TOREX XC6108 User Manual

XC6108 Series
ETR0205_010a
Voltage Detector with Separated Sense Pin & Delay Capacitor Pin
GENERAL DESCRIPTION
The XC6108 series is highly precise, low power consumption voltage detector, manufactured using CMOS and laser trimming
technologies.
Using the IC with the sense pin separated from power supply enables output to maintain the state of detection even when
voltage of the monitored power supply drops to 0V.
Moreover, with the built-in delay circuit, connecting the delay capacitance pin to the capacitor enables the IC to provide an
arbitrary release delay time.
Both CMOS and N-channel open drain output configurations are available.
■APPLICATIONS
Microprocessor reset circuitry
Charge voltage monitors
Memory battery back-up switch circuits
Power failure detection circuits
TYPICAL APPLICATION CIRCUIT
Monitering Power supply
(No Pull-Up resistor needed for
CMOS output product)
FEATURES
Highly Accurate : +2% (Detect Voltage≧1.5V) +
30mV (Detect Voltage<1.5V)
Low Power Consumption
: 0.6 μA TYP. (detect, V
IN
0.8 μA TYP. (release, V
Detect Voltage Range : 0.8V ~ 5.0V in 0.1V increments Operating Voltage Range : 1.0V ~ 6.0V Temperature Stability : ±100ppm/
TYP. Output Configuration : CMOS or N-channel open drain Operating Temperature : -40 Separated Sense Pin : V
~ +85
Pin Available
SEN
Built-In Delay Circuit : Delay Time Adjustable Packages : USP-4, SOT-25
Environmentally Friendly : EU RoHS Compliant, Pb Free
TYPICAL PERFORMANCE
CHARACTERISTICS
Output Voltage vs. Sense Voltage
XC6108C25AGR
Ta=25
7.0
6.0
SEN
VIN=6.0V
(V)
5.0
(V)
4.0
OUT
3.0
2.0
1.0
Output Voltage: VOUT (V)
0.0
Output Voltage: V
-1.0 0123456
Sense Voltage: VSEN (V)
Sense Voltage: V
4.0V
1.0V
= 1.0V )
= 1.0V )
IN
1/22
XC6108 Series
PIN CONFIGURATION
* In the XC6108xxxA/B series, the dissipation pad should
not be short-circuited with other pins.
* In the XC6108xxxC/D series, when the dissipation pad
is short-circuited with other pins, connect it to the NC pin (No.2) pin before use.
PIN ASSIGNMENT
PIN NUMBER
USP- 4 SOT-25
USP-4
(BOTTOM VIEW)
PIN NAME FUNCTION
1 1 VOUT
2 5 Cd Delay Capacitance
2 - NC No Connection
3 4 VSEN Sense
4 3 VIN Input
5 2 VSS Ground
NOTE:
*1: With the V *2: In the case of selecting no built-in delay capacitance pin type, the delay capacitance (Cd) pin will be
PRODUCT CLASSIFICATION
used as the N.C.
Ordering Information
XC6108 ①②③④⑤⑥-⑦
SS pin of the USP-4 package, a tab on the backside is used as the pin No.5.
(*1)
5
Cd
VOUT
1
VSS
2
VSEN
VIN
SOT-25
(TOP VIEW)
Output (Detect ”L”)
(*2)
4
3
(*1)
DESIGNATOR DESCRIPTION SYMBOL DESCRIPTION
Output Configuration
C CMOS output
N N-ch open drain output
②③ Detect Voltage 08 ~ 50 e.g. 181.8V
A Built-in delay capacitance pin, hysteresis 5% (TYP.)(Standard*)
B Built-in delay capacitance pin, hysteresis less than 1%(Standard*)
C
D
No built-in delay capacitance pin, hysteresis 5% (TYP.)
(Semi-custom)
No built-in delay capacitance pin, hysteresis less than 1%
(Semi-custom)
Output Delay & Hysteresis
(Options)
GR USP-4
⑤⑥-⑦
Packages
Taping Type
(*2)
GR-G USP-4
MR SOT-25
MR-G SOT-25
*When delay function isn’t used, open the delay capacitance pin before use.
(*1)
The “-G” suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.
(*2)
The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or
representative. (Standard orientation: ⑤R-⑦, Reverse orientation: ⑤L-⑦)
2/22
BLOCK DIAGRAMS
(1) XC6108CxxA
(2) XC6108CxxB
(3) XC6108NxxA
(4) XC6108NxxB
XC6108
Series
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram
of XC6108CxxC (semi-custom).
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108CxxD (semi-custom).
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108NxxC (semi-custom).
*The delay capacitance pin (Cd) is not
connected to the circuit in the block diagram of
XC6108NxxD (semi-custom).
