THERMAL DYNAMICS 35mm 40mm CUTMASTER Plasma Cutting System Instruction manual

A-08622
380­400
40mm
380­400
35mm
100
AMP
120
AMP
CUTMASTER
PLASMA CUTTING SYSTEM
Operating Manual
Rev. AA Date: October 30, 2008 Manual # 0-5118 Operating Features:
WE APPRECIATE YOUR BUSINESS!
Congratulations on your new Thermal Dynamics product. We are proud to have you as our customer and will strive to provide you with the best service and reliability in the industry. This product is backed by our extensive warranty and world-wide service network. To locate your nearest distributor or service agency call 1-800-426-1888, or visit us on the web at www.
thermal-dynamics.com.
This Operating Manual has been designed to instruct you on the correct use and operation of your Thermal Dynamics product. Your satisfaction with this product and its safe operation is our ultimate concern. Therefore please take the time to read the entire manual, especially the Safety Precautions. They will help you to avoid potential hazards that may exist when working with this product.
YOU ARE IN GOOD COMPANY!
The Brand of Choice for Contractors and Fabricators Worldwide.
Thermal Dynamics is a Global Brand of manual and automation Plasma Cutting Products for Thermadyne Industries Inc.
We distinguish ourselves from our competition through market­leading, dependable products that have stood the test of time. We pride ourselves on technical innovation, competitive prices, excellent delivery, superior customer service and technical support, together with excellence in sales and marketing expertise.
Above all, we are committed to developing technologically
!
WARNINGS
Read and understand this entire Manual and your employer’s safety practices before installing, operating, or servicing the equipment.
While the information contained in this Manual represents the Manufacturer's best judgement, the Manufacturer assumes no liability for its use.
Plasma Cutting Power Supply CutMaster™ 35mm SL60 1 Torch™ Operating Manual No.: 0-5118 CutMaster™ 40mm SL60 1 Torch™ Operating Manual No.: 0-5118
Published by: Thermal Dynamics Corporation 82 Benning Street West Lebanon, New Hampshire, USA 03784 (603) 298-5711
www.thermal-dynamics.com
Copyright 2008 by Thermadyne Corporation
All rights reserved.
Reproduction of this work, in whole or in part, without written permission of the publisher is prohibited.
The publisher does not assume and hereby disclaims any liability to any party for any loss or damage caused by any error or omission in this Manual, whether such error results from negli­gence, accident, or any other cause.
Original Publication Date: October 30, 2008
Record the following information for Warranty purposes:
Where Purchased:_________________________________________________
Purchase Date:__________________________________ __________________
Power Supply Serial #:___________________________ ___________________
Torch Serial #:_____________________________________________________
i
This Page Intentionally Blank
TABLE OF CONTENTS
SECTION 1: GENERAL INFORMATION .................................................................................1-1
1.01 Notes, Cautions and Warnings ...................................................................1-1
1.02 Important Safety Precautions .....................................................................1-1
1.03 Publications.................................................................................................1-2
1.04 Note, Attention et Avertissement ................................................................1-3
1.05 Precautions De Securite Importantes .........................................................1-3
1.06 Documents De Reference ...........................................................................1-4
1.07 Declaration of Conformity ...........................................................................1-6
1.08 Statement of Warranty ................................................................................1-7
SECTION 2 SYSTEM: INTRODUCTION ................................................................................2-1
2.01 How To Use This Manual ............................................................................
2.02 Equipment Identification .............................................................................2-1
2.03 Receipt Of Equipment .................................................................................2-1
2.04 Power Supply Specifications ....................................................................... 2-2
2.05 Input Wiring Specifications ..........................................................................2-3
2.06 Power Supply Features ...............................................................................
SECTION 2 TORCH: INTRODUCTION ................................................................................ 2T-1
2T.01 Scope of Manual ....................................................................................... 2T-1
2T.02 General Description .................................................................................. 2T-1
2T.03 Specifications ........................................................................................... 2T-1
2T.04 Options And Accessories .......................................................................... 2T-2
2T.05 Introduction to Plasma .............................................................................. 2T-2
SECTION 3 SYSTEM: INSTALLATION ..................................................................................3-1
3.01 Unpacking ................................................................................................... 3-1
3.02 Lifting Options ............................................................................................. 3-1
3.03 Primary Input Power Connections ..............................................................3-2
3.04 Gas Connections ........................................................................................3-3
SECTION 3 TORCH: INSTALLATION ................................................................................... 3T-1
3T.01 Torch Connections .................................................................................... 3T-1
3T.02 Setting Up Mechanical Torch .................................................................... 3T-1
2-1
2-4
SECTION 4 SYSTEM: OPERATION ....................................................................................... 4-1
4.01 Front Panel Controls / Features ..................................................................4-1
4.02 Preparations for Operation ..........................................................................4-2
SECTION 4 TORCH: OPERATION ....................................................................................... 4T-1
4T.01 Torch Parts Selection ................................................................................ 4T-1
4T.02 Cut Quality ................................................................................................ 4T-2
4T.03 General Cutting Information ...................................................................... 4T-2
4T.04 Hand Torch Operation ............................................................................... 4T-3
4T.05 Gouging .................................................................................................... 4T-6
4T.06 Mechanized Torch Operation ....................................................................4T-7
4T.07 Parts Selection for SL100Torch Cutting .................................................... 4T-9
4T.08 Recommended Cutting Speeds for SL100 Torch With Exposed Tip ....... 4T-10
4T.09 Recommended Cutting Speeds for SL100Torch With Shielded Tip ........ 4T-14
PATENT INFORMATION ...................................................................................................... 4T-18
TABLE OF CONTENTS
SECTION 5 SYSTEM: SERVICE ............................................................................................5-1
5.01 General Maintenance .................................................................................5-1
5.02 Maintenance Schedule ...............................................................................5-2
5.03 Common Faults ...........................................................................................5-2
5.04 Fault Indicator .............................................................................................5-3
5.05 Basic Troubleshooting Guide ......................................................................5-4
SECTION 5 TORCH: SERVICE ............................................................................................. 5T-1
5T.01 General Maintenance ............................................................................... 5T-1
5T.02 Inspection and Replacement of Consumable Torch Parts ........................
SECTION 6: PARTS LISTS ..................................................................................................... 6-1
6.01 Introduction .................................................................................................6-1
6.02 Ordering Information ................................................................................... 6-1
6.03 Power Supply Replacement ........................................................................ 6-1
6.04 Replacement Power Supply Parts ..............................................................6-2
6.05 Options and Accessories ............................................................................6-2
6.06 Replacement Parts for Hand Torch ............................................................6-3
6.07 Replacement Parts - for Machine Torches with Unshielded Leads .............6-4
6.08 Replacement Shielded Machine Torch Leads Assemblies ........................6-6
6.09 Torch Consumable Parts (SL100) ............................................................... 6-7
5T-2
APPENDIX 1: SEQUENCE OF OPERATION(BLOCK DIAGRAM) ........................................ A-1
APPENDIX 2: DATA TAG INFORMATION .............................................................................. A-2
APPENDIX 3: TORCH PIN - OUT DIAGRAMS ...................................................................... A-3
APPENDIX 4: TORCH CONNECTION DIAGRAMS ............................................................... A-4
APPENDIX 5: SYSTEM SCHEMATIC, 400V UNITS .............................................................. A-6
APPENDIX 6: Publication History ........................................................................................... A-8
GLOBAL CUSTOMER SERVICE CONTACT INFORMATION ......................... Inside Rear Cover
This Page Intentionally Blank.
TABLE OF CONTENTS
SECTION 1:
!
GENERAL INFORMATION

1.01 Notes, Cautions and Warnings

Throughout this manual, notes, cautions, and warnings are used to highlight important information. These highlights are categorized as follows:
NOTE
An operation, procedure, or background information which requires additional emphasis or is helpful in efficient operation of the system.
CAUTION
A procedure which, if not properly followed, may cause damage to the equipment.
WARNING
A procedure which, if not properly followed, may cause injury to the operator or others in the operat­ing area.

1.02 Important Safety Precautions

CUTMASTER 35mm, 40mm
• The kinds of fumes and gases from the plasma arc depend on the kind of metal being used, coatings on the metal, and the different processes. You must be very careful when cutting or welding any metals which may contain one or more of the following:
Antimony Chromium Mercury
Arsenic Cobalt Nickel Barium Copper Selenium Beryllium Lead Silver Cadmium Manganese Vanadium
• Always read the Material Safety Data Sheets (MSDS) that should be supplied with the material you are using. These MSDSs will give you the information regarding the kind and amount of fumes and gases that may be dangerous to your health.
• For information on how to test for fumes and gases in your workplace, refer to item 1 in Subsection 1.03, Publications in this manual.
• Use special equipment, such as water or down draft cutting tables, to capture fumes and gases.
• Do not use the plasma torch in an area where combustible or explosive gases or materials are located.
• Phosgene, a toxic gas, is generated from the vapors of chlo rinated solvents and cleansers. Remove all sources of these vapors.
• This product, when used for welding or cutting, produces fumes or gases which contain chemicals known to the State of California to cause birth defects and, in some cases, cancer. (California Health & Safety Code Sec. 25249.5 et seq.)
-
WARNINGS
OPERATION AND MAINTENANCE OF PLASMA ARC EQUIPMENT CAN BE DANGEROUS AND HAZARDOUS TO YOUR HEALTH.
Plasma arc cutting produces intense electric and magnetic emissions that may interfere with the proper function of cardiac pacemakers, hearing aids, or other electronic health equipment. Persons who work near plasma arc cutting applications should consult their medical health professional and the manufacturer of the health equipment to determine whether a hazard exists.
To prevent possible injury, read, understand and fol­low all warnings, safety precautions and instructions before using the equipment. Call 1-603-298-5711 or your local distributor if you have any questions.
GASES AND FUMES
Gases and fumes produced during the plasma cutting process can be dangerous and hazardous to your health.
ELECTRIC SHOCK
Electric Shock can injure or kill. The plasma arc process uses and produces high voltage electrical energy. This electric energy can cause severe or fatal shock to the operator or others in the workplace.
• Never touch any parts that are electrically “live” or “hot.”
• Wear dry gloves and clothing. Insulate yourself from the work piece or other parts of the welding circuit.
• Repair or replace all worn or damaged parts.
• Extra care must be taken when the workplace is moist or damp.
• Install and maintain equipment according to NEC code, refer to item 9 in Subsection 1.03, Publications.
• Disconnect power source before performing any service or repairs.
• Read and follow all the instructions in the Operating Manu al.
FIRE AND EXPLOSION
Fire and explosion can be caused by hot slag, sparks, or the plasma arc.
-
• Keep all fumes and gases from the breathing area. Keep your head out of the welding fume plume.
• Use an air-supplied respirator if ventilation is not adequate to remove all fumes and gases.
Manual 0-5118 1-1 GENERAL INFORMATION
• Be sure there is no combustible or flammable material in the workplace. Any material that cannot be removed must be protected.
• Ventilate all flammable or explosive vapors from the work place.
-
CUTMASTER 35mm, 40mm
GENERAL INFORMATION 1-2 Manual 0-5118
• Do not cut or weld on containers that may have held com­bustibles.
• Provide a fire watch when working in an area where fire hazards may exist.
• Hydrogen gas may be formed and trapped under aluminum workpieces when they are cut underwater or while using a water table. DO NOT cut aluminum alloys underwater or on a water table unless the hydrogen gas can be eliminated or dissipated. Trapped hydrogen gas that is ignited will cause an explosion.

