time of voltage release even if load current (I
4. Please use N-ch open drain output configuration, when a resistor R
In such cases, please ensure that R (refer to the Oscillation Description (1) below)
5. With a resistor R
power supply voltage as a result of the IC's supply current flowing through the V
6. In order to stabilize the IC's operations, please ensure that V
7. Torex places an importance on improving our products and its reliability.
However, by any possibility, we would request user fail-safe design and post-aging treatment on system or equipment.
Oscillation Description
(1) Load current oscillation with the CMOS output configuration
When the voltage applied at power supply, release operations commence and the detector's output voltage increases. Load current (IOUT) will flow at RL. Because a voltage drop (RIN x IOUT) is produced at the RIN resistor, located between the power supply and the V voltage level at the V commence. Following detect operations, load current flow will cease and since voltage drop at R voltage level at the V Oscillation may occur with this " release - detect - release " repetition. Further, this condition will also appear via means of a similar mechanism during detect operations.
(2) Oscillation as a result of through current
Since the XC61C series are CMOS IC release and detect operations). Consequently, oscillation is liable to occur as a result of drops in voltage at the through current's resistor (RIN) during release voltage operations. (refer to Figure 3) Since hysteresis exists during detect operations, oscillation is unlikely to occur.
Power supply Power supply
) does not exist. (refer to the Oscillation Description (2) below )
OUT
connected between the V
IN
IN pin, the load current will flow via the IC's VIN pin. The voltage drop will also lead to a fall in the
IN pin. When the VIN pin voltage level falls below the detect voltage level, detect operations will
IN pin will rise and release operations will begin over again.
if load current (I
IN
IN is less than 10k and that C is more than 0.1μF, please test with the actual device.
S, through current will flow when the IC's internal circuit switching operates (during
pin and the power supply with CMOS output configurations, irrespective of
IN
pin and the power supply, the V
IN
) exists. (refer to the Oscillation Description (1) below)
OUT
is connected between the VIN pin and power source.
IN
pin voltage will be getting lower than the
IN
pin.
pin input frequency's rise and fall times are more than 2 μ s/ V.
IN
Power supply
IN
IN will disappear, the
6/18
XC61C
Series
100kΩ*
7/18
XC61C Series
TYPICAL PERFORMANCE CHARACTERISTICS
Low Voltage
Note : Unless otherwise stated, the N-ch open drain pull-up resistance value is 100kΩ.
8/18
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Low Voltage (Continued)
(4) N-ch Driver Output Current vs. V
XC61CC
1.4
Ta=25
1.2
1.0
(mA)Output Current: I
OUT
0.8
0.6
0.4
0.2
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0
0902
VDS(V)
(.V)
VIN =0.8V
0.7V
DS
XC61CC
1.4
Ta=25
1.2
1.0
(mA)
OUT
0.8
0.6
0.4
0.2
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0
1102
(.V)
VIN =0.8V
0.7V
VDS(V)
XC61CC
3.0
Ta=25
2.5
(mA)
2.0
OUT
1.5
1.0
0.5
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0
1102
VDS(V)
1.4
1.2
1.0
(mA)
OUT
0.8
0.6
0.4
0.2
0
0 0.2 0.4 0.6 0.8 1.0
Ta=25
1502
VDS(V)
(.V)
VIN =0.8V
0.7V
XC61CC
8.0
Ta=25
6.0
(mA)
OUT
4.0
2.0
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1502
VDS(V)
(.V)XC61CC