3/22
XC6108 Series
■ABSOLUTE MAXIMUM RATINGS
XC6108xxxA/B
PAR AMETER SYMBOL RATINGS UNITS
Input Voltage VIN
Output Current IOUT
(*1)
(*2)
(*1)
(*2)
V
OUT
Pd
VOUT
Pd
Output Voltage
Sense Pin Voltage VSEN
Delay Capacitance Pin Voltage VCD
Delay Capacitance Pin Current ICD 5.0 mA
Power Dissipation
Operating Temperature Range Ta
Storage Temperature Range Tstg
XC6108xxxC/D
Input Voltage VIN
Output Current IOUT
Output Voltage
Sense Pin Voltage VSEN
Power Dissipation
Operating Temperature Range Ta
Storage Temperature Range Tstg
NOTE:
*1: CMOS output
*2: N-ch open drain output
XC6108C
XC6108N
USP-4 120
SOT-25
PAR AMETER SYMBOL RATINGS UNITS
XC6108C
XC6108N
USP-4 120
SOT-25
SS-0.3 ~ 7.0
V
10
SS-0.3 ~ VIN+0.3
V
V
SS-0.3 ~ 7.0 SS-0.3 ~ 7.0
V
SS-0.3 ~ VIN+0.3
V
250
40 ~85
55 ~125
SS-0.3 ~ 7.0
V
10
SS-0.3 ~ VIN+0.3
V
SS-0.3 ~ 7.0
V
SS-0.3 ~ 7.0
V
250
40 ~85
55 ~125
Ta = 2 5OC
V
mA
V
V
V
mW
O
Ta = 2 5
C
V
mA
V
V
mW
4/22
ELECTRICAL CHARACTERISTICS
XC6108xxxA
PAR AMETER SYMBOL CONDITIONS MIN. TYP. MAX.
Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V
Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V
Hysteresis Width VHYS VIN = 1.0 ~ 6.0V E-2 V
Detect Voltage
Line Regulation
Supply Current 1
Supply Current 2
(*2)
ISS1
(*2)
ISS2
Δ
VDF /
(ΔVIN・
IOUT1
VDF)
VIN = 1.0 ~ 6.0V - ±0.1 - %/V
SEN =
V
V
DF x 0.9
SEN =
V
V
DF x 1.1
SEN =0V
V
V
DS = 0.5V
(N-ch)
Output Current
(*3)
(*1)
1.0 - 6.0 V -
VIN = 1.0V
IN = 6.0V - 0.7 1.6
V
VIN = 1.0V
IN = 6.0V - 0.9 1.8
V
- 0.6 1.5
- 0.8 1.7
VIN = 1.0V 0.1 0.7
VIN = 2.0V 0.8 1.6
VIN = 3.0V 1.2 2.0 VIN = 4.0V 1.6 2.3 VIN = 5.0V 1.8 2.4 V
IN = 6.0V 1.9 2.5
XC6108
Ta =2 5
UNITS
μA
μA
- mA
CIRCUITS
Series
① ①
SEN = 6.0V
V
IOUT2
V
DS = 0.5V
(P-ch)
CMOS
Leakage
Current
Output
Nch Open
I
LEAK
V
IN=6.0V, VSEN=6.0V,
V
OUT=6.0V, Cd: Open
Drain Output
Δ
Temperature Characteristics
Sense Resistance
Delay Resistance
(*4)
RSEN VSEN = 5.0V, VIN = 0V
(*5)
Rdelay
Delay capacitance pin
Sink Current
Delay Capacitance Pin
Threshold Voltage
Unspecified Operating
Voltage
Detect Delay Time
Release Delay Time
NOTE:
DF(T): Nominal detect voltage
*1: V
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the V
*5: Calculated from the voltage value of the V
*6: The maximum voltage of the V
This value is applied only to the XC6108C series (CMOS output).
*7: Time which ranges from the state of V
*8: Time which ranges from the state of V
(*6)
(*7)
tDF0
(*8)
tDR0
VDF /
(ΔTopr・VDF)
-40 ℃ ≦ Ta ≦ 85℃
VSEN = 6.0V, VIN = 5.0V,
ICD VDS = 0.5V, VIN = 1.0V - 200 -
VTCD
UNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V
V
OUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
SEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.
IN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
VSEN = 6.0V, VIN = 1.0V 0.4 0.5 0.6
SEN = 6.0V, VIN = 6.0V 2.9 3.0 3.1
V
IN = 6.0V, VSEN = 6.0V→ 0.0V
V
IN = 6.0V, VSEN = 0.0V→ 6.0V
V
IN and the current value of the Cd.
VIN = 1.0V - -0.30 -0.08
VIN = 6.0V - -2.00 -0.70
-
- ±100 -
Cd = 0V
Cd: Open
Cd: Open
SEN.
1.6 2.0 2.4
30 230
30 200
0.20 -
0.20 0.40
E-4
mA
μA
ppm/
MΩ
MΩ
μA
V
μs
μs
5/22
XC6108 Series
ELECTRICAL CHARACTERISTICS (Continued)
XC6108xxxB Ta =2 5
PAR AMETER SYMBOL CONDITIONS MIN. TYP. MAX.
Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V
Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V
Hysteresis Width VHYS VIN = 1.0 ~ 6.0V E-3 V
Detect Voltage
Line Regulation
Supply Current 1
Supply Current 2
Output Current
(*2)
ISS1
(*2)
ISS2
(*3)
Δ
VDF /
(ΔVIN・
IOUT1
OUT2
I
VDF)
VIN = 1.0 ~ 6.0V - ±0.1 - %/V
SEN =
V
V
DF x 0.9
SEN =
V
V
DF x 1.1
SEN =0V
V
V
DS = 0.5V
(N-ch)
V
SEN = 6.0V
V
DS = 0.5V
(P-ch)
CMOS
IN=6.0V, VSEN=6.0V,
Leakage
Current
Output
Nch Open
I
LEAK
V VOUT=6.0V, Cd: Open
Drain Output
Δ
Temperature Characteristics
Sense Resistance
Delay Resistance
(*4)
RSEN VSEN = 5.0V, VIN = 0V
(*5)
Rdelay
Delay capacitance pin
Sink Current
Delay Capacitance Pin
Threshold Voltage
Unspecified Operating
Voltage
Detect Delay Time
Release Delay Time
NOTE:
DF(T): Nominal detect voltage
*1: V
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the V
*5: Calculated from the voltage value of the V
*6: The maximum voltage of the V
This value is applied only to the XC6108C series (CMOS output).