1.03 Publications

Refer to the following standards or their latest revisions for more information:
1. OSHA, SAFETY AND HEALTH STANDARDS, 29CFR 1910, obtainable from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
2. ANSI Standard Z49.1, SAFETY IN WELDING AND CUTTING, obtainable from the American Welding Society, 550 N.W. LeJeune Rd, Miami, FL 33126
NOISE
Noise can cause permanent hearing loss. Plasma arc processes can cause noise levels to exceed safe limits. You must protect your ears from loud noise to prevent permanent loss of hearing.
• To protect your hearing from loud noise, wear protective ear plugs and/or ear muffs. Protect others in the workplace.
• Noise levels should be measured to be sure the decibels (sound) do not exceed safe levels.
• For information on how to test for noise, see item 1 in Sub section 1.03, Publications, in this manual.
PLASMA ARC RAYS
Plasma Arc Rays can injure your eyes and burn your skin. The plasma arc process produces very bright ultra violet and infra red light. These arc rays will damage your eyes and burn your skin if you are not properly protected.
• To protect your eyes, always wear a welding helmet or shield. Also always wear safety glasses with side shields, goggles or other protective eye wear.
• Wear welding gloves and suitable clothing to protect your skin from the arc rays and sparks.
• Keep helmet and safety glasses in good condition. Replace lenses when cracked, chipped or dirty.
• Protect others in the work area from the arc rays. Use protec tive booths, screens or shields.
• Use the shade of lens as suggested in the following per ANSI/ASC Z49.1:
Minimum Protective Suggested Arc Current Shade No. Shade No.
Less Than 300* 8 9
300 - 400* 9 12
400 - 800* 10 14
* These values apply where the actual arc is clearly seen. Experience has shown that lighter filters may be used when the arc is hidden by the workpiece.
3. NIOSH, SAFETY AND HEALTH IN ARC WELDING AND GAS WELDING AND CUTTING, obtainable from the Superin­tendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
4. ANSI Standard Z87.1, SAFE PRACTICES FOR OCCUPATION AND EDUCATIONAL EYE AND FACE PROTECTION, obtain­able from American National Standards Institute, 1430 Broadway, New York, NY 10018
5. ANSI Standard Z41.1, STANDARD FOR MEN’S SAFETY-TOE
-
FOOTWEAR, obtainable from the American National Stan­dards Institute, 1430 Broadway, New York, NY 10018
6. ANSI Standard Z49.2,
FIRE PREVENTION IN THE USE OF
CUTTING AND WELDING PROCESSES, obtainable from
American National Standards Institute, 1430 Broadway, New York, NY 10018
7. AWS Standard A6.0,
WELDING AND CUTTING CONTAIN-
ERS WHICH HAVE HELD COMBUSTIBLES, obtainable from
American Welding Society, 550 N.W. LeJeune Rd, Miami, FL 33126
8. NFPA Standard 51,
OXYGEN-FUEL GAS SYSTEMS FOR WELDING, CUTTING AND ALLIED PROCESSES, obtainable from the National Fire Protection Association, Batterymarch Park, Quincy, MA 02269
9. NFPA Standard 70, NATIONAL ELECTRICAL CODE, obtain
-
able from the National Fire Protection Association, Bat­terymarch Park, Quincy, MA 02269
10. NFPA Standard 51B, CUTTING AND WELDING PROCESSES, obtainable from the National Fire Protection Association, Batterymarch Park, Quincy, MA 02269
11. CGA Pamphlet P-1, SAFE HANDLING OF COMPRESSED GASES IN CYLINDERS, obtainable from the Compressed Gas Association, 1235 Jefferson Davis Highway, Suite 501, Arlington, VA 22202
12. CSA Standard W117.2, CODE FOR SAFETY IN WELDING AND CUTTING, obtainable from the Canadian Standards Association, Standards Sales, 178 Rexdale Boulevard, Rexdale, Ontario, Canada M9W 1R3
-
13. NWSA booklet, WELDING SAFETY BIBLIOGRAPHY obtain able from the National Welding Supply Association, 1900
LEAD WARNING
This product contains chemicals, including lead, or otherwise pro­duces chemicals known to the State of California to cause cancer, birth defects and other reproductive harm. Wash hands after han- dling. (California Health & Safety Code § 25249.5 et seq.)
Arch Street, Philadelphia, PA 19103
-
14. American Welding Society Standard AWSF4.1, RECOM-
!
MENDED SAFE PRACTICES FOR THE PREPARATION FOR WELDING AND CUTTING OF CONTAINERS AND PIPING THAT HAVE HELD HAZARDOUS SUBSTANCES, obtainable from the American Welding Society, 550 N.W. LeJeune Rd, Miami, FL 33126
15. ANSI Standard Z88.2, PRACTICE FOR RESPIRATORY PRO TECTION, obtainable from American National Standards Institute, 1430 Broadway, New York, NY 10018

1.04 Note, Attention et Avertissement

Dans ce manuel, les mots “note,” “attention,” et “avertissement” sont utilisés pour mettre en relief des informations à caractère important. Ces mises en relief sont classifiées comme suit :
NOTE
Toute opération, procédure ou renseignement général sur lequel il importe d’insister davantage ou qui con­tribue à l’efficacité de fonctionnement du système.
ATTENTION
Toute procédure pouvant résulter l’endommagement du matériel en cas de non-respect de la procédure en question.
AVERTISSEMENT
Toute procédure pouvant provoquer des blessures de l’opérateur ou des autres personnes se trouvant dans la zone de travail en cas de non-respect de la procédure en question.

1.05 Precautions De Securite Importantes

CUTMASTER 35mm, 40mm
FUMÉE et GAZ
La fumée et les gaz produits par le procédé de jet de plasma peuvent présenter des risques et des dangers de santé.
• Eloignez toute fumée et gaz de votre zone de respiration. Gardez
-
votre tête hors de la plume de fumée provenant du chalumeau.
• Utilisez un appareil respiratoire à alimentation en air si l’aération fournie ne permet pas d’éliminer la fumée et les gaz.
• Les sortes de gaz et de fumée provenant de l’arc de plasma dépendent du genre de métal utilisé, des revêtements se trouvant sur le métal et des différents procédés. Vous devez prendre soin lorsque vous coupez ou soudez tout métal pouvant contenir un ou plusieurs des éléments suivants:
antimoine cadmium mercure argent chrome nickel arsenic cobalt plomb baryum cuivre sélénium béryllium manganèse vanadium
• Lisez toujours les fiches de données sur la sécurité des matières (sigle américain “MSDS”); celles-ci devraient être fournies avec le matériel que vous utilisez. Les MSDS contiennent des ren­seignements quant à la quantité et la nature de la fumée et des gaz pouvant poser des dangers de santé.
• Pour des informations sur la manière de tester la fumée et les gaz de votre lieu de travail, consultez l’article 1 et les documents cités à la page 5.
• Utilisez un équipement spécial tel que des tables de coupe à débit d’eau ou à courant descendant pour capter la fumée et les gaz.
• N’utilisez pas le chalumeau au jet de plasma dans une zone où se trouvent des matières ou des gaz combustibles ou explosifs.
• Le phosgène, un gaz toxique, est généré par la fumée provenant des solvants et des produits de nettoyage chlorés. Eliminez toute source de telle fumée.
• Ce produit, dans le procéder de soudage et de coupe, produit
AVERTISSEMENTS
L’OPÉRATION ET LA MAINTENANCE DU MATÉRIEL DE SOUDAGE À L’ARC AU JET DE PLASMA PEUVENT PRÉSENTER DES RISQUES ET DES DANGERS DE SANTÉ.
Coupant à l’arc au jet de plasma produit de l’énergie électrique haute tension et des émissions magné­tique qui peuvent interférer la fonction propre d’un “pacemaker” cardiaque, les appareils auditif, ou autre matériel de santé electronique. Ceux qui travail près d’une application à l’arc au jet de plasma devrait con­sulter leur membre professionel de médication et le manufacturier de matériel de santé pour déterminer s’il existe des risques de santé.
Il faut communiquer aux opérateurs et au personnel TOUS les dangers possibles. Afin d’éviter les blessures possibles, lisez, comprenez et suivez tous les avertisse­ments, toutes les précautions de sécurité et toutes les consignes avant d’utiliser le matériel. Composez le + 603-298-5711 ou votre distributeur local si vous avez des questions.
Manual 0-5118 1-3 GENERAL INFORMATION
de la fumée ou des gaz pouvant contenir des éléments reconnu dans L’état de la Californie, qui peuvent causer des défauts de naissance et le cancer. (La sécurité de santé en Californie et la code sécurité Sec. 25249.5 et seq.)
CHOC ELECTRIQUE
Les chocs électriques peuvent blesser ou même tuer. Le procédé au jet de plasma requiert et produit de l’énergie électrique haute tension. Cette énergie électrique peut produire des chocs graves, voire mor­tels, pour l’opérateur et les autres personnes sur le lieu de travail.
• Ne touchez jamais une pièce “sous tension” ou “vive”; portez des gants et des vêtements secs. Isolez-vous de la pièce de travail ou des autres parties du circuit de soudage.
• Réparez ou remplacez toute pièce usée ou endommagée.
• Prenez des soins particuliers lorsque la zone de travail est humide ou moite.
CUTMASTER 35mm, 40mm
GENERAL INFORMATION 1-4 Manual 0-5118
• Montez et maintenez le matériel conformément au Code élec­trique national des Etats-Unis. (Voir la page
• Débranchez l’alimentation électrique avant tout travail d’entretien ou de réparation.
• Lisez et respectez toutes les consignes du Manuel de con signes.
5,
article 9.)
• Utilisez la nuance de lentille qui est suggèrée dans le recom­mendation qui suivent ANSI/ASC Z49.1:
Nuance Minimum Nuance Suggerée Courant Arc Protective Numéro Numéro
Moins de 300* 8 9
-
300 - 400* 9 12
400 - 800* 10 14
INCENDIE ET EXPLOSION
Les incendies et les explosions peuvent résulter des scories chaudes, des étincelles ou de l’arc de plasma. Le procédé à l’arc de plasma produit du métal, des étincelles, des scories chaudes pouvant mettre le feu aux matières combustibles ou provoquer l’explosion de fumées inflammables.
• Soyez certain qu’aucune matière combustible ou inflammable ne se trouve sur le lieu de travail. Protégez toute telle matière qu’il est impossible de retirer de la zone de travail.
• Procurez une bonne aération de toutes les fumées inflammables ou explosives.
• Ne coupez pas et ne soudez pas les conteneurs ayant pu renfer mer des matières combustibles.
• Prévoyez une veille d’incendie lors de tout travail dans une zone présentant des dangers d’incendie.
• Le gas hydrogène peut se former ou s’accumuler sous les pièces de travail en aluminium lorsqu’elles sont coupées sous l’eau ou sur une table d’eau. NE PAS couper les alliages en aluminium sous l’eau ou sur une table d’eau à moins que le gas hydrogène peut s’échapper ou se dissiper. Le gas hydrogène accumulé explosera si enflammé.
RAYONS D’ARC DE PLASMA
Les rayons provenant de l’arc de plasma peuvent blesser vos yeux et brûler votre peau. Le procédé à l’arc de plasma produit une lumière infra-rouge et des rayons ultra-violets très forts. Ces rayons d’arc nuiront à vos yeux et brûleront votre peau si vous ne vous protégez pas correctement.
• Pour protéger vos yeux, portez toujours un casque ou un écran de soudeur. Portez toujours des lunettes de sécurité munies de parois latérales ou des lunettes de protection ou une autre sorte de protection oculaire.
• Portez des gants de soudeur et un vêtement protecteur approprié pour protéger votre peau contre les étincelles et les rayons de l’arc.
• Maintenez votre casque et vos lunettes de protection en bon état. Remplacez toute lentille sale ou comportant fissure ou rognure.
• Protégez les autres personnes se trouvant sur la zone de travail contre les rayons de l’arc en fournissant des cabines ou des écrans de protection.
* Ces valeurs s’appliquent ou l’arc actuel est observé clairement. L’experience a démontrer que les filtres moins foncés peuvent être utilisés quand l’arc est caché par moiceau de travail.
BRUIT
Le bruit peut provoquer une perte permanente de l’ouïe. Les procé­dés de soudage à l’arc de plasma peuvent provoquer des niveaux sonores supérieurs aux limites normalement acceptables. Vous dú4ez vous protéger les oreilles contre les bruits forts afin d’éviter une perte permanente de l’ouïe.
-
• Pour protéger votre ouïe contre les bruits forts, portez des tampons protecteurs et/ou des protections auriculaires. Pro­tégez également les autres personnes se trouvant sur le lieu de travail.
• Il faut mesurer les niveaux sonores afin d’assurer que les décibels (le bruit) ne dépassent pas les niveaux sûrs.
• Pour des renseignements sur la manière de tester le bruit, consultez l’article 1, page 5.
PLOMB AVERTISSEMENT
Ce produit contient des produits chimiques, comme le plomb, ou engendre des produits chimiques, reconnus par l’état de Californie comme pouvant être à l’origine de cancer, de mal­formations fœtales ou d’autres problèmes de reproduction.
Il f aut se laver l e s mai n s aprè s toute m anipul a tion.
(Code de Californie de la sécurité et santé, paragraphe 25249.5 et suivants)