VIN=1.4V
1.2V
1.0V
(5) N-ch Driver Output Current vs. Input Voltage
XC61CC
2.5 VDS=0.5V
2.0
(mA)
OUT
1.5
1.0
0.5
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0
(6) P-ch Driver Output Current vs. Input Voltage
XC61CC
12
Ta = 2 5
10
(mA)
8
OUT
6
4
2
Output Current: I
0
0123456
0902
Ta=85
25
(.V) XC61CC
5.0 VDS=0.5V
4.0
(mA)
OUT
3.0
2.0
-40
1.0
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0 1.2
1102
(.V) XC61CC
Ta=-40
25
80
10
VDS=0.5V
8
(mA)
OUT
6
4
2
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1502
Input Voltage: VIN(V) Input Voltage: VIN (V) Input Voltage: VIN (V)
0902
(.V) XC61CC
12
VDS=2.1V
1.5V
1.0V
0.5V
Ta = 2 5
10
(mA)
8
OUT
6
4
2
Output Current: I
0
0123456
1102
 (1.1V)
VDS=2.1V
1.5V
1.0V
0.5V
XC61CC
12
Ta = 2 5
10
(mA)
8
OUT
6
4
2
Output Current: I
0
0123456
1502
Input Voltage: VIN(V) Input Voltage: VIN(V) Input Voltage: VIN(V)
XC61C
Series
(.V)
VIN=1.0V
(.V)
Ta=-40
25
85
(.V)
VDS=2.1V
1.5V
1.0V
0.5V
9/18
XC61C Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage
(1) Supply Current vs. Input Voltage
XC61CC1802 (1.8V ) XC61CC2702 (2.7V)
3.5
3.0
2.5
(μA)
SS
2.0
1.5
1.0
0.5
Supply Current: I
0
0246810
25
Ta=85
-40
3.5
3.0
2.5
(μA)
SS
2.0
1.5
1.0
0.5
Supply Current: I
0
0246810
Input Voltage: VIN (V)Input Voltage: VIN (V)
XC61CC3602 (3.6V) XC61CC4502 (4.5V)
3.5
3.0
2.5
(μA)
SS
2.0
1.5
1.0
0.5
Supply Current: I
0
0246810
25
Ta=85
-40
3.5
3.0
2.5
(μA)
SS
2.0
1.5
1.0
0.5
Supply Current: I
0
0246810
Input Voltage: VIN (V)Input Voltage: VIN (V)
(2) Detect, Release Voltage vs. Ambient Temperature
XC61CC1802 (1.8V) XC61CC2702 (2.7V)
1.90
(V)
DR
,V
DF
1.85
1.80
Detect, Release Voltage: V
1.75
-50 -25 0 25 50 75 100
V
DR
V
DF
Ambient Temperature : Ta ()
2.80
(V)
DR
,V
DF
2.75
2.70
Detect, Release Voltage: V
2.65
-50 -25 0 25 50 75 100
Ambient Temperature : Ta ()
XC61CC4502 (4.5V)XC61CC3602 (3.6V)
3.8
(V)
DR
,V
DF
3.7
3.6
Detect, Release Voltage: V
3.5
-50 -25 0 25 50 75 100
V
DR
V
DF
Ambient Temperature : Ta ()
4.7
(V)
DR
,V
DF
4.6
4.5
Detect, Release Voltage: V
4.4
-50 -25 0 25 50 75 100
Ambient Temperature : Ta ()
25
25
V
V
V
V
Ta=85
-40
Ta=85
-40
DR
DF
DR
DF
10/18
3.0
V
V
V
V
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage (Continued)
(3) Output Voltage vs. Input Voltage
XC61CN1802 (1 .V) XC61CN2702 (2 .7V)
(V)
OUT
3
Ta=25
2
1
2
Ta=25
(V)Output Voltage: V
OUT
1
Output Voltage: V
0
012
Input Voltage: V
IN
(V)
0
0123
Input Voltage: VIN (V)
(V)
OUT
4
Ta=25
3
2
1
0
01234
Input Voltage: VIN (V) Input Voltage: VIN (V)
Note : The N-channel open drain pull up resistance value is 100k Ω.
Note : The N-ch open drain pull up resistance value is 100kΩ.
XC61CN4502 (4.V)XC61CN3602 (3.V)
5
Ta=25
4
(V) Output Voltage: V
OUT
3
2
1
Output Voltage: V
0
012345
(4) N-ch Driver Output Current vs. V
XC61CC1802 (1.8V) XC61CC2702 (2.7V)
(mA)
OUT
10
8
6
VIN =1.5VTa=25
4
2
Output Current: I
0
0 0.5 1.0 1.5 2.0
1.0V
VDS(V)
40
Ta=25
30
(mA)
OUT
20
10
Output Current: I
0
0 0.5 1.0 1.5 2.0 2.5 3.0
1.5V
VDS(V)
VIN =3.0V
DS
30
Ta=25
25
(mA)
20
OUT
15
10
5
Output Current: I
0
0 0.5 1.0 1.5 2.0 2.5 3.0
1.0V
VDS (V)
XC61CC4502 (4.5V)
XC61CC4502 (.V)XC61CC3602 (3.6V)
80
80
70
70
60
60
(mA)
50
50
OUT
40
40
30
30
20
20
10
10
Output Current: I
0
0
XC61CC4502 (4.5V)
Ta=25℃
Ta=25
V
=4.0V
IN
2.0
1.5
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
VDS(V)
V
DS
(V)
VIN =2.5V
VIN=4.0V
3.5V
3.5V
3.0
2.5
V
XC61C
Series
11/18
XC61C Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage (Continued)
(4) N-ch Driver Output Current vs. V