*7: Time which ranges from the state of V
*8: Time which ranges from the state of V
(*6)
(*7)
tDF0
(*8)
tDR0
VDF /
(ΔTopr・VDF)
-40 ℃ ≦ Ta ≦ 85℃
VSEN = 6.0V, VIN = 5.0V,
Cd = 0V
ICD VDS = 0.5V, VIN = 1.0V - 200 -
VTCD
UNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V
V
VSEN = 6.0V, VIN = 1.0V 0.4 0.5 0.6
SEN = 6.0V, VIN = 6.0V 2.9 3.0 3.1
V
IN = 6.0V, VSEN = 6.0V→ 0.0V
V
Cd: Open
IN = 6.0V, VSEN = 0.0V→ 6.0V
V
Cd: Open
IN and the current value of the Cd.
OUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
SEN=VDF to the VOUT reaching 0.6V when the VSEN falls without connecting to the Cd pin.
IN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises without connecting to the Cd pin.
6/22
(*1)
1.0 - 6.0 V -
VIN = 1.0V
IN = 6.0V - 0.7 1.6
V
VIN = 1.0V
IN = 6.0V - 0.9 1.8
V
- 0.6 1.5
- 0.8 1.7
VIN = 1.0V 0.1 0.7 -
VIN = 2.0V 0.8 1.6 VIN = 3.0V 1.2 2.0 VIN = 4.0V 1.6 2.3 VIN = 5.0V 1.8 2.4
IN = 6.0V 1.9 2.5
V
VIN = 1.0V - -0.30 -0.08
V
IN = 6.0V - -2.00 -0.70
0.20 -
-
0.20 0.40
- ±100 -
E-4
1.6 2.0 2.4
30 230
30 200
SEN.
UNITS
CIRCUITS
μA
μA
-
mA
mA
μA
ppm/
MΩ
MΩ
μA
V
μs
μs
① ①
ELECTRICAL CHARACTERISTICS (Continued)
XC6108xxxC
PAR AMETER SYMBOL CONDITIONS MIN. TYP. MAX.
Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V
(*1)
1.0 - 6.0 V -
Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V
Hysteresis Width VHYS VIN = 1.0 ~ 6.0V E-2 V
Detect Voltage
Line Regulation
Supply Current 1
Supply Current 2
(*2)
ISS1
(*2)
ISS2
Δ
VDF /
(ΔVIN・
VDF)
VIN = 1.0 ~ 6.0V - ±0.1 - %/V
SEN =
V
V
DF x 0.9
SEN =
V
V
DF x 1.1
VIN = 1.0V
IN = 6.0V - 0.7 1.6
V
VIN = 1.0V
IN = 6.0V - 0.9 1.8
V
VIN = 1.0V 0.1 0.7
VIN = 2.0V 0.8 1.6 VIN = 3.0V 1.2 2.0 VIN = 4.0V 1.6 2.3 VIN = 5.0V 1.8 2.4
IN = 6.0V 1.9 2.5
V
Output Current
(*3)
SEN =0V
V
IOUT1
V
DS = 0.5V
(N-ch)
UNITS
- 0.6 1.5
- 0.8 1.7
- mA
XC6108
Series
Ta =2 5
CIRCUITS
① ①
μA
μA
SEN = 6.0V
V
IOUT2
V
DS = 0.5V
(P-ch)
CMOS
IN=6.0V, VSEN=6.0V,
Leakage
Current
Output
Nch Open
I
LEAK
V VOUT=6.0V, Cd: Open
Drain Output
Δ
Temperature Characteristics
Sense Resistance
(*4)
RSEN VSEN = 5.0V, VIN = 0V
Unspecified Operating
Voltage
Detect Delay Time
Release Delay Time
NOTE:
DF(T): Nominal detect voltage
*1: V
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the V
*5: The maximum voltage of the V
This value is applied only to the XC6108C series (CMOS output).
*6: Time which ranges from the state of V
*7: Time which ranges from the state of V
(*5)
(*6)
(*7)
VDF/
(ΔTopr・VDF)
UNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V
V
t
DF0
t
DR0
OUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
SEN=VDF to the VOUT reaching 0.6V when the VSEN falls.
IN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
-40 ℃ ≦ Ta ≦ 85℃
IN = 6.0V, VSEN = 6.0V→ 0.0V
V
IN = 6.0V, VSEN = 0.0V→ 6.0V
V
VIN = 1.0V - -0.30 -0.08
VIN = 6.0V - -2.00 -0.70
0.20 -
-
0.20 0.40
- ±100 -
E-4
30 230
30 200
SEN.
mA
μA
ppm/
MΩ
μs ⑨ μs
7/22
XC6108 Series
ELECTRICAL CHARACTERISTICS (Continued)
XC6108xxxD
PAR AMETER SYMBOL CONDITIONS MIN. TYP. MAX.