1.06 Documents De Reference

Consultez les normes suivantes ou les révisions les plus récentes ayant été faites à celles-ci pour de plus amples renseignements :
1. OSHA, NORMES DE SÉCURITÉ DU TRAVAIL ET DE PROTECTION DE LA SANTÉ, 29CFR 1910, disponible auprès du Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
2. Norme ANSI Z49.1, LA SÉCURITÉ DES OPÉRATIONS DE COUPE ET DE SOUDAGE, disponible auprès de la Société Américaine de Soudage (American Welding Society), 550 N.W. LeJeune Rd., Miami, FL 33126
3. NIOSH, LA SÉCURITÉ ET LA SANTÉ LORS DES OPÉRATIONS DE COUPE ET DE SOUDAGE À L’ARC ET AU GAZ, disponible auprès du Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402
4. Norme ANSI Z87.1, PRATIQUES SURES POUR LA PROTECTION DES YEUX ET DU VISAGE AU TRAVAIL ET DANS LES ECOLES, disponible de l’Institut Américain des Normes Nationales (Ameri­can National Standards Institute), 1430 Broadway, New York, NY 10018
CUTMASTER 35mm, 40mm
5. Norme ANSI Z41.1, NORMES POUR LES CHAUSSURES PRO TECTRICES, disponible auprès de l’American National Standards Institute, 1430 Broadway, New York, NY 10018
6. Norme ANSI Z49.2, PRÉVENTION DES INCENDIES LORS DE L’EMPLOI DE PROCÉDÉS DE COUPE ET DE SOUDAGE, dis­ponible auprès de l’American National Standards Institute, 1430 Broadway, New York, NY 10018
7. Norme A6.0 de l’Association Américaine du Soudage (AWS), LE SOUDAGE ET LA COUPE DE CONTENEURS AYANT RENFERMÉ DES PRODUITS COMBUSTIBLES, disponible auprès de la Ameri­can Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126
8. Norme 51 de l’Association Américaine pour la Protection contre les Incendies (NFPA), LES SYSTEMES À GAZ AVEC ALIMENTA­TION EN OXYGENE POUR LE SOUDAGE, LA COUPE ET LES PROCÉDÉS ASSOCIÉS, disponible auprès de la National Fire Protection Association, Batterymarch Park, Quincy, MA 02269
9. Norme 70 de la NFPA, CODE ELECTRIQUE NATIONAL, disponible auprès de la National Fire Protection Association, Batterymarch Park, Quincy, MA 02269
10. Norme 51B de la NFPA, LES PROCÉDÉS DE COUPE ET DE SOUD AGE, disponible auprès de la National Fire Protection Association, Batterymarch Park, Quincy, MA 02269
11. Brochure GCA P-1, LA MANIPULATION SANS RISQUE DES GAZ COMPRIMÉS EN CYLINDRES, disponible auprès de l’Association des Gaz Comprimés (Compressed Gas Association), 1235 Jef­ferson Davis Highway, Suite 501, Arlington, VA 22202
-
-
12. Norme CSA W117.2, CODE DE SÉCURITÉ POUR LE SOUDAGE ET LA COUPE, disponible auprès de l’Association des Normes Canadiennes, Standards Sales, 178 Rexdale Boulevard, Rexdale, Ontario, Canada, M9W 1R3
13. Livret NWSA, BIBLIOGRAPHIE SUR LA SÉCURITÉ DU SOUD AGE, disponible auprès de l’Association Nationale de Fournitures de Soudage (National Welding Supply Association), 1900 Arch Street, Philadelphia, PA 19103
14. Norme AWSF4.1 de l’Association Américaine de Soudage, RECOMMANDATIONS DE PRATIQUES SURES POUR LA PRÉPA­RATION À LA COUPE ET AU SOUDAGE DE CONTENEURS ET TUYAUX AYANT RENFERMÉ DES PRODUITS DANGEREUX , disponible auprès de la American Welding Society, 550 N.W. LeJeune Rd., Miami, FL 33126
15. Norme ANSI Z88.2, PRATIQUES DE PROTECTION RESPIRA TOIRE, disponible auprès de l’American National Standards Institute, 1430 Broadway, New York, NY 10018
-
-
Manual 0-5118 1-5 GENERAL INFORMATION
CUTMASTER 35mm, 40mm
GENERAL INFORMATION 1-6 Manual 0-5118

1.07 Declaration of Conformity

Manufacturer: Thermal Dynamics Corporation Address: 82 Benning Street West Lebanon, New Hampshire 03784 USA
The equipment described in this manual conforms to all applicable aspects and regulations of the ‘Low Voltage Directive’ (European Council Direc­tive 73/23/EEC as amended by Council Directive 93/68/EEC) and to the National legislation for the enforcement of this Directive.
The equipment described in this manual conforms to all applicable aspects and regulations of the "EMC Directive" (European Council Directive 89/336/EEC) and to the National legislation for the enforcement of this Directive.
Serial numbers are unique with each individual piece of equipment and details description, parts used to manufacture a unit and date of manu­facture.
National Standard and Technical Specifications
The product is designed and manufactured to a number of standards and technical requirements. Among them are:
* CSA (Canadian Standards Association) standard C22.2 number 60 for Arc welding equipment.
* UL (Underwriters Laboratory) rating 94VO flammability testing for all printed-circuit boards used.
* CENELEC EN50199 EMC Product Standard for Arc Welding Equipment.
* ISO/IEC 60974-1 (BS 638-PT10) (EN 60 974-1) (EN50192) (EN50078) applicable to plasma cutting equipment and associated accessories.
* For environments with increased hazard of electrical shock, Power Supplies bearing the 'S' mark conform to EN50192 when used in conjunction
with hand torches with exposed cutting tips, if equipped with properly installed standoff guides.
* Extensive product design verification is conducted at the manufacturing facility as part of the routine design and manufacturing process. This is to
ensure the product is safe, when used according to instructions in this manual and related industry standards, and performs as specified. Rigor­ous testing is incorporated into the manufacturing process to ensure the manufactured product meets or exceeds all design specifications.
Thermal Dynamics has been manufacturing products for more than 30 years, and will continue to achieve excellence in our area of manufacture.
Manufacturers responsible representative: Steve Ward
Thermadyne Europe Europa Building Chorley N Industrial Park Chorley, Lancashire, England PR6 7BX
Operations Director
CUTMASTER 35mm, 40mm

1.08 Statement of Warranty

LIMITED WARRANTY: Subject to the terms and conditions established below, Thermal Dynamics® Corporation warrants to the original retail
purchaser that new Thermal Dynamics CUTMASTER™ 1Series plasma cutting systems sold after the effective date of this warranty are free of defects in material and workmanship. Should any failure to conform to this warranty appear within the applicable period stated below, Thermal Dynamics Corporation shall, upon notification thereof and substantiation that the product has been stored operated and maintained in accordance with Thermal Dynamics’ specifications, instructions, recommendations and recognized industry practice, correct such defects by suitable repair or replacement.
This warranty is exclusive and in lieu of any warranty of merchantability or fitness for a particular purpose.
Thermal Dynamics will repair or replace, at its discretion, any warranted parts or components that fail due to defects in material or workmanship within the time periods set out below. Thermal Dynamics Corporation must be notified within 30 days of any failure, at which time Thermal Dynamics Corporation will provide instructions on the warranty procedures to be implemented.
Thermal Dynamics Corporation will honor warranty claims submitted within the warranty periods listed below. All warranty periods begin on the date of sale of the product to the original retail customer or 1 year after sale to an authorized Thermal Dynamics Distributor.
LIMITED WARRANTY PERIOD
Product
CUTMASTER™ 10mm
Power Supply Components
(Parts and Labor)
3 Years 1 Year
Torch and Leads
(Parts and Labor)
CUTMASTER™12mm 3 Years 1 Year
CUTMASTER™ 20mm 3 Years 1 Year
CUTMASTER™ 25mm 3 Years 1 Year
CUTMASTER™ 35mm 3 Years 1 Year
CUTMASTER™ 40mm
This warranty does not apply to:
1. Consumable Parts, such as tips, electrodes, shield cups, o - rings, starter cartridges, gas distributors, fuses, filters.
2. Equipment that has been modified by an unauthorized party, improperly installed, improperly operated or misused based upon
ndustry standards.
In the event of a claim under this warranty, the remedies shall be, at the discretion of Thermal Dynamics Corporation:
1. Repair of the defective product.
2. Replacement of the defective product.
3. Reimbursement of reasonable costs of repair when authorized in advance by Thermal Dynamics.
4. Payment of credit up to the purchase price less reasonable depreciation based on actual use.
These remedies may be authorized by Thermal Dynamics and are FOB West Lebanon, NH or an authorized Thermadyne service station. Product returned for service is at the owner’s expense and no reimbursement of travel or transportation is authorized.
3 Years 1 Year
LIMITATION OF LIABILITY: Thermal Dynamics Corporation shall not under any circumstances be liable for special or consequential damages such as, but not limited to, damage or loss of purchased or replacement goods or claims of customer of distributors (hereinafter “Purchaser”) for service interruption. The remedies of the Purchaser set forth herein are exclusive and the liability of Thermal Dynamics with respect to any contract, or anything done in connection therewith such as the performance or breach thereof, or from the manufacture, sale, delivery, resale, or use of the goods covered by or furnished by Thermal Dynamics whether arising out of contract, negligence, strict tort, or under any warranty, or otherwise, shall not, except as expressly provided herein, exceed the price of the goods upon which liability is based.
This warranty becomes invalid if replacement parts or accessories are used which may impair the safety or performance of any Thermal Dynamics product.
This warranty is invalid if the Thermal Dynamics product is sold by non - authorized persons.
Effective September 4, 2007
Manual 0-5118 1-7 GENERAL INFORMATION
CUTMASTER 35mm, 40mm
This Page Intentionally Blank
GENERAL INFORMATION 1-8 Manual 0-5118
CUTMASTER 35mm, 40mm
!
SECTION 2 SYSTEM:
INTRODUCTION

2.01 How To Use This Manual

This Owner’s Manual applies to just
specication or part numbers listed on page i. To ensure safe operation, read the entire manual, including the chapter on safety instructions and warnings. Throughout this manual, the words WARNING, CAUTION, and NOTE may appear. Pay particular attention to the information provided under these headings. These special annotations are easily recognized as
follows:
WARNING
A WARNING gives information regarding possible personal injury.
CAUTION
A CAUTION refers to possible equipment damage.
NOTE
A NOTE offers helpful information concerning certain operating procedures.
Additional copies of this manual may be purchased by contacting Thermadyne at the address and phone number in your area listed in the inside back cover of this manual. Include the Owner’s Manual number and equipment identication numbers. Electronic copies of this manual can also be downloaded at no charge in Acrobat PDF format by going to the Thermal Dynamics web site listed below and clicking on Thermal Dynamics and then on the Literature link: http://www.thermal-dynamics.com
2.02 Equipment Identification
The unit’s identication number (specication or part number), model, and serial number usually appear on a data tag attached to the rear panel. Equipment which does not have a data tag such as torch and cable assemblies are identied only by the specication or part number printed on loosely attached card or the shipping container. Record these numbers on the bottom of page 1 for future reference.

2.03 Receipt Of Equipment

When you receive the equipment, check it against the invoice to make sure it is complete and inspect the equipment for possible damage due to shipping. If there is any damage, notify the carrier immediately to le a claim. Furnish complete information concerning damage claims or shipping errors to the location in your area listed in the inside back cover of this manual. Include all equipment identication numbers as described above along with a full description of the parts in error. Move the equipment to the installation site before un-crating the unit. Use care to avoid damaging the equipment when using bars, hammers, etc., to un-crate the unit.
Manual 0-5118 2-1 INTRODUCTION
CUTMASTER 35mm, 40mm
INTRODUCTION 2-2 Manual 0-5118
CutMaster 35 Power Supply Specifications
380 VAC (360 - 440 VAC), Three Phase, 50/60 Hz 400 VAC (360 - 440 VAC), Three Phase, 50/60 Hz
Input Power Cable
Power Supply includes input cable.
Output Current
30 - 100 Amps, Continuously Adjustable
Power Supply Gas
Filtering Ability
Particulates to 5 Microns
CutMaster 35 Power Supply Duty Cycle *
Ambient Temperature
Duty Cycle Ratings @ 40° C (104° F)
Opperating Range 0° - 50° C
All Units
Duty Cycle
60% 80%
100%
Current
100 80 70
IEC
IEC IEC
DC Voltage
120 120 116
* NOTE: The duty cycle will be reduced if the primary input power (AC) is low or the output voltage (DC) is higher than shown in this chart.
CutMaster 40 Power Supply Specifications
380 VAC (360 - 440 VAC), Three Phase, 50/60 Hz 400 VAC (360 - 440 VAC), Three Phase, 50/60 Hz
Input Power Cable
Power Supply includes input cable.
Output Current
30 - 120 Amps, Continuously Adjustable
Power Supply Gas
Filtering Ability
Particulates to 5 Microns
CutMaster 35 Power Supply Duty Cycle *
Ambient Temperature
Duty Cycle Ratings @ 40° C (104° F)
Opperating Range 0° - 50° C
All Units
Duty Cycle
N/A 80% 100%
Current
120 100
IEC IEC IEC
DC Voltage
128 124 * NOTE: The duty cycle will be reduced if the primary input power (AC) is low or the output voltage (DC) is higher than shown in this chart. **Using a 208/230 VAC input will reduce this duty cycle to 50%
2.04 Power Supply Specifications
IEC Rating is determined as specified by the International Electro-Technical Commission. These specifications include calculating an output voltage based upon power supply rated current. To facilitate comparison between power supplies, all manufacturers use this output voltage to determine duty cycle.
NOTE
CUTMASTER 35mm, 40mm
30.5"
774.7 m
63 lb / 28.6 kg
10.75"
273 mm
16.375"
416 mm
Art # A-08358
6"
150 mm
24"
0.6 m
6"
150 mm
6"
150 mm
Art # A-07925
Power Supply Dimensions & Weight Ventilation Clearance Requirements
2.05 Input Wiring Specifications
CutMaster 35mm Power Supply Input Cable Wiring Requirements
Input voltage Freq Power Input Suggested Sizes
Flexible Cord
Volts Hz kVA I max I eff Fuse (amps)
(AWG)
380 50 18.4 28 25 32 10
3 Phase
400 50 18.7 27 24 32 10
Line Voltages with Suggested Circuit Protection and Wire Sizes
Based on National Electric Code and Canadian Electric Code
CutMaster 40mm Power Supply Input Cable Wiring Requirements
Input voltage Freq Power Input Suggested Sizes
Flexible Cord
3 Phase
Volts Hz kVA I max I eff Fuse (amps)
380 50 23 35 32 40 8
(AWG)
400 50 23.6 34 31 40 8
Line Voltages with Suggested Circuit Protection and Wire Sizes
Based on National Electric Code and Canadian Electric Code
NOTES
Refer to Local and National Codes or local authority having jurisdiction for proper wiring requirements.
The suggested sizes are based on flexible power cable with power plug installations. For hard-wired installa­tions refer to local or national codes.
I1max is taken at TDC rated minimum duty cycle.
I1eff is taken at TDC 100% rated duty cycle.
Manual 0-5118 2-3 INTRODUCTION
CUTMASTER 35mm, 40mm
Handle and Leads Wrap
Torch Leads Receptacle
Control Panel
Art # A-08359
Work Cable and Clamp
Art # A-08547
Input Power Cord
Port for Optional Automation Interface Cable
Gas Inlet Port
Filter Assembly