XC61CC1802 (.V) XC61CC2702 ( 2 .V)
1000
Ta=25
800
(μA)
OUT
600
400
200
0.7V
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0
VDS(V)
XC61CC3602 (.V)
1000
Ta=25
800
(μA)
OUT
600
400
200
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0
VIN =0.8V
0.7V
VDS(V)
(5) N-ch Driver Output Current vs. Input Voltage
XC61CC1802 (1.V) XC61CC2702 (.V)
15
(mA)
OUT
VDS=0.5V
10
Ta=-40
25
5
Output Current: I
0
0 0.5 1.0 1.5 2.0
IN
Input Voltage: V
(V)
VIN=0.8V
85
DS
1000
Ta=25
(μA)
OUT
800
600
400
200
VIN =0.8V
0.7V
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0
VDS (V)
XC61CC4502 (.V)
1000
Ta=25
800
(μA)
OUT
600
400
200
Output Current: I
0
0 0.2 0.4 0.6 0.8 1.0
VDS (V)
25
VDS=0.5V
20
(mA)
OUT
15
10
5
Output Current: I
0
0 0.5 1.0 1.5 2.0 2.5 3.0
Input Voltage: V
25
IN
VIN=0.8V
0.7V
Ta=-40
85
(V)
(mA)
OUT
Output Current: I
12/18
XC61CC3602 (3.V) XC61CC4502 (.V)
30
VDS=0.5V
25
20
15
10
5
0
01234
Ta=-40
25
85
40
(mA)
OUT
VDS=0.5V
30
20
10
Ta=-40
25
Output Current: I
0
012345
Input Voltage: VIN(V)Input Voltage: VIN(V)
85
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
Standard Voltage (Continued)
(6) P-ch Driver Output Current vs. Input Voltage
XC61CC1802 (.8V) XC61CC2702 (.7V)
15
VDS=2.1V
(mA)
10
OUT
5
Output Current: I
0
0246810
Input Voltage: VIN(V)
1.5V
1.0V
0.5V
15
(mA)
10
OUT
5
Output Current: I
0
0246810
Input Voltage: V
VDS=2.1V
IN
(V)
1.5V
1.0V
0.5V
(mA)
OUT
15
VDS=2.1V
10
1.5V
1.0V
(mA)
OUT
XC61CC4502 (4.5V)XC61CC3602 (3.6V)
15
VDS=2.1V
10
1.5V
5
Output Current: I
0
0246810
0.5V
5
Output Current: I
0
0246810
Input Voltage: V
IN
(V)Input Voltage: VIN (V)
0.5V
XC61C
Series
13/18
XC61C Series
PACKAGING INFORMATION
SSOT-24
0.25
0.25
SOT-89
+0.15
-0.1
+0.15
-0.1
2.0±0.1
1.3±0.2
0.35
0.05
0.25
+0.15
-0.1
+0.15
-0.1
+0.1
0.125
-0.05
(0.4)
2.5±0.1
° 5
4.0±0.25
SOT-23
+0.1
-0
0
14/18
1.0±0.2
(0.1)
1.5±0.1
PACKAGING INFORMATION(Continued)
TO-92
TB TYPE ●TH TYPE
0.45±0.1
4.65
+0.35
-0.45
(1.27)
3.7±0.3
0.4±0.05
0.45±0.1
2.5
4.65
+0.4
-0.1
+0.35
-0.45
2.5
+0.4
-0.1
-0.5
+0.4
4.8
10.0MIN
XC61C
Series
3.7±0.3
0.4±0.05
15/18
XC61C Series
MARKING RULE
SSOT-24, SOT-23, SOT-89
① ② ④
12
① ② ③ ④
12
123
34
3
represents integer of detect voltage and CMOS Output (XC61CC series)
MARK CONFIGURATION VOLTAGE (V)
A CMOS 0.X
B CMOS 1.X C CMOS 2.X D CMOS 3.X
E CMOS 4.X
F CMOS 5.X H CMOS 6.X
N-Channel Open Drain Output (XC61CN series)
MARK CONFIGURATION VOLTAGE (V)
K N-ch 0.X
L N-ch 1.X M N-ch 2.X N N-ch 3.X
P N-ch 4.X R N-ch 5.X
S N-ch 6.X
represents decimal number of detect voltage
MARK
VOLTAGE (V) MARK VOLTAGE (V) 0 X.0 5 X.5 1 X.1 6 X.6 2 X.2 7 X.7 3 X.3 8 X.8 4 X.4 9 X.9
represents delay time
(Except for SSOT-24)
MARK DELAY TIME PRODUCT SERIES
3 No Delay Time XC61Cxxx0xxx
represents production lot number Based on the internal standard. (G, I, J, O, Q, W excluded)
16/18
MARKING RULE (Continued)
TO-92
represents output configuration
②, ③ represents detect voltage (ex.)
TO-92
(SIDE VIEW)
represents delay time
represents detect voltage accuracy
represents a least significant digit of production year
represents production lot number 0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)
* No character inversion used.
MARK
OUTPUT
CONFIGURATION
C CMOS N N-ch
MARK
VOLTAGE (V)
3 3 3.3 5 0 5.0
MARK DELAY TIME
0 No delay
MARK DETECT VOLTAGE ACCURACY
1 2
Within ± 1% (Semi-custom)
Within ± 2%
MARK PRODUCTION YEAR
5 2005 6 2006
XC61C
Series
17/18
XC61C Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics. Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
18/18
Loading...