Operating Voltage VIN VDF(T) = 0.8 ~ 5.0V
Detect Voltage VDF VIN = 1.0 ~ 6.0V E-1 V 1
Hysteresis Width VHYS1 VIN = 1.0 ~ 6.0V E-3 V 1
Detect Voltage
Line Regulation
Supply Current 1
Supply Current 2
(*2)
ISS1
(*2)
ISS2
Δ
VDF /
(ΔVIN・
IOUT1
VDF)
VIN = 1.0 ~ 6.0V - ±0.1 - %/V 1
SEN =
V
V
DF x 0.9
SEN =
V
V
DF x 1.1
SEN =0V
V
V
DS = 0.5V
(N-ch)
Output Current
(*3)
(*1)
1.0 - 6.0 V -
VIN = 1.0V
IN = 6.0V - 0.7 1.6
V
VIN = 1.0V
IN = 6.0V - 0.9 1.8
V
VIN = 1.0V 0.1 0.7 VIN = 2.0V 0.8 1.6 VIN = 3.0V 1.2 2.0 VIN = 4.0V 1.6 2.3 VIN = 5.0V 1.8 2.4 V
IN = 6.0V 1.9 2.5
UNITS
- 0.6 1.5
- 0.8 1.7
- mA 3
μA
μA
Ta =2 5
CIRCUITS
2
2
V
SEN = 6.0V
OUT2
I
DS = 0.5V
V
(P-ch)
CMOS
IN=6.0V, VSEN=6.0V,
Leakage
Current
Output
Nch Open
I
LEAK
V VOUT=6.0V, Cd: Open
Drain Output
Δ
V
DF /
Temperature Characteristics
Sense Resistance
(*4)
(ΔTopr・VDF)
RSEN VSEN = 5.0V, VIN = 0V
Unspecified Operating
Voltage
Detect Delay Time
Release Delay Time
NOTE:
*1: V
DF(T)
*2: Current flows the sense resistor is not included.
*3: The Pch values are applied only to the XC6108C series (CMOS output).
*4: Calculated from the voltage value and the current value of the V
*5: The maximum voltage of the V
This value is applied only to the XC6108C series (CMOS output).
*6: Time which ranges from the state of V
*7: Time which ranges from the state of V
(*5)
(*6)
(*7)
: Nominal detect voltage
UNS VIN = VSEN = 0V ~ 1.0V - 0.3 0.4 V 7
V
t
DF0
t
DR0
OUT in the range of the VIN 0V to 1.0V when the VIN and the VSEN are short-circuited
SEN=VDF to the VOUT reaching 0.6V when the VSEN falls.
IN= VDF +VHYS to the VOUT reaching 5.4V when the VSEN rises.
-40 ℃ ≦ Ta ≦ 85℃
IN = 6.0V, VSEN = 6.0V→ 0.0V
V
IN = 6.0V, VSEN = 0.0V→ 6.0V
V
8/22
VIN = 1.0V - -0.30 -0.08
VIN = 6.0V
- -2.00 -0.70
0.20 -
-
0.20 0.40
- ±100 -
E-4
30 230
30 200
SEN.
mA 4
μA 3
ppm/
MΩ
μs μs
1
5
9
9
VOLTAGE CHART
SYMBOL E-1 E-2 E-3 E-4
NOMINAL DETECT
DETECT VOLTAGE
VOLTAGE
VDF(T)
(V)
MIN. MAX. MIN. MAX. MIN. MAX. MIN. TYP.
0.8 0.770 0.830 0.015 0.066 0.008
0.9 0.870 0.930 0.017 0.074 0.009
1.0 0.970 1.030 0.019 0.082 0.010
1.1 1.070 1.130 0.021 0.090 0.011
1.2 1.170 1.230 0.023 0.098 0.012
1.3 1.270 1.330 0.025 0.106 0.013
1.4 1.370 1.430 0.027 0.114 0.014
1.5 1.470 1.530 0.029 0.122 0.015
1.6 1.568 1.632 0.031 0.131 0.016
1.7 1.666 1.734 0.033 0.085 0.017
1.8 1.764 1.836 0.035 0.147 0.018
1.9 1.862 1.938 0.037 0.155 0.019
2.0 1.960 2.040 0.039 0.163 0.020
2.1 2.058 2.142 0.041 0.171 0.021
2.2 2.156 2.244 0.043 0.180 0.022
2.3 2.254 2.346 0.045 0.188 0.023
2.4 2.352 2.448 0.047 0.196 0.024
2.5 2.450 2.550 0.049 0.204 0.026
2.6 2.548 2.652 0.051 0.212 0.027
2.7 2.646 2.754 0.053 0.220 0.028
2.8 2.744 2.856 0.055 0.228 0.029
2.9 2.842 2.958 0.057 0.237 0.030
3.0 2.940 3.060 0.059 0.245 0.031
3.1 3.038 3.162 0.061 0.253 0.032
3.2 3.136 3.264 0.063 0.261 0.033
3.3 3.234 3.366 0.065 0.269 0.034
3.4 3.332 3.468 0.067 0.277 0.035
3.5 3.430 3.570 0.069 0.286 0.036
3.6 3.528 3.672 0.071 0.294 0.037
3.7 3.626 3.774 0.073 0.302 0.038
3.8 3.724 3.876 0.074 0.310 0.039
3.9 3.822 3.978 0.076 0.318 0.040
4.0 3.920 4.080 0.078 0.326 0.041
4.1 4.018 4.182 0.080 0.335 0.042
4.2 4.116 4.284 0.082 0.343 0.043
4.3 4.214 4.386 0.084 0.351 0.044
4.4 4.312 4.488 0.086 0.359 0.045
4.5 4.410 4.590 0.088 0.367 0.046
4.6 4.508 4.692 0.090 0.375 0.047
4.7 4.606 4.794 0.092 0.384 0.048
4.8 4.704 4.896 0.094 0.392 0.049
4.9 4.802 4.998 0.096 0.400 0.050
NOTE:
5.0
*1: When V
When V
DF(T)≦1.4V, the detection accuracy is ±30mV. DF(T)≧1.5V, the detection accuracy is ±2%.