2.06 Power Supply Features

INTRODUCTION 2-4 Manual 0-5118
CUTMASTER 35mm, 40mm
10.125" (257 mm)
3.75"
(95 mm)
1.17" (29 mm)
Art # A-03322_AB
Art # A-02998
1.75" /
44.5 mm
1.375" / 35 mm
15.875" / 403 mm
0.625" / 16 mm
4.95" / 126 mm
1.175" / 30 mm
9.285" / 236 mm
SECTION 2 TORCH:
INTRODUCTION

2T.01 Scope of Manual

This manual contains descriptions, operating instructions and maintenance procedures for the 1Torch Models SL100/Manual and SL100/ Mechanized Plasma Cutting Torches. Service of this equipment is restricted to properly trained personnel; unqualied personnel are strictly cautioned against attempting repairs or adjust­ments not covered in this manual, at the risk of voiding the Warranty. Read this manual thoroughly. A complete un­derstanding of the characteristics and capabili­ties of this equipment will assure the dependable operation for which it was designed.

2T.02 General Description

Plasma torches are similar in design to the auto­motive spark plug. They consist of negative and positive sections separated by a center insula­tor. Inside the torch, the pilot arc starts in the gap between the negatively charged electrode and the positively charged tip. Once the pilot arc has ionized the plasma gas, the superheated column of gas ows through the small orice in the torch tip, which is focused on the metal to be cut. A single torch lead provides gas from a single source to be used as both the plasma and sec­ondary gas. The air ow is divided inside the torch head. Single - gas operation provides a smaller sized torch and inexpensive operation.
NOTE
Refer to Section 2T.05, Introduction To Plasma, for a more detailed description of plasma torch operation.
Refer to the Appendix Pages for additional specifications as related to the Power Supply used.
2T.03 Specifications
A. Torch Configurations
1. Hand/Manual Torch, Models
The hand torch head is at 75° to the torch han­dle. The hand torches include a torch handle and torch trigger assembly.
2. Mechanized Torch, Model
The standard machine torch has a positioning tube with rack & pinch block assembly.
B. Torch Leads Lengths
Hand Torches are available as follows:
• 20 ft / 6.1 m, with ATC connectors
• 50 ft / 15.2 m, with ATC connectors
Machine Torches
• 5 foot / 1.5 m, with ATC connectors
• 10 foot / 3.05 m, with ATC connectors
• 25 foot / 7.6 m, with ATC connectors
• 50 foot / 15.2 m, with ATC connectors
C. Torch Parts
Starter Cartridge, Electrode, Tip, Shield Cup
are available as follows:
D. Parts - In - Place (PIP)
Torch Head has built - in switch
Manual 0-5118 2T-1 INTRODUCTION
12 vdc circuit rating
E. Type Cooling
Combination of ambient air and gas stream through torch.
CUTMASTER 35mm, 40mm
INTRODUCTION 2T-2 Manual 0-5118
!
A-00002
Workpiece
Power
Supply
+
_
C
B
A
F. Torch Ratings
Manual Torch Ratings
CUTMASTER 35mm
Ambient Temperature
Duty Cycle 100% @ 100 Amps @ 400 scfh
Maximum Current 100 Amps
Voltage (V
Arc Striking Voltage 7kV
Ambient Temperature
Duty Cycle 100% @ 120 Amps @ 400 scfh
Maximum Current 120 Amps
Voltage (V
Arc Striking Voltage 7kV
) 500V
peak
Manual Torch Ratings
CUTMASTER 40mm
) 500V
peak
104° F
40° C
104° F
40° C
G. Gas Requirements

2T.04 Options And Accessories

For options and accessories, see section 6.

2T.05 Introduction to Plasma

A. Plasma Gas Flow
Plasma is a gas which has been heated to an ex­tremely high temperature and ionized so that it becomes electrically conductive. The plasma arc cutting and gouging processes use this plasma to transfer an electrical arc to the workpiece. The metal to be cut or removed is melted by the heat of the arc and then blown away.
While the goal of plasma arc cutting is separation of the material, plasma arc gouging is used to re­move metals to a controlled depth and width.
In a Plasma Cutting Torch a cool gas enters Zone B, where a pilot arc between the electrode and the torch tip heats and ionizes the gas. The main cut­ting arc then transfers to the workpiece through the column of plasma gas in Zone C.
Manual and Mechanized Torch Gas Specifications
Gas (Plasma and Secondary) Compressed Air
Operating Pressure
Refer to NOTE
Maximum Input Pressure 125 psi / 8.6 bar
Gas Flow (Cutting and Gouging)
60 - 95 psi
4.1 - 6.5 bar
300 - 500 scfh
142 - 235 lpm
WARNING
This torch is not to be used with oxygen (O2).
NOTE
Operating pressure varies with torch model, operating amperage, and torch leads length. Refer to gas pressure settings charts for each model.
H. Direct Contact Hazard
For standoff tip the recommended standoff is 3/16 inches / 4.7 mm.
Typical Torch Head Detail
By forcing the plasma gas and electric arc through a small orifice, the torch delivers a high concentra­tion of heat to a small area. The stiff, constricted plasma arc is shown in Zone C. Direct current (DC) straight polarity is used for plasma cutting, as shown in the illustration.
Zone A channels a secondary gas that cools the torch. This gas also assists the high velocity plasma gas in blowing the molten metal out of the cut al­lowing for a fast, slag - free cut.
CUTMASTER 35mm, 40mm
A-02997
Torch Trigger
PIP Switch
Shield Cup
To Control
Cable Wiring
Torch Switch
PIP Switch
Shield Cup
To ATC
CNC Start
PIP Switch
Shield Cup
PIP Switch
Shield Cup
Remote Pendant
Automation Torch
To ATC
To ATC
Art # A-08168
B. Gas Distribution
The single gas used is internally split into plasma and secondary gases.
The plasma gas flows into the torch through the negative lead, through the starter cartridge, around the electrode, and out through the tip orifice.
The secondary gas flows down around the outside of the torch starter cartridge, and out between the tip and shield cup around the plasma arc.
C. Pilot Arc
When the torch is started a pilot arc is established between the electrode and cutting tip. This pilot arc creates a path for the main arc to transfer to the work.
D. Main Cutting Arc
DC power is also used for the main cutting arc. The negative output is connected to the torch elec­trode through the torch lead. The positive output is connected to the workpiece via the work cable and to the torch through a pilot wire.
E. Parts - In - Place (PIP)
The torch includes a 'Parts - In - Place' (PIP) cir­cuit. When the shield cup is properly installed, it closes a switch. The torch will not operate if this switch is open.
Parts - In - Place Circuit Diagram for Hand Torch
Manual 0-5118 2T-3 INTRODUCTION
Parts - In - Place Circuit Diagram for Machine
Torch
CUTMASTER 35mm, 40mm
This Page Intentionally Blank
INTRODUCTION 2T-4 Manual 0-5118
CUTMASTER 35mm, 40mm
!
SECTION 3 SYSTEM:
INSTALLATION

3.01 Unpacking

1. Use the packing lists to identify and account for each item.
2. Inspect each item for possible shipping damage. If damage is evident, contact your distribu­tor and / or shipping company before proceeding with the installation.
3. Record Power Supply and Torch model and serial numbers, purchase date and vendor name, in the information block at the front of this manual.

3.02 Lifting Options

The Power Supply includes a handle for hand lifting only. Be sure unit is lifted and transported safely and securely.
WARNING
Do not touch live electrical parts.
Disconnect input power cord before moving unit.
FALLING EQUIPMENT can cause serious personal injury and can damage equipment.
HANDLE is not for mechanical lifting.
• Only persons of adequate physical strength should lift the unit.
• Lift unit by the handles, using two hands. Do not use straps for lifting.
• Use optional cart or similar device of adequate capacity to move unit.
• Place unit on a proper skid and secure in place before transporting with a fork lift or other ve hicle.
-
Manual 0-5118 3-1 INSTALLATION
CUTMASTER 35mm, 40mm
INSTALLATION 3-2 Manual 0-5118
Art # A-08548
Input Power Cable Connections
Three-Phase (3ø)
GND
L1
L2
L3
L4

3.03 Primary Input Power Connections

CAUTION
Check your power source for correct voltage before plugging in or connecting the unit. The primary power source, fuse, and any extension cords used must conform to local electrical code and the recommended circuit protection and wiring requirements as specified in Section 2.
The following illustration and directions are for wiring three phase input power.
Three Phase Input Power Wiring
A. Connections to Three Phase Input Power
WARNING
Disconnect input power from the power supply and input cable before attempting this procedure.
These instructions are for replacing the input power and or cable for 400 VAC Power Supply to Three - Phase input power.
1. Remove the Power Supply cover per instructions found in section 5.
2. Disconnect the original input power cable from the main input contactor and the chassis ground connection.
3. Loosen the through - hole protector on the back panel of the power supply. Pull the original power cable out of the power supply.
4. Using a customer supplied four - conductor input power cable for the voltage desired, strip back the insulation on the individual wires.
5. Pass the cable being used through the access opening in the back panel of the power supply. Refer to Section 2 for power cable specications.
CAUTION
The primary power source and power cable must conform to local electrical code and the recommended circuit protection and wiring requirements (refer to table in Section 2).
6. Connect the wires as follows.
• Wires to L1, L2 and L3 input. It does not matter what order these wires are attached. See
previous illustration and on label in the power supply.
• Green / Yellow wire to Ground.
7. With a little slack in the wires, tighten the through - hole protector to secure the power cable.
8. Reinstall the Power Supply cover.
9. Connect the opposite end of individual wires to a customer supplied plug or main disconnect.
10. Connect the input power cable (or close the main disconnect switch) to supply power.
CUTMASTER 35mm, 40mm
Art # A-07943
Hose Clamp
Regulator/Filter Assembly
Inlet Port
Gas Supply Hose
1/4 NPT or ISO-R to 1/4” (6mm) Fitting

3.04 Gas Connections

Connecting Gas Supply to Unit
The connection is the same for compressed air or high pressure cylinders. Refer to the following two subsections if an optional air line lter is to be installed.
1. Connect the air line to the inlet port. The illustration shows typical ttings as an example.
NOTE
For a secure seal, apply thread sealant to the fitting threads, according to manufacturer's instructions. Do not use Teflon tape as a thread sealer, as small particles of the tape may break off and block the small air pas­sages in the torch.
Air Connection to Inlet Port
Installing Optional Single - Stage Air Filter
An optional lter kit is recommended for improved ltering with compressed air, to keep moisture and debris out of the torch.
1. Attach the Single - Stage Filter Hose to the Inlet Port.
2. Attach the Filter Assembly to the lter hose.
3. Connect the air line to the Filter. The illustration shows typical ttings as an example.
Manual 0-5118 3-3 INSTALLATION
CUTMASTER 35mm, 40mm
INSTALLATION 3-4 Manual 0-5118
Art # A-07944
Hose Clamp
1/4 NPT to 1/4"
(6mm) Fitting
Regulator/Filter Assembly
Inlet Port
Gas Supply Hose
NOTE
For a secure seal, apply thread sealant to the fitting threads, according to the maker's instructions. Do Not use Teflon tape as a thread sealer, as small particles of the tape may break off and block the small air passages in the torch. Connect as follows:
Optional Single - Stage Filter Installation
CUTMASTER 35mm, 40mm
Art # A-07945_AB
Regulator/Filter Assembly
Regulator Input
2-Stage Filter Inlet Port (IN)
Outlet Port (OUT)
Two Stage Filter Assembly
Gas Supply Hose
1/4 NPT to 1/4” (6mm) Fitting
Installing Optional Two - Stage Air Filter Kit
This optional two - stage air line lter is also for use on compressed air shop systems. Filter re­moves moisture and contaminants to at least 5 microns.
Connect the air supply as follows:
1. Attach the Two Stage Filter bracket to the back of the power supply per instructions supplied with the lter assembly.
NOTE
For a secure seal, apply thread sealant to the fitting threads according to manufacturer's instructions. Do Not use Teflon tape as a thread sealer as small particles of the tape may break off and block the small air passages in the torch.
2. Connect the two stage lter outlet hose to the inlet port of the Regulator / Filter Assembly.
3. Use customer - supplied ttings to connect the air line to the Filter. A 1/4 NPT to 1/4" hose barbed tting is shown as an example.
Optional Two - Stage Filter Installation
Manual 0-5118 3-5 INSTALLATION
CUTMASTER 35mm, 40mm
Using High Pressure Air Cylinders
When using high pressure air cylinders as the air supply:
1. Refer to the manufacturer’s specications for installation and maintenance procedures for high pressure regulators.
2. Examine the cylinder valves to be sure they are clean and free of oil, grease or any foreign material. Briey open each cylinder valve to blow out any dust which may be present.
3. The cylinder must be equipped with an adjustable high - pressure regulator capable of outlet pressure 100 psi (6.9 bar) and ows of at least 300 scfh (141.5 lpm). For Maximum pressures and Flows refer to the "Gas Requirements" chart in section 2T.03.
4. Connect supply hose to the cylinder.
NOTE
Pressure should be set at 100 psi (6.9 bar) at the high pressure cylinder regulator.
Supply hose must be at least 1/4 inch (6 mm) I.D.
For a secure seal, apply thread sealant to the fitting threads, according to manufacturer's instructions. Do Not use Teflon tape as a thread sealer, as small particles of the tape may break off and block the small air passages in the torch.
INSTALLATION 3-6 Manual 0-5118
1
2
Art # A-07885
SECTION 3 TORCH:
INSTALLATION
CUTMASTER 35, 40mm

3T.01 Torch Connections

If necessary, connect the torch to the Power Supply. Connect only the Thermal Dynamics model SL100 / Manual or SL100 / Mechanical Torch to this power supply. Maximum torch leads length is 100 feet / 30.5 m, including extensions.
WARNING
Disconnect primary power at the source before connecting the torch.
1. Align the ATC male connector (on the torch lead) with the female receptacle. Push the male connector into the female receptacle. The connectors should push together with a small amount of pressure.
2. Secure the connection by turning the locking nut clockwise until it clicks. DO NOT use the locking nut to pull the connection together. Do not use tools to secure the connection.
1. Put the ON / OFF switch in the
ON (up) position.
2. Put the Function Control switch in the
SET position.
3. Place a welding lter lens in front of the torch and turn on the air. Do not start
an arc!
Any oil or moisture in the air will be visible
on the lens.

3T.02 Setting Up Mechanical Torch

NOTE
An adapter is required to be installed in the power supply if converting a hand torch system to operate a machine torch.
WARNING
Disconnect primary power at the source before disassembling the torch or torch leads.
Connecting the Torch to the Power Supply
3. The system is ready for operation.
Check Air Quality
To test the quality of air:
The mechanical torch includes a positioning tube with rack and pinch block assembly.
1. Mount the torch assembly on the cutting table.
2. To obtain a clean vertical cut, use a square to align the torch perpendicular to the surface of the workpiece.
Manual 0-5118 3T-1 INSTALLATION
CUTMASTER 35mm, 40mm
A-02585
Workpiece
Square
Pinch Block Assembly
Mechanical Torch Set - Up
3. The proper torch parts (shield cup, tip, start cartridge, and electrode) must be installed for the type of operation. Refer to Section 4T.07, Torch Parts Selection for details.
INSTALLATION 3T-2 Manual 0-5118
SECTION 4 SYSTEM:
+
A
+
PSI BAR
MAX MAX
MIN MIN
!
1 2
3
4
5
6
7
8
9
Art# A-07886
MIN
MAX
10
PSI BAR
MAX MAX
MIN MIN
80
75
70
65
5.5
85 5.9
90 6.3
5.2
4.8
4.5
Art # A-08170
OPERATION

4.01 Front Panel Controls / Features

See Illustration for numbering Identification
1. Output Current Control
Sets the desired output current. Output settings up to 60 Amps may be used for drag cutting (with the torch tip contacting the workpiece) or higher for standoff cutting.
2. Function Control
Function Control Knob, Used to select between the different operating modes.
CUTMASTER 35mm, 40mm
SET Used to purge the air through the unit and torch and leads and to adjust gas pressure.
RUN Used for general cutting operations
RAPID AUTO RESTART Allows for faster restarting of the Pilot Arc for uninterrupted cutting.
LATCH Used for longer hand held cuts. Once a cutting arc is established, the torch switch can be released. The cutting arc will re­main on until the torch is lifted away from the work piece, the torch leaves the edge of the work piece the torch switch is activated again or if one of the system interlocks is activated.
3. On Off Power Switch
ON / OFF Switch controls input power to the power supply. Up is ON, down is OFF.
4. Air/Gas Pressure Control
The Pressure "SET" mode to adjust the air/gas pressure. Pull the knob out to adjust and push in to lock.
Control is used in the
6. Temp Indicator
Indicator is normally OFF. Indicator is ON when internal temperature exceeds normal limits. Let the unit cool before continuing operation.
7. Gas Indicator
Indicator is ON when minimum input gas pres­sure for power supply operation is present. Mini­mum pressure for power supply operation is not sufficient for torch operation.
8. DC Indicator
Indicator is ON when DC output circuit is ac­tive.
9. !Fault Error Indicator
Indicator is ON when Fault circuit is active. See section 5 for explanations of fault lights.
10. Pressure Indicators
5. AC Indicator
Steady light indicates power supply is ready
for operation. Blinking light indicates unit is in protective interlock mode. Shut unit off, shut off or disconnect input power, correct the fault, and restart the unit. Refer to Section 5 for details.
The Indicators will illuminate according to the pressure set by the Pressure Con­trol Knob (number 4).
Manual 0-5118 4-1 OPERATION
CUTMASTER 35mm, 40mm
OPERATION 4-2 Manual 0-5118
Art # A-04509
A
+
PSI BAR
MAX MAX
MIN MIN
!
1
2
Art# A-07946
MIN
MAX

4.02 Preparations for Operation

Power On
At the start of each operating session:
WARNING
Disconnect primary power at the source before assembling or disassembling power supply, torch parts, or torch and leads as­semblies.
Torch Parts Selection
Check the torch for proper assembly and appropri­ate torch parts. The torch parts must correspond with the type of operation, and with the amperage output of this Power Supply (120 amps maximum). Refer to Section 4T.07 and following for torch parts selection.
Torch Connection
Check that the torch is properly connected. Only Thermal Dynamics model SL100 / Manual or SL100 / Mechanical Torches may be connected to this Power Supply. See Section 3T of this manual.
Place the Power Supply ON / OFF switch to the ON (up) position. AC indicator turns on.
Gas indicator turns on if there is sufficient gas pressure for power supply operation and the cool­ing fans turn on.
NOTE
Minimum pressure for power supply operation is lower than minimum for torch operation.
The cooling fans will turn on as soon as the unit is turned on. After the unit is idle for ten (10) minutes the fans will turn off. The fans will come back on as soon as the torch switch (Start Signal) is activated or if the unit is turned off, then turned on again. If an over temperature condition occurs, the fans will continue to run while the condition exists and for a ten (10) minute period once the condition is cleared.
Set Operating Pressure
1. Place the Power Supply Function Control
knob to the SET position. Gas will ow.
Check Primary Input Power Source
1. Check the power source for proper input voltage. Make sure the input power source meets the power requirements for the unit per Section 2, Specications.
2. Connect the input power cable (or close the main disconnect switch) to supply power to the system.
Air Source
Ensure source meets requirements (refer to Section
2). Check connections and turn air supply on.
Connect Work Cable
Clamp the work cable to the workpiece or cutting table. The area must be free from oil, paint and rust. Connect only to the main part of the work­piece; do not connect to the part to be cut off.
2. For Standoff cutting, adjust gas pressure from 70 - 85 psi / 4.8 - 5.9 bar (LED's in center of control panel). Refer to the Standoff chart for pressure setting details.
CUTMASTER 35mm, 40mm
STANDOFF
Gas Pressure Settings
SL100
(Mechanized Torch)
Leads
Length
Up to 25'
(7.6 m)
Each
Additional
25' (7.6 m)
SL100
(Hand Torch)
75 psi
5.2 bar
Ad 5 psi
0.4 bar
SL100 SV
(Automation Torch)
75 psi
5.5bar
Add 5 psi
0.4 bar
3. For Drag cutting, adjust gas pressure from 75 - 95 psi / 5.2 - 6.5 bar (LED's in center of control panel). Refer to the Drag Cutting chart for pressure setting details.
DRAG (60 amps or less)
Gas Preassure Settings
SL100
Leads Length
Up to 25'
(7.6 m)
Each
Additional
25' (7.6 m)
(Hand Torch)
80 psi
5.5 bar
Ad 5 psi
0.4 bar
Select Current Output Level
1. Place the Function Control Knob in one of the three operating positions available:
Cutting Operation
When the torch leaves the workpiece during cut­ting operations with the Function Control Knob in the RUN position, there is a brief delay in restart­ing the pilot arc. With the knob in the RAPID AUTO RESTART position, when the torch leaves the workpiece the pilot arc restarts instantly, and the cutting arc restarts instantly when the pilot arc contacts the workpiece. (Use the 'Rapid Auto Restart' position when cutting expanded metal or gratings, or in gouging or trimming operations when an uninterrupted restart is desired). And with the knob in the LATCH position the main cutting arc will be maintained after the torch switch is released.
Typical Cutting Speeds
Cutting speeds vary according to torch output amperage, the type of material being cut, and op­erator skill. Refer to Section 4T.08 and following for greater details.
Output current setting or cutting speeds may be reduced to allow slower cutting when following a line, or using a template or cutting guide while still producing cuts of excellent quality.
Postflow
Release the trigger to stop the cutting arc. Gas continues to flow for approximately 20 seconds. During post - flow, if the user moves the trigger release to the rear and presses the trigger, the pilot arc starts. The main arc transfers to the workpiece if the torch tip is within transfer distance to the workpiece.
RUN ,
RAPID AUTO RESTART
or LATCH . Gas ow stops.
2. Set the output current to desired amper­age with the Output Current Control Knob.
Shutdown
Turn the ON / OFF switch to OFF (down). All Power Supply indicators shut off. Unplug the input power cord or disconnect input power. Power is removed from the system.
Manual 0-5118 4-3 OPERATION
CUTMASTER 35mm, 40mm
This Page Intentionally Blank
OPERATION 4-4 Manual 0-5118
A-03510_AB
Electrode
Start Cartridge
Tip
Shield Cup
Torch Head
SECTION 4 TORCH:
OPERATION

4T.01 Torch Parts Selection

Depending on the type of operation to be done determines the torch parts to be used.
Type of operation:
Drag cutting, standoff cutting or gouging
Torch parts:
Shield Cup, Cutting Tip, Electrode and Starter Cartridge
NOTE
Refer to Section 4T.07 and following for additional information on torch parts.
Change the torch parts for a different operation
as follows:
WARNING
Disconnect primary power at the source before assembling or disassembling torch parts, or torch and leads assemblies.
NOTE
The shield cup holds the tip and starter cartridge in place. Position the torch with the shield cup facing upward to keep these parts from falling out when the cup is removed.
CUTMASTER 35mm, 40mm
Torch Parts
(Drag Shield Cap & Shield Cup Body Shown)
3. Install the replacement Electrode by push­ing it straight into the torch head until it clicks.
4. Install the starter cartridge and desired tip
for the operation into the torch head.
5. Hand tighten the shield cup assembly until it is seated on the torch head. If resistance is felt when installing the cup, check the threads before proceeding.
1. Unscrew and remove the shield cup as­sembly from the torch head.
2. Remove the Electrode by pulling it straight out of the Torch Head.
Manual 0-5118 4T-1 OPERATION
CUTMASTER 40mm
OPERATION 4T-2 Manual 0-5118
Kerf Width
Cut Surface Bevel Angle
Top Edge
Rounding
Cut Surface
Drag Lines
Dross
Build-Up
Top
Spatter
A-00007
!

4T.02 Cut Quality

NOTES
Cut quality depends heavily on setup and parameters such as torch standoff, alignment with the workpiece, cutting speed, gas pressures, and operator ability.
Cut quality requirements differ depending on ap­plication. For instance, nitride build-up and bevel angle may be major factors when the surface will be welded after cutting. Dross - free cutting is important when nish cut quality is desired to avoid a secondary cleaning operation. The fol­lowing cut quality characteristics are illustrated in the following gure:
Bottom Dross Buildup
Molten material which is not blown out of the cut area and resolidifies on the plate. Excessive dross may require secondary cleanup operations after cutting.
Kerf Width
The width of the cut (or the width of material removed during the cut).
Top Spatter (Dross)
Top spatter or dross on the top of the cut caused by slow travel speed, excess cutting height, or cutting tip whose orifice has become elongated.