4.900 5.100 0.098 0.408
(V)
(*1)
HYSTERESIS
RANGE
(V)
HYSTERESIS
RANGE
(V)
SENSE
RESISTANCE
(M)
VDF VHYS VHYS RSEN
10 20
0
13 24
15 28
0.051
XC6108
Series
9/22
XC6108 Series
TEST CIRCUITS
Circuit 1
Circuit 2
Circuit 3
Circuit 4
Circuit 5
10/22
XC6108 Series
XC6108 Series
XC6108 Series
XC6108 Series
XC6108 Series
R=100kΩ
(No resistor needed for CMOS output products)
TEST CIRCUITS (Continued)
Circuit 6
Circuit 7
XC6108 Series
XC6108
Series
(No resistor needed for CMOS output products)
XC6108 Series
Circuit 8
Circuit 9
XC6108 Series
(No resistor needed for CMOS output products)
Waveform Measurement Point
XC6108 Series
*No delay capacitance pin available in the XC6108xxxC/D series.
11/22
XC6108 Series
OPERATIONAL EXPLANATION
A typical circuit example is shown in Figure 1, and the timing chart of Figure 1 is shown in Figure 2 on page 14.
As an early state, the sense pin is applied sufficiently high voltage (6.0V MAX.) and the delay capacitance (Cd) is charged
to the power supply input voltage, (V reach the detect voltage (V * If a pull-up resistor of the XC6108N series (N-ch open drain) is connected to added power supply different from the input
voltage pin, the “High” level will be a voltage value where the pull-up resistor is connected.
When the sense pin voltage keeps dropping and becomes equal to the detect voltage (V
(M1) for the delay capacitance (Cd) discharge is turned ON, and starts to discharge the delay capacitance (Cd). An inverter (Inv.1) operates as a comparator of the reference voltage VIN, and the output voltage changes into the “Low” level (=V
SS). The detect delay time [tDF] is defined as time which ranges from VSEN=VDF to the VOUT of “Low” level
(especially, when the Cd pin is not connected: t
While the sense pin voltage keeps below the detect voltage, the delay capacitance (Cd) is discharged to the ground
voltage (=V
SS) level. Then, the output voltage maintains the “Low” level while the sense pin voltage increases again to
reach the release voltage (V
When the sense pin voltage continues to increase up to the release voltage level (VDF+VHYS), the N-ch transistor (M1) for
the delay capacitance (Cd) discharge will be turned OFF, and the delay capacitance (Cd) will start discharging via a delay resistor (Rdelay). The inverter (Inv Threshold: V
THL=VSS) while the sense pin voltage keeps higher than the detect voltage (VSEN > VDF).
While the delay capacitance pin voltage (V
sense pin voltage equal to the release voltage or higher, the sense pin will be charged by the time constant of the RC series circuit. Assuming the time to the release delay time (tDR), it can be given by the formula (1).
DF) (VSEN>VDF), the output voltage (VOUT) keeps the “High” level (=VIN).
SEN< VDF +VHYS).
The release delay time can also be briefly calculated with the formula (2) because the delay resistance is 2.0MΩ(TYP.) and the delay capacitance pin voltage is V
As an example, presuming that the delay capacitance is 0.68μF, t
* Note that the release delay time may remarkably be short when the delay capacitance (Cd) is not discharged to the
ground (=VSS) level because time described in is short.
When the delay capacitance pin voltage reaches to the delay capacitance pin threshold voltage (V
(Inv.1) will be inverted. As a result, the output voltage changes into the “High” (=V which ranges from V
While the sense voltage is higher than the detect voltage (VSEN > VDF), the delay capacitance pin is charged until the
delay capacitance pin voltage becomes the input voltage level. Therefore, the output voltage maintains the “High”(=V level.
SEN=VDF+VHYS to the VOUT of “High” level without connecting to the Cd.
IN: 1.0V MIN., 6.0V MAX.). While the sense pin voltage (VSEN) starts dropping to
SEN =VDF), an N-ch transistor
DF0).
1) will operate as a comparator (Rise Logic Threshold: VTLH=VTCD, Fall Logic
.
CD) rises to reach the delay capacitance pin threshold voltage (VTCD) with the
DR =
t
Rdelay×Cd×In (1-VTCD / VIN) (1)
* In = a natural logarithm
IN /2 (TYP.)
tDR = Rdelay×Cd×0.69(2)
*:Rdelay is 2.0MΩ(TYP.)
DR is :
2.0×10
6
×
0.68×10
-6
×
0.69=938(ms)
IN) level. tDR0 is defined as time
CD=VTCD), the inverter
IN)
12/22
OPERATIONAL EXPLANATION (Continued)
Function Chart
V
Cd
SEN
L
L
H
L
H
L
H
H
L
H
*1: VOUT transits from condition to because of the combination of VSEN and Cd.
Example
ex. 1) V
ex. 2) V
Release Delay Time Chart
DELAY CAPACITANCE [Cd]
ranges from ‘L’ to ‘H’ in case of VSEN = ‘H’ (VDR≧VSEN), Cd=’H’ (VTCDCd) while VOUT is ‘L’.
OUT
maintains ‘H’ when Cd ranges from ‘H’ to ‘L’, VSEN=’H’ and Cd=’L’ when V
OUT
(μF)
TRANSITION OF V
L
H
L
H
RELEASE DELAY TIME [tDR]
(TYP.)
(ms)
0.010 13.8 11.0 ~ 16.6
0.022 30.4 24.3 ~ 36.4
0.047 64.9 51.9 ~ 77.8
0.100 138 110 ~ 166
0.220 304 243~ 364
0.470 649 519 ~ 778
1.000 1380 1100 ~ 1660
* The release delay time values above are calculated by using the formula (2).
*2: The release delay time (t
) is influenced by the delay capacitance Cd.
DR
CONDITION *1
OUT
⇒ ⇒
L
L
H
becomes ‘H’ in ex.1.
OUT
RELEASE DELAY TIME [tDR] *2
(MIN. ~ MAX.)
(ms)
XC6108
Series
13/22
XC6108 Series
OPERATIONAL EXPLANATION (Continued)
Figure 1: Typical application circuit example
VIN
Figure 2: The timing chart of Figure 1
14/22
VIN
VSEN
VSEN
Cd
Cd
SEN=R1+R2+R3
R1
R2
R3
Comparator
Vref
M5
M2
M4
R
delay
M1
Inverter
M3
VOUT
VSS
V
VDF+V
V
DF
*The XC6108N series (N-ch open drain output) requires a pull-up resistor for pulling up output.
(MIN.:0V, MAX.:6.0V)
SEN
HYS
VCD(MIN.:VSS, MAX.:VIN)
V
(MIN.:VSS, MAX:VIN)
OUT
V
TCD
XC6108
Series
NOTES ON USE
1. Use this IC within the stated maximum ratings. Operation beyond these limits may cause degrading or permanent damage
to the device.
2. The power supply input pin voltage drops by the resistance between power supply and the V
at operation of the IC. At this time, the operation may be wrong if the power supply input pin voltage falls below the
minimum operating voltage range. In CMOS output, for output current, drops in the power supply input pin voltage
similarly occur. Moreover, in CMOS output, when the V
the circuit may occur if the drops in voltage, which caused by through current at operation of the IC, exceed the hysteresis
voltage. Note it especially when you use the IC with the V
3. When the setting voltage is less than 1.0V, be sure to separate the V
1.0V to the V
4. Note that a rapid and high fluctuation of the power supply input pin voltage may cause a wrong operation.
5. Power supply noise may cause operational function errors, Care must be taken to put the capacitor between V
test on the board carefully.
6. When there is a possibility of which the power supply input pin voltage falls rapidly (e.g.: 6.0V to 0V) at release operation
with the delay capacitance pin (Cd) connected to a capacitor, use a schottky barrier diode connected between the V
and the Cd pin as the Figure 3 shown below.
6. In N channel open drain output, V connected at the V
During detection : V
Vpull: Pull up voltage
R
(1)On resistance of N channel driver M3 can be calculated as V
ON
For example, when (2) R Rpull= (Vpull /V In this case, Rpull should be selected higher or equal to 18kΩ in order to keep the output voltage less than 0.1V during detection.
During releasing:V
VpullPull up voltage
For examplewhen Vpull = 6.0V and V Rpull = (Vpull / V In this case, Rpull should be selected smaller or equal to 25kΩ in order to obtain output voltage higher than 5.99V
during releasing.
Figure 3: Circuit example with the delay capacitance pin (Cd) connected to a schottky barrier diode Figure 4: Circuit example of XC6108N Series
IN pin.
voltage at detect and release is determined by resistance of a pull up resistor
OUT
pin. Please choose proper resistance values with reffering to Figure 4;
OUT
= Vpull / (1+Rpull / RON)
OUT
= 0.5 / 0.8×10
ON
-1)×RON= (3 / 0.1-1)×625≒18kΩ
OUT
(1) R
is bigger when VIN is smaller, be noted.
ON
(2) For calculation, Minimum V
= Vpull / (1 + Rpull / Roff)
OUT
-3
= 625Ω(MIN.)at VIN=2.0V, Vpull = 3.0V and V
should be chosen among the input voltage range.
IN
RoffOn resistance of N channel driver M3 is 15MΩ(MIN. when the driver is off (as to V
5.99V,
OUT
-1)×Roff = (6/5.99-1)×15×106 ≒25kΩ
OUT
IN pin and the sense pin are short-circuited and used, oscillation of
IN pin connected to a resistor.