4T.03 General Cutting Information

WARNINGS
Disconnect primary power at the source before disassembling the power supply, torch, or torch leads.
Cut Quality Characteristics
Cut Surface
The desired or specified condition (smooth or rough) of the face of the cut.
Nitride Build - Up
Nitride deposits can be left on the surface of the cut when nitrogen is present in the plasma gas stream. These buildups may create difficulties if the mate­rial is to be welded after the cutting process.
Bevel Angle
The angle between the surface of the cut edge and a plane perpendicular to the surface of the plate. A perfectly perpendicular cut would result in a 0° bevel angle.
Top - Edge Rounding
Rounding on the top edge of a cut due to wearing from the initial contact of the plasma arc on the workpiece.
Frequently review the Important Safety Precautions at the front of this manual. Be sure the operator is equipped with proper gloves, clothing, eye and ear protection. Make sure no part of the operator’s body comes into contact with the workpiece while the torch is activated.
CAUTION
Sparks from the cutting process can cause damage to coated, painted, and other surfaces such as glass, plastic and metal.
NOTE
Handle torch leads with care and protect them from damage.
Piloting
Piloting is harder on parts life than actual cutting because the pilot arc is directed from the electrode to the tip rather than to a workpiece. Whenever possible, avoid excessive pilot arc time to improve parts life.
CUTMASTER 35mm, 40mm
Right Side
Cut Angle
Left Side
Cut Angle
A-00512
A-00024_AB
Shield Cup
Torch
Standoff Distance
1/8" - 3/8" (3 - 9mm)
Torch Standoff
Improper standoff (the distance between the torch tip and workpiece) can adversely affect tip life as well as shield cup life. Standoff may also signifi­cantly affect the bevel angle. Reducing standoff will generally result in a more square cut.
Edge Starting
For edge starts, hold the torch perpendicular to the workpiece with the front of the tip near (not touching) the edge of the workpiece at the point where the cut is to start. When starting at the edge of the plate, do not pause at the edge and force the arc to "reach" for the edge of the metal. Establish the cutting arc as quickly as possible.
Direction of Cut
In the torches, the plasma gas stream swirls as it leaves the torch to maintain a smooth column of gas. This swirl effect results in one side of a cut being more square than the other. Viewed along the direction of travel, the right side of the cut is more square than the left.
tant cleanup can be accomplished by scraping, not grinding.

4T.04 Hand Torch Operation

Standoff Cutting With Hand Torch
NOTE
For best performance and parts life, always use the correct parts for the type of operation.
1. The torch can be comfortably held in one hand or steadied with two hands. Position the hand to press the Trigger on the torch handle. With the hand torch, the hand may be positioned close to the torch head for maximum control or near the back end for maximum heat protec­tion. Choose the holding technique that feels most comfortable and allows good control and movement.
NOTE
The tip should never come in contact with the workpiece except during drag cutting operations.
Side Characteristics Of Cut
To make a square - edged cut along an inside diameter of a circle, the torch should move coun­terclockwise around the circle. To keep the square edge along an outside diameter cut, the torch should travel in a clockwise direction.
Dross
When dross is present on carbon steel, it is com­monly referred to as either “high speed, slow speed, or top dross”. Dross present on top of the plate is normally caused by too great a torch to plate distance. "Top dross" is normally very easy to remove and can often be wiped off with a welding glove. "Slow speed dross" is normally present on the bottom edge of the plate. It can vary from a light to heavy bead, but does not adhere tightly to the cut edge, and can be easily scraped off. "High speed dross" usually forms a narrow bead along the bottom of the cut edge and is very difficult to remove. When cutting a troublesome steel, it is sometimes useful to reduce the cutting speed to produce "slow speed dross". Any resul-
2. Depending on the cutting operation, do one
of the following: a. For edge starts, hold the torch perpen-
dicular to the workpiece with the front of the tip on the edge of the workpiece at the point where the cut is to start.
b. For standoff cutting, hold the torch 1/8
- 3/8 in (3-9 mm) from the workpiece as shown below.
Standoff Distance
Manual 0-5118 4T-3 OPERATION
CUTMASTER 40mm
OPERATION 4T-4 Manual 0-5118
A-02986
Trigger
Trigger Release
3
4
Art # A-03383
Trigger
2
1
Trigger Release
Shield Cup
Workpiece
Standoff Guide
Art # A-04034
Torch Tip
A-03539
Non-Conductive
Straight Edge Cutting Guide
3. Hold the torch away from your body.
4. Slide the trigger release toward the back of the torch handle while simultaneously squeezing the trigger. The pilot arc will start.
5. Bring the torch within transfer distance to the work. The main arc will transfer to the work, and the pilot arc will shut off.
NOTE
The gas preflow and postflow are a characteristic of the power supply and not a function of the torch.
8. For a consistent standoff height from the workpiece, install the standoff guide by sliding it onto the torch shield cup. Install the guide with the legs at the sides of the shield cup body to maintain good visibility of the cutting arc. During operation, posi­tion the legs of the standoff guide against the workpiece.
Shield Cup With Straight Edge
The drag shield cup can be used with a non con­ductive straight edge to make straight cuts by hand.
6. Cut as usual. Simply release the trigger assembly to stop cutting.
7. Follow normal recommended cutting practices as provided in the power supply operator's manual.
When the shield cup is properly installed, there is a slight gap between the shield cup and the torch handle. Gas vents through this gap as part of normal operation. Do not attempt to force the shield cup to close this gap. Forcing the shield cup against the torch head or torch handle can damage components.
NOTE
WARNING
The straight edge must be non - conduc­tive.
Using Drag Shield Cup With Straight Edge
The crown shield cup functions best when cutting 3/16 inch (4.7 mm) solid metal with relatively smooth surface.
Drag Cutting With a Hand Torch
A-02986
Trigger
Trigger Release
3
4
Art # A-03383
Trigger
2
1
Trigger Release
Drag cutting works best on metal 1/4" (6 mm) thick or less.
NOTE
Drag cutting can only be performed at 60 amps or less.
For best parts performance and life, always use the correct parts for the type of operation.
1. Install the drag cutting tip and set the output current.
2. The torch can be comfortably held in one hand or steadied with two hands. Posi­tion the hand to press the Trigger on the torch handle. With the hand torch, the hand may be positioned close to the torch head for maximum control or near the back end for maximum heat protec­tion. Choose the holding technique that feels most comfortable and allows good control and movement.
4. Keep the torch in contact with the work­piece during the cutting cycle.
5. Hold the torch away from your body.
6. Slide the trigger release toward the back of the torch handle while simultaneously squeezing the trigger. The pilot arc will start.
CUTMASTER 35mm, 40mm
8. Cut as usual. Simply release the trigger assembly to stop cutting.
9. Follow normal recommended cutting practices as provided in the power supply operator's manual.
NOTE
When the shield cup is properly installed, there is a slight gap between the shield cup and the torch handle. Gas vents through this gap as part of normal operation. Do not attempt to force the shield cup to close this gap. Forcing the shield cup against the torch head or torch handle can damage components.
7. Bring the torch within transfer distance to the work. The main arc will transfer to the work, and the pilot arc will shut off.
NOTE
The gas preflow and postflow are a characteristic of the power supply and not a function of the torch.
Piercing With Hand Torch
1. The torch can be comfortably held in one hand or steadied with two hands. Posi­tion the hand to press the Trigger on the torch handle. With the hand torch, the hand may be positioned close to the torch head for maximum control or near the back end for maximum heat protection. Choose the technique that feels most comfortable and allows good control and movement.
NOTE
The tip should never come in contact with the workpiece except during drag cutting operations.
2. Angle the torch slightly to direct blow­back particles away from the torch tip (and operator) rather than directly back into it until the pierce is complete.
3. In a portion of the unwanted metal start
Manual 0-5118 4T-5 OPERATION
CUTMASTER 40mm
OPERATION 4T-6 Manual 0-5118
A-02986
Trigger
Trigger Release
!
the pierce off the cutting line and then continue the cut onto the line. Hold the torch perpendicular to the workpiece after the pierce is complete.
4. Hold the torch away from your body.
5. Slide the trigger release toward the back of the torch handle while simultaneously squeezing the trigger. The pilot arc will start.
6. Bring the torch within transfer distance to the work. The main arc will transfer to the work, and the pilot arc will shut off.
NOTES
The gas preflow and postflow are a characteristic of the power supply and not a function of the torch.
When the shield cup is properly installed, there is a slight gap between the shield cup and the torch handle. Gas vents through this gap as part of normal operation. Do not attempt to force the shield cup to close this gap. Forcing the shield cup against the torch head or torch handle can damage components.

4T.05 Gouging

WARNINGS
Be sure the operator is equipped with proper gloves, clothing, eye and ear protection and that all safety precautions at the front of this manual have been followed. Make sure no part of the operator’s body comes in contact with the workpiece when the torch is activated.
Disconnect primary power to the system before disassembling the torch, leads, or power supply.
CAUTION
Sparks from plasma gouging can cause damage to coated, painted or other surfaces such as glass, plastic, and metal.
Check torch parts. The torch parts must correspond with the type of operation. Refer to Section 4T.07, Torch Parts Selection.
Gouging Parameters
Gouging performance depends on parameters such as torch travel speed, current level, lead angle (the angle between the torch and workpiece), and the distance between the torch tip and workpiece (standoff).
CAUTION
7. Clean spatter and scale from the shield cup and the tip as soon as possible.
Touching the torch tip or shield cup to the work surface will cause excessive parts wear.
Spraying the shield cup in anti - spatter compound will minimize the amount of scale which adheres to it.
Cutting speed depends on material, thickness, and the operator’s ability to accurately follow the desired cut line. The following factors may have an impact on system performance:
• Torch parts wear
• Air quality
• Line voltage uctuations
• Torch standoff height
• Proper work cable connection
CUTMASTER 35mm, 40mm
35°
Workpiece
Torch Head
Standoff Height
A-00941_AB
Torch Travel Speed
NOTE
Re fer to App endix Pages for additional information as related to the Power Supply used.
Optimum torch travel speed is dependent on cur­rent setting, lead angle, and mode of operation (hand or machine torch).
Current Setting
Current settings depend on torch travel speed, mode of operation (hand or machine torch), and the amount of material to be removed.
Pressure Setting
Even though the setting is within the specified range, if the torch does not pilot well the pressure may need to be reduced.
Lead Angle
The angle between the torch and workpiece de­pends on the output current setting and torch travel speed. The recommended lead angle is 35°. At a lead angle greater than 45° the molten metal will not be blown out of the gouge and may be blown back onto the torch. If the lead angle is too small (less than 35°), less material may be removed, requiring more passes. In some appli­cations, such as removing welds or working with light metal, this may be desirable.
Slag Buildup
Slag generated by gouging on materials such as carbon and stainless steels, nickels, and alloyed steels, can be removed easily in most cases. Slag does not obstruct the gouging process if it accumu­lates to the side of the gouge path. However, slag build - up can cause inconsistencies and irregular metal removal if large amounts of material build up in front of the arc. The build - up is most often a result of improper travel speed, lead angle, or standoff height.

4T.06 Mechanized Torch Operation

Cutting With Mechanized Torch
The mechanized torch can be activated by remote control pendant or by a remote interface device such as CNC.
1. To start a cut at the plate edge, position the center of the torch along the edge of the plate.
Travel Speed
Proper travel speed is indicated by the trail of the arc which is seen below the plate. The arc can be one of the following:
1. Straight Arc
A straight arc is perpendicular to the workpiece surface. This arc is generally recommended for the best cut using air plasma on stainless or aluminum.
2. Leading Arc
The leading arc is directed in the same direc­tion as torch travel. A five degree leading arc is generally recommended for air plasma on mild steel.
3. Trailing Arc
The trailing arc is directed in the opposite direc­tion as torch travel.
Gouging Angle and Standoff Distance
Standoff Distance
The tip to work distance affects gouge quality and depth. Standoff distance of 1/8 - 1/4 inch (3 - 6 mm) allows for smooth, consistent metal removal. Smaller standoff distances may result in a severance cut rather than a gouge. Standoff distances greater than 1/4 inch (6 mm) may result in minimal metal removal or loss of transferred main arc.
Manual 0-5118 4T-7 OPERATION
CUTMASTER 40mm
OPERATION 4T-8 Manual 0-5118
Standoff Distance
Straight Arc
Trailing Arc
Leading Arc
Direction of Torch Travel
A-02586
Mechanized Torch Operation
Piercing With Machine Torch
To pierce with a machine torch, the arc should be started with the torch positioned as high as possible above the plate while allowing the arc to transfer and pierce. This standoff helps avoid having molten metal blow back onto the front end of the torch.
When operating with a cutting machine, a pierce or dwell time is required. Torch travel should not be enabled until the arc penetrates the bottom of the plate. As motion begins, torch standoff should be reduced to the recommended 1/8 - 1/4 inch (3-6 mm) distance for optimum speed and cut quality. Clean spatter and scale from the shield cup and the tip as soon as possible. Spraying or dipping the shield cup in anti - spatter compound will mini­mize the amount of scale which adheres to it.
For optimum smooth surface quality, the travel speed should be adjusted so that only the leading edge of the arc column produces the cut. If the travel speed is too slow, a rough cut will be pro­duced as the arc moves from side to side in search of metal for transfer.
Travel speed also affects the bevel angle of a cut. When cutting in a circle or around a corner, slow­ing down the travel speed will result in a squarer cut. The power source output should be reduced also. Refer to the appropriate Control Module Operating Manual for any Corner Slowdown adjustments that may be required.