IN pin and the sense pin, and to apply the voltage over
/ I
DS
from electrical characteristics,
OUT1
IN pin, and by through current
-GND and
IN
0.1V at detect,
OUT
/ I
LEAK
)
OUT
VSEN
VSENVIN
Cd
Cd
VIN
VOUT
VSS
R=100kΩ
(No resistor needed for
CMOS output products)
VOUT
VIN
VSEN
VSEN
VIN
M2
SEN=R1+R2+R3
Comparator
R1
R2
Vref
M5
R3
Cd
Rdelay
Inverter
M1
ILEA
K
M3
Figure 3
NOTE Roff=V
Figure 4
OUT/ILEAK
15/22
IN pin
Vpull
Rpull
VOUT
VSS
XC6108 Series
TYPICAL PERFORMANCE CHARACTERISTICS
(1) Supply Current vs. Sense Voltage
2.0
1.5
1.0
0.5
Supply Current: ISS (μA)
Supply Current : ISS (μA)
0.0 0123456
(2) Supply Current vs. Input Voltage
1.2
1.0
0.8
0.6
0.4
0.2
Supply Current: ISS (μA)
Supply Current : ISS (μA)
0.0
0123456
(3) Detect Voltage vs. Ambient Temperature (4) Detect Voltage vs. Input Voltage
2.55
2.50
Detect Voltage : VDF (V)
Detect Voltage: VDF (V)
2.45
-50 -25 0 25 50 75 100
16/22
XC6108C25AGR
VIN = 3.0V
Ta=85
25
-40
Sense Voltage : VSEN (V)
Sense V oltage: VSEN (V )
XC6108C25AGR
VSEN=2.25V
Ta= 8 5
25
-40
Input Voltage: VIN (V)
Input Voltage : VIN (V) Input Voltage : VIN (V)
Supply Current : ISS (μA)
1.2
1.0
0.8
0.6
0.4
0.2
Supply Current: ISS (μA)
0.0
0123456
XC6108C25AGR
Ambient Temperature: Ta ()
Ambient Temperature : Ta (℃)
VIN= 4.0V
2.55
2.50
Detect Voltage: VDF (V)
Detect Voltage : VDF (V)
2.45
1.0 2.0 3.0 4.0 5.0 6.0
XC6108C25AGR
Input Voltage: VIN (V)
XC6108C25AGR
Input Voltage: VIN (V)
Input Voltage : VIN (V)
VSEN=2.75V
Ta= 8 5
Ta= 2 5
-40
85
-40
25
g
)
p
(
)
p
(
)
XC6108
Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(5) Hysteresis Voltage vs. Ambient Temperature (6) CD Pin Sink Current vs. Input Voltage
0.20
0.15
VHYS (V)
0.10
Hysteres is Voltage:
Hysteresis Voltage : VHYS (V)
0.05
-50 -25 0 25 50 75 100
(7) Output Voltage vs. Sense Voltage (8) Output Voltage vs. Input Voltage
7.0
6.0
5.0
4.0
3.0
2.0
1.0
Output Voltage : VOUT (V)
Output Voltage: VOUT (V)
0.0
-1.0
0123456
(9) Output Current vs. Input Voltage
4.0
3.5
3.0
mA
2.5
2.0
1.5
1.0
ut Current : IOUT
Output Current: IOUT (mA)
0.5
Out
0.0
0123456
XC6108C25AGR
Ambient Temperature : Ta (℃)
Ambient Temperature: Ta ()
XC6108C25AGR
VIN=6.0V
Sense V olta
Sense Voltage : VSEN (V)
XC6108C25AGR
Input Voltage: VIN (V)
Input Voltage : VIN (V)
e: VSEN (V
Ta= -40
VDS(N ch)=0.5V
25
85
VIN = 4.0V
Ta=25
4.0V
1.0V
3.0
2.5
2.0
1.5
1.0
0.5
Cd PI N Sink Current : ICD (mA)
Cd PIN Sink Current : ICD (mA)
0.0
0123456
4.0
3.0
2.0
1.0
0.0
Output Voltage : VOUT (V)
Output Voltage: VOUT (V)
-1.0
0 0.5 1 1.5 2 2.5 3
0.0
-0.5
mA
-1.0
-1.5
ut Current : IOUT
Output Current: IOUT (mA)
Out
-2.0
0123456
XC6108C25AGR
VSEN=0V, VDS=0.5V
Ta= -40
25
85
Input Voltage: VIN (V)
Input Voltage : VIN (V)
XC6108N25AGR
VSEN=VIN Pull-up=VIN R=100k
Ta=8 5
25
-40
Input Voltage : VIN (V)
Supply Voltage: VIN (V)
XC6108C25AGR
VDS(Pch)=0.5V
Ta= 85
25
-40
Input Voltage: VIN (V)
Input Voltage : VIN (V)
Ω
17/22
XC6108 Series
TYPICAL PERFORMANCE CHARACTERISTICS (Continued)
(10) Delay Resistance vs. Ambient Temperature (11) Release Delay Time vs. Delay Capacitance
(12) Detect Delay Time vs. Delay Capacitance
(14) Leakage Current vs. Supply Voltage
3.5
)
Ω
2.5
(M
1.5
Delay Resistance : Rdelay (MΩ)
Delay Resistance: Rdelay
1000
s)
μ
100
Detect Delay Time: TDF (
Detect Delay Time : TDF (μs)
0.25
A)
μ
0.20
0.15
Leak Current: ILEAK (
0.10
XC6108C25AGR
VSEN=6.0V VCD=0.0V VIN=5.0V
4
3
2
1
-50 -25 0 25 50 75 100
Ambient Temperature : Ta (℃)
Ambient Temperature: Ta ()
XC6108C25AGR
VIN=6.0V
4.0V
3.0V
10
1.0V
1
0.0001 0.001 0.01 0.1 1 Delay Capacitance: Cd (μF)
Delay Capacitance : Cd (μF)
XC6108N25AGR
VIN=VSEN=6.0V
01234 56
Output Voltage: VOUT (V)
18/22
2.0V
Ta=25
10000
1000
100
Release Delay time: TDR (ms)
Release Delay Time : TDR (ms)
(13) Leakage Current vs. Ambient Temperature
A)
μ
Leak Carrent: ILEAK (
XC6108C25AGR
Ta=25
VIN=1.0V
3.0V
6.0V
10
1
0.1
0.0001 0.001 0.01 0.1 1
0.25
0.20
0.15
0.10
-50 -25 0 25 50 75 100
TDR=Cd×2.0×106×0.69
Delay Capacitor: Cd (μF)
Delay Capacitance : Cd (μF)
XC6108N25AGR
VIN=VSEN=6.0V VOUT=6.0V
Ambient Temperature: Ta (℃)
* Solderi
fill
r
f
PACKAGING INFORMATION
USP-4
ng formed because the sides of the pins are plated.
et su
SOT-25
+0.1
0.4
-0.05
2.9±0.2
5 4
0~0.1
1
2
(0.95)
3
1.9±0.2
0.15
+0.1
-0.05
XC6108
Series
ace is not
19/22
XC6108 Series
PACKAGING INFORMATION (Continued)
USP-4 Reference Pattern Layout
20/22
USP-4 Reference Metal Mask Design
①②③
4
r
r
r
r
(
(
MARKING RULE
SOT-25
5
123
SOT-25
TOP VIEW)
USP-4
1
2
USP-4
TOP VIEW)
① ②
4
3
XC6108
Series
represents output configuration and integer number of detect voltage
CMOS Output (XC6108C Series) N-ch Open Drain Output (XC6108N Series)
MARK VOLTAGE (V) MARK VOLTAGE (V)
A 0.x K 0.x
B 1.x L 1.x C 2.x M 2.x D 3.x N 3.x
E 4.x P 4.x
F 5.x R 5.x
represents decimal number of detect voltage
(ex.)
MARK VOLTAGE (V) PRODUCT SERIES
3 x.3 XC6108xx3xxx 0 x.0 XC6108xx0xxx
represents options
MARK
A
B
C
D
epresents production lot numbe
Built-in delay capacitance pin with hysteresis 5% (TYP.)
Built-in delay capacitance pin with hysteresis less than 1%
No built-in delay capacitance pin with hysteresis 5% (TYP.)
No built-in delay capacitance pin with hysteresis less than 1%
OPTIONS PRODUCT SERIES
(Standard)
(Standard)
(Semi-custom)
(Semi-custom)
XC6108xxxAxx
XC6108xxxBxx
XC6108xxxCxx
XC6108xxxDxx
0 to 9, A to Z or inverted characters of 0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded)
represents output configuration and integer number of detect voltage
CMOS Output (XC6108C Series) N-ch Open Drain Output (XC6108N Series)
MARK VOLTAGE (V) MARK VOLTAGE (V)
A 0.x K 0.x
B 1.x L 1.x C 2.x M 2.x D 3.x N 3.x
E 4.x P 4.x
F 5.x R 5.x
represents decimal number of detect voltage
(ex.)
MARK VOLTAGE (V) PRODUCT SERIES
3 x.3 XC6108xx3xxx 0 x.0 XC6108xx0xxx
represents options
MARK OPTIONS
A
B
C
D
epresents production lot numbe
Built-in delay capacitance pin with hysteresis 5% (TYP.)
(Standard)
Built-in delay capacitance pin with hysteresis less than 1%
(Standard)
No built-in delay capacitance pin with hysteresis 5% (TYP.)
(Semi-custom)
No built-in delay capacitance pin with hysteresis less than 1%
(Semi-custom)
0 to 9, A to Z repeated. (G, I, J, O, Q, W excluded) *No character inversion used.
PRODUCT
SERIES
XC6108xxxAxx
XC6108xxxBxx
XC6108xxxCxx
XC6108xxxDxx
21/22
XC6108 Series
1. The products and product specifications contained herein are subject to change without
notice to improve performance characteristics. Consult us, or our representatives
before use, to confirm that the information in this datasheet is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other
rights arising from the use of any information and circuitry in this datasheet.
3. Please ensure suitable shipping controls (including fail-safe designs and aging
protection) are in force for equipment employing products listed in this datasheet.
4. The products in this datasheet are not developed, designed, or approved for use with
such equipment whose failure of malfunction can be reasonably expected to directly
endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety
equipment thereof.)
5. Please use the products listed in this datasheet within the specified ranges.
Should you wish to use the products under conditions exceeding the specifications,
please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this datasheet may be copied or reproduced without the
prior permission of TOREX SEMICONDUCTOR LTD.
22/22
Loading...