4T.07 Parts Selection for SL100Torch Cutting

Start
Cartridge
9-8213
Electrode
9-8215
Tips:
20A 9-8205 30A 9-8206 40A 9-8207 60A 9-8252
Tip Gouging A 9-8225 (40 Amps Max.)
Tip Gouging B 9-8226 (50 - 100 Amps)
Tip Gouging C 9-8227 (60 - 120 Amps)
Tip Gouging D 9-8228 (60 - 120 Amps)
Tip Gouging E 9-8254 (60 - 120 Amps)
Shield Cap, Gouging
9-8241
Shield Cap, Drag
40A 9-8244
40A 9-8208
50-55A 9-8209
60A 9-8210
70A 9-8231
80A 9-8211
90/100A 9-8212
120A 9-8253
Shield Cap, Drag
50-60A 9-8235
Shield Cap, Drag 70-100A 9-8236
Shield
Cup Body,
9-8237
70-120A
50-60A
40A
Shield Cap, Deflector
9-8243
Shield
Cup Body,
9-8237
Shield Cup
9-8218
Tip:
Tips:
Tips:
Tips:
DRAG TIP
CUTTING
40-120A
GOUGING
CUTTING
CUTTING
CUTTING
Art # A-08065_AC
DRAG SHIELD
CUTTING
Shield Cap, Deflector
9-8243
Shield
Cup Body,
9-8237
Shield Cup
9-8218
O-Ring No. 8-3488
Standoff Guide
9-8281
Shield Cap, Deflector
9-8243
Shield
Cup Body,
9-8237
Shield Cup
9-8218
O-Ring No. 8-3488
STANDOFF
CUTTING
DRAG SHIELD
CUTTING
Standoff Guide
9-8281
STANDOFF
CUTTING
DRAG SHIELD
CUTTING
STANDOFF CUTTING
Shield Cap, Deflector
9-8243
Shield
Cup Body,
9-8237
Shield Cup
9-8218
O-Ring No. 8-3488
Standoff Guide
9-8251
NOTE CutMaster 52 uses 60A and less CutMaster 82 uses 80A and less CutMaster 102 uses 100A and less CutMaster 152 uses 120A and less
CUTMASTER 35mm, 40mm
Manual 0-5118 4T-9 OPERATION
CUTMASTER 40mm
OPERATION 4T-10 Manual 0-5118

4T.08 Recommended Cutting Speeds for SL100 Torch With Exposed Tip

Type Torch: SL100 With Exposed Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.036 0.9 9-8208 104 40 340 8.64 0.19 4.8 65 4.5 55 170 0.00 0.2 5.1
0.06 1.5 9-8208 108 40 250 6.35 0.19 4.8 65 4.5 55 170 0.10 0.2 5.1
0.075 1.9 9-8208 108 40 190 4.83 0.19 4.8 65 4.5 55 170 0.30 0.2 5.1
0.135 3.4 9-8208 110 40 105 2.67 0.19 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 113 40 60 1.52 0.19 4.8 65 4.5 55 170 0.60 0.2 5.1
0.25 6.4 9-8208 111 40 40 1.02 0.19 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 124 40 21 0.53 0.19 4.8 65 4.5 55 170 NR NR NR
0.500 12.7 9-8208 123 40 11 0.28 0.19 4.8 65 4.5 55 170 NR NR NR
0.625 15.9 9-8208 137 40 7 0.18 0.19 4.8 65 4.5 55 170 NR NR NR
Type Torch: SL100 With Exposed Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.036 0.9 9-8208 103 40 355 9.02 0.125 3.2 65 4.5 55 170 0.00 0.2 5.1
0.05 1.3 9-8208 98 40 310 7.87 0.125 3.2 65 4.5 55 170 0.00 0.2 5.1
0.06 1.5 9-8208 98 40 240 6.10 0.125 3.2 65 4.5 55 170 0.10 0.2 5.1
0.078 2.0 9-8208 100 40 125 3.18 0.125 3.2 65 4.5 55 170 0.30 0.2 5.1
0.135 3.4 9-8208 120 40 30 0.76 0.187 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 124 40 20 0.51 0.187 4.8 65 4.5 55 170 0.60 0.2 5.1
0.25 6.4 9-8208 122 40 15 0.38 0.187 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 126 40 10 0.25 0.187 4.8 65 4.5 55 170 NR NR NR
Type Torch: SL100 With Exposed Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.032 0.8 9-8208 110 40 440 11.18 0.187 4.8 65 4.5 55 170 0.00 0.2 5.1
0.051 1.3 9-8208 109 40 350 8.89 0.187 4.8 65 4.5 55 170 0.10 0.2 5.1
0.064 1.6 9-8208 112 40 250 6.35 0.187 4.8 65 4.5 55 170 0.10 0.2 5.1
0.079 2.0 9-8208 112 40 200 5.08 0.19 4.8 65 4.5 55 170 0.30 0.2 5.1
0.125 3.2 9-8208 118 40 100 2.54 0.19 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 120 40 98 2.49 0.187 4.8 65 4.5 55 170 0.60 0.2 5.1
0.250 6.4 9-8208 123 40 50 1.27 0.187 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 134 40 16 0.41 0.187 4.8 65 4.5 55 170 NR NR NR
CUTMASTER 35mm, 40mm
Type Torch: SL100 With Exposed Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8210 110 60 290 7.37 0.19 4.8 70 4.8 90 245 0.00 0.19 4.8
0.075 1.9 9-8210 120 60 285 7.24 0.19 4.8 70 4.8 90 245 0.10 0.19 4.8
0.120 3.0 9-8210 120 60 180 4.57 0.19 4.8 70 4.8 90 245 0.10 0.19 4.8
0.135 3.4 9-8210 119 60 170 4.32 0.19 4.8 70 4.8 90 245 0.10 0.19 4.8
0.188 4.8 9-8210 121 60 100 2.54 0.19 4.8 70 4.8 90 245 0.20 0.19 4.8
0.250 6.4 9-8210 119 60 80 2.03 0.19 4.8 70 4.8 90 245 0.30 0.19 4.8
0.375 9.5 9-8210 124 60 50 1.27 0.19 4.8 70 4.8 90 245 0.50 0.19 4.8
0.500 12.7 9-8210 126 60 26 0.66 0.19 4.8 70 4.8 90 245 0.75 0.19 4.8
0.625 15.9 9-8210 127 60 19 0.48 0.19 4.8 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 134 60 14 0.36 0.19 4.8 70 4.8 90 245 NR NR NR
1.000 25.4 9-8210 140 60 6 0.15 0.19 4.8 70 4.8 90 245 NR NR NR
Type Torch: SL100 With Exposed Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.06 1.5 9-8210 119 60 350 8.91 0.19 4.8 70 4.8 90 245 0.00 0.20 5.1
0.075 1.9 9-8210 116 60 300 7.64 0.19 4.8 70 4.8 90 245 0.10 0.20 5.1
0.120 3.0 9-8210 123 60 150 3.82 0.19 4.8 70 4.8 90 245 0.10 0.20 5.1
0.135 3.4 9-8210 118 60 125 3.18 0.19 4.8 70 4.8 90 245 0.10 0.20 5.1
0.188 4.8 9-8210 122 60 90 2.29 0.19 4.8 70 4.8 90 245 0.20 0.20 5.1
0.250 6.4 9-8210 120 60 65 1.65 0.19 4.8 70 4.8 90 245 0.30 0.20 5.1
0.375 9.5 9-8210 130 60 30 0.76 0.19 4.8 70 4.8 90 245 0.50 0.20 5.1
0.500 12.7 9-8210 132 60 21 0.53 0.19 4.8 70 4.8 90 245 0.75 0.20 5.1
0.625 15.9 9-8210 130 60 15 0.38 0.19 4.8 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 142 60 12 0.31 0.25 6.4 70 4.8 90 245 NR NR NR
Type Torch: SL100 With Exposed Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8210 110 60 440 11.18 0.25 6.4 70 4.8 90 245 0.00 0.25 6.4
0.075 1.9 9-8210 110 60 440 11.18 0.25 6.4 70 4.8 90 245 0.10 0.25 6.4
0.120 3.0 9-8210 116 60 250 6.35 0.25 6.4 70 4.8 90 245 0.10 0.25 6.4
0.188 3.4 9-8210 116 60 170 4.32 0.25 6.4 70 4.8 90 245 0.20 0.25 6.4
0.250 6.4 9-8210 132 60 85 2.16 0.25 6.4 70 4.8 90 245 0.30 0.25 6.4
0.375 9.5 9-8210 140 60 45 1.14 0.25 6.4 70 4.8 90 245 0.50 0.25 6.4
0.500 12.7 9-8210 143 60 30 0.76 0.25 6.4 70 4.8 90 245 0.80 0.25 6.4
0.625 15.9 9-8210 145 60 20 0.51 0.25 6.4 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 145 60 18 0.46 0.25 6.4 70 4.8 90 245 NR NR NR
Manual 0-5118 4T-11 OPERATION
CUTMASTER 40mm
OPERATION 4T-12 Manual 0-5118
Type Torch: SL100 With Exposed Tip
Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8211 113 80 320 8.13 0.19 4.8 65 4.5 115 340 0.00 0.19 4.8
0.120 3.0 9-8211 113 80 230 5.84 0.19 4.8 65 4.5 115 340 0.10 0.19 4.8
0.135 3.4 9-8211 115 80 180 4.57 0.19 4.8 65 4.5 115 340 0.10 0.19 4.8
0.188 4.8 9-8211 114 80 140 3.56 0.19 4.8 65 4.5 115 340 0.20 0.19 4.8
0.250 6.4 9-8211 114 80 100 2.54 0.19 4.8 65 4.5 115 340 0.30 0.19 4.8
0.375 9.5 9-8211 117 80 42 1.07 0.19 4.8 65 4.5 115 340 0.40 0.19 4.8
0.500 12.7 9-8211 120 80 33 0.84 0.19 4.8 65 4.5 115 340 0.60 0.19 4.8
0.625 15.9 9-8211 133 80 22 0.56 0.19 4.8 65 4.5 115 340 0.75 0.19 4.8
0.750 19.1 9-8211 128 80 18 0.46 0.19 4.8 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 133 80 10 0.25 0.19 4.8 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 132 80 9 0.23 0.19 4.8 65 4.5 115 340 NR NR NR
Type Torch: SL100 With Exposed Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8211 120 80 340 8.64 0.25 6.4 65 4.5 115 340 0.00 0.25 6.4
0.120 3.0 9-8211 120 80 300 7.62 0.25 6.4 65 4.5 115 340 0.10 0.25 6.4
0.135 3.4 9-8211 120 80 280 7.11 0.25 6.4 65 4.5 115 340 0.10 0.25 6.4
0.188 4.8 9-8211 120 80 140 3.56 0.25 6.4 65 4.5 115 340 0.20 0.25 6.4
0.250 6.4 9-8211 120 80 100 2.54 0.25 6.4 65 4.5 115 340 0.30 0.25 6.4
0.375 9.5 9-8211 126 80 50 1.27 0.25 6.4 65 4.5 115 340 0.40 0.25 6.4
0.500 12.7 9-8211 129 80 28 0.71 0.25 6.4 65 4.5 115 340 0.80 0.25 6.4
0.625 15.9 9-8211 135 80 20 0.51 0.25 6.4 65 4.5 115 340 1.00 0.25 6.4
0.750 19.1 9-8211 143 80 10 0.25 0.25 6.4 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 143 80 9 0.23 0.25 6.4 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 146 80 8 0.20 0.25 6.4 65 4.5 115 340 NR NR NR
Type Torch: SL100 with Exposed Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.06 1.5 9-8211 120 80 350 8.89 0.25 6.4 65 4.5 115 340 0.00 0.25 6.4
0.12 3.0 9-8211 124 80 300 7.62 0.25 6.4 65 4.5 115 340 0.10 0.25 6.4
0.188 4.8 9-8211 124 80 180 4.57 0.25 6.4 65 4.5 115 340 0.20 0.25 6.4
0.250 6.4 9-8211 128 80 110 2.79 0.25 6.4 65 4.5 115 340 0.30 0.25 6.4
0.375 9.5 9-8211 136 80 55 1.40 0.25 6.4 65 4.5 115 340 0.40 0.25 6.4
0.500 12.7 9-8211 139 80 38 0.97 0.25 6.4 65 4.5 115 340 0.60 0.25 6.4
0.625 15.9 9-8211 142 80 26 0.66 0.25 6.4 65 4.5 115 340 0.75 0.25 6.4
0.750 19.1 9-8211 145 80 24 0.61 0.25 6.4 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 153 80 10 0.25 0.25 6.4 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 162 80 6 0.15 0.25 6.4 65 4.5 115 340 NR NR NR
CUTMASTER 35mm, 40mm
Type Torch: SL100 With Exposed Tip
Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250 6.4
0.375 9.5
0.500 12.7
0.625 15.9
0.750 19.0
1.000 25.4
9-8212 110 100 105 2.65 0.190 4.8 75 5.2 130 390 9-8212 117 100 70 1.75 0.190 4.8 75 5.2 130 390 9-8212 120 100 50 1.25 0.190 4.8 75 5.2 130 390 9-8212 125 100 35 0.90 0.190 4.8 75 5.2 130 390 9-8212 131 100 18 0.45 0.190 4.8 75 5.2 130 390 9-8212
135
100
10
0.25
4.8 75 5.2 130 390
0.190
0.200 5.1
0.4
0.200 5.1
0.5
0.200 5.1
0.6
1.0 0.200
2.0 0.250
NR NR NR
5.1
6.4
Type Torch: SL100 With Exposed Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250
0.375
0.500
0.625
0.750
1.000
6.4 9-8212
9.5 9-8212
12.7 9-8212
15.9 9-8212
19.0 9-8212
25.4 9-8212
118 122 126 133 138
139
100 100 100 100 100 100
90 55 30 20 15
10
2.30
1.40
0.75
0.50
0.40
0.25
4.8 75 5.2 130 390
0.190
4.8 75 5.2 130 390
0.190
4.8 75 5.2 130 390
0.190
4.8 75 5.2 130 390
0.190
4.8 75 5.2 130 390
0.190
4.8 75 5.2 130 390
0.190
0.5 0.250
0.8 0.250
1.0 0.250
1.5 0.250
NR NR
NR NR
6.4
6.4
6.4
6.4 NR NR
Type Torch: SL100 with Exposed Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250 6.4 9-8212 108 100 120 3.05 0.190 4.8 65 4.5 120 360 0.2 0.225 5.7
0.375 9.5 9-8212 117 100 65 1.65 0.190 4.8 65 4.5 120 360 0.4 0.225 5.7
0.500 12.7 9-8212 120 100 45 1.15 0.190 4.8 65 4.5 120 360 0.5 0.225 5.7
0.625 15.9 9-8212 125 100 30 0.75 0.190 4.8 65 4.5 120 360 0.8 0.225 5.7
0.750 19.0 9-8212 131 100 25 0.65 0.190 4.8 65 4.5 120 360 1.0 0.225 5.7
25.4 9-8212
1.000
140
* Gas pressure shown is for torches with leads up to 25’ / 7.6 m long. For 50’ / 15.2 m leads, refer to section
4.02 "Operating Pressure".
** Total flow rate includes plasma and secondary gas flow.
100
10
0.25
0.190
NOTES
4.8 65 4.5 120 360
NR NR
NR
Manual 0-5118 4T-13 OPERATION
CUTMASTER 40mm
OPERATION 4T-14 Manual 0-5118

4T.09 Recommended Cutting Speeds for SL100Torch With Shielded Tip

Type Torch: SL100 With Shielded Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts (VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.036 0.9 9-8208 114 40 170 4.32 0.19 4.8 65 4.5 55 170 0.00 0.2 5.1
0.06 1.5 9-8208 120 40 90 2.29 0.19 4.8 65 4.5 55 170 0.10 0.2 5.1
0.075 1.9 9-8208 121 40 80 2.03 0.19 4.8 65 4.5 55 170 0.30 0.2 5.1
0.135 3.4 9-8208 122 40 75 1.91 0.19 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 123 40 30 0.76 0.19 4.8 65 4.5 55 170 0.60 0.2 5.1
0.25 6.4 9-8208 125 40 25 0.64 0.19 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 138 40 11 0.28 0.19 4.8 65 4.5 55 170 NR NR NR
0.500 12.7 9-8208 142 40 7 0.18 0.19 4.8 65 4.5 55 170 NR NR NR
0.625 15.9 9-8208 152 40 3 0.08 0.19 4.8 65 4.5 55 170 NR NR NR
Type Torch: SL100 With Shielded Tip
Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.036 0.9 9-8208 109 40 180 4.57 0.125 3.2 65 4.5 55 170 0.00 0.2 5.1
0.05 1.3 9-8208 105 40 165 4.19 0.125 3.2 65 4.5 55 170 0.00 0.2 5.1
0.06 1.5 9-8208 115 40 120 3.05 0.125 3.2 65 4.5 55 170 0.10 0.2 5.1
0.078 2.0 9-8208 120 40 65 1.65 0.187 4.8 65 4.5 55 170 0.30 0.2 5.1
0.135 3.4 9-8208 125 40 25 0.64 0.187 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 132 40 20 0.51 0.187 4.8 65 4.5 55 170 0.60 0.2 5.1
0.25 6.4 9-8208 130 40 15 0.38 0.187 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 130 40 10 0.25 0.187 4.8 65 4.5 55 170 NR NR NR
Type Torch: SL100 With Shielded Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.032 0.8 9-8208 116 40 220 5.59 0.187 4.8 65 4.5 55 170 0.00 0.2 5.1
0.051 1.3 9-8208 116 40 210 5.33 0.187 4.8 65 4.5 55 170 0.00 0.2 5.1
0.064 1.6 9-8208 118 40 180 4.57 0.187 4.8 65 4.5 55 170 0.10 0.2 5.1
0.079 2.0 9-8208 116 40 150 3.81 0.19 4.8 65 4.5 55 170 0.30 0.2 5.1
0.125 3.2 9-8208 130 40 75 1.91 0.19 4.8 65 4.5 55 170 0.40 0.2 5.1
0.188 4.8 9-8208 132 40 60 1.52 0.187 4.8 65 4.5 55 170 0.60 0.2 5.1
0.250 6.4 9-8208 134 40 28 0.71 0.187 4.8 65 4.5 55 170 1.00 0.2 5.1
0.375 9.5 9-8208 143 40 11 0.28 0.187 4.8 65 4.5 55 170 NR NR NR
CUTMASTER 35mm, 40mm
Type Torch: SL100 With Shielded Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8210 124 60 250 6.35 0.19 4.8 70 4.8 90 245 0.00 0.2 5.1
0.075 1.9 9-8210 126 60 237 6.02 0.19 4.8 70 4.8 90 245 0.10 0.2 5.1
0.120 3.0 9-8210 126 60 230 5.84 0.19 4.8 70 4.8 90 245 0.10 0.2 5.1
0.135 3.4 9-8210 128 60 142 3.61 0.19 4.8 70 4.8 90 245 0.10 0.2 5.1
0.188 4.8 9-8210 128 60 125 3.18 0.19 4.8 70 4.8 90 245 0.20 0.2 5.1
0.250 6.4 9-8210 123 60 80 2.03 0.19 4.8 70 4.8 90 245 0.30 0.2 5.1
0.375 9.5 9-8210 132 60 34 0.86 0.19 4.8 70 4.8 90 245 0.50 0.2 5.1
0.500 12.7 9-8210 137 60 23 0.58 0.19 4.8 70 4.8 90 245 0.75 0.2 5.1
0.625 15.9 9-8210 139 60 14 0.36 0.19 4.8 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 145 60 14 0.36 0.19 4.8 70 4.8 90 245 NR NR NR
1.000 25.4 9-8210 156 60 4 0.10 0.19 4.8 70 4.8 90 245 NR NR NR
Type Torch: SL100 With Shielded Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.06 1.5 9-8210 110 60 165 4.19 0.13 3.2 70 4.8 90 245 0.00 0.20 5.1
0.075 1.9 9-8210 116 60 155 3.94 0.13 3.2 70 4.8 90 245 0.10 0.20 5.1
0.120 3.0 9-8210 115 60 125 3.18 0.13 3.2 70 4.8 90 245 0.10 0.20 5.1
0.135 3.4 9-8210 118 60 80 2.03 0.13 3.2 70 4.8 90 245 0.10 0.20 5.1
0.188 4.8 9-8210 120 60 75 1.91 0.13 3.2 70 4.8 90 245 0.20 0.20 5.1
0.250 6.4 9-8210 121 60 60 1.52 0.13 3.2 70 4.8 90 245 0.30 0.20 5.1
0.375 9.5 9-8210 129 60 28 0.71 0.13 3.2 70 4.8 90 245 0.50 0.20 5.1
0.500 12.7 9-8210 135 60 17 0.43 0.19 4.8 70 4.8 90 245 0.75 0.20 5.1
0.625 15.9 9-8210 135 60 14 0.36 0.19 4.8 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 142 60 10 0.25 0.19 4.8 70 4.8 90 245 NR NR NR
Type Torch: SL100 With Shielded Tip Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8210 105 60 350 8.89 0.13 3.2 70 4.8 90 245 0.00 0.20 5.1
0.075 1.9 9-8210 110 60 350 8.89 0.13 3.2 70 4.8 90 245 0.10 0.20 5.1
0.120 3.0 9-8210 110 60 275 6.99 0.13 3.2 70 4.8 90 245 0.10 0.20 5.1
0.188 3.4 9-8210 122 60 140 3.56 0.13 3.2 70 4.8 90 245 0.20 0.20 5.1
0.250 6.4 9-8210 134 60 80 2.03 0.19 4.8 70 4.8 90 245 0.30 0.20 5.1
0.375 9.5 9-8210 140 60 45 1.14 0.19 4.8 70 4.8 90 245 0.50 0.20 5.1
0.500 12.7 9-8210 144 60 26 0.66 0.19 4.8 70 4.8 90 245 0.80 0.20 5.1
0.625 15.9 9-8210 145 60 19 0.48 0.19 4.8 70 4.8 90 245 NR NR NR
0.750 19.1 9-8210 150 60 15 0.38 0.19 4.8 70 4.8 90 245 NR NR NR
Manual 0-5118 4T-15 OPERATION
CUTMASTER 40mm
OPERATION 4T-16 Manual 0-5118
Type Torch: SL100 With Shielded Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8211 128 80 280 7.11 0.19 4.8 65 4.5 115 340 0.00 0.2 5.1
0.120 3.0 9-8211 126 80 203 5.16 0.19 4.8 65 4.5 115 340 0.10 0.2 5.1
0.135 3.4 9-8211 128 80 182 4.62 0.19 4.8 65 4.5 115 340 0.10 0.2 5.1
0.188 4.8 9-8211 128 80 137 3.48 0.19 4.8 65 4.5 115 340 0.20 0.2 5.1
0.250 6.4 9-8211 131 80 100 2.54 0.19 4.8 65 4.5 115 340 0.30 0.2 5.1
0.375 9.5 9-8211 134 80 40 1.02 0.19 4.8 65 4.5 115 340 0.50 0.2 5.1
0.500 12.7 9-8211 136 80 36 0.91 0.19 4.8 65 4.5 115 340 0.60 0.2 5.1
0.625 15.9 9-8211 145 80 21 0.53 0.19 4.8 65 4.5 115 340 0.75 0.2 5.1
0.750 19.1 9-8211 144 80 14 0.36 0.19 4.8 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 149 80 11 0.28 0.19 4.8 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 162 80 8 0.20 0.19 4.8 65 4.5 115 340 NR NR NR
Type Torch: SL100 With Shielded Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.060 1.5 9-8211 110 80 340 8.50 0.125 3.2 65 4.5 115 340 0.00 0.2 5.1
0.120 3.0 9-8211 115 80 260 6.50 0.125 3.2 65 4.5 115 340 0.10 0.2 5.1
0.135 3.4 9-8211 113 80 250 6.25 0.125 3.2 65 4.5 115 340 0.10 0.2 5.1
0.188 4.8 9-8211 114 80 170 4.25 0.125 3.2 65 4.5 115 340 0.20 0.2 5.1
0.250 6.4 9-8211 116 80 85 2.13 0.125 3.2 65 4.5 115 340 0.30 0.2 5.1
0.375 9.5 9-8211 123 80 45 1.13 0.125 3.2 65 4.5 115 340 0.40 0.25 6.4
0.500 12.7 9-8211 133 80 18 0.45 0.125 3.2 65 4.5 115 340 0.75 0.25 6.4
0.625 15.9 9-8211 135 80 16 0.40 0.125 3.2 65 4.5 115 340 1.00 0.25 6.4
0.750 19.1 9-8211 144 80 8 0.20 0.125 3.2 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 137 80 8 0.20 0.125 3.2 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 140 80 8 0.20 0.125 3.2 65 4.5 115 340 NR NR NR
Type Torch: SL100 With Shielded Tip
Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.06 1.5 9-8211 115 80 320 8.13 0.13 3.2 65 4.5 115 340 0.00 0.25 6.4
0.12 3.0 9-8211 120 80 240 6.10 0.13 3.2 65 4.5 115 340 0.10 0.25 6.4
0.188 4.8 9-8211 120 80 165 4.19 0.13 3.2 65 4.5 115 340 0.20 0.25 6.4
0.250 6.4 9-8211 124 80 100 2.54 0.13 3.2 65 4.5 115 340 0.30 0.25 6.4
0.375 9.5 9-8211 138 80 60 1.52 0.19 4.8 65 4.5 115 340 0.40 0.25 6.4
0.500 12.7 9-8211 141 80 36 0.91 0.19 4.8 65 4.5 115 340 0.60 0.25 6.4
0.625 15.9 9-8211 142 80 26 0.66 0.19 4.8 65 4.5 115 340 0.75 0.25 6.4
0.750 19.1 9-8211 150 80 18 0.46 0.19 4.8 65 4.5 115 340 NR NR NR
0.875 22.2 9-8211 156 80 8 0.20 0.19 4.8 65 4.5 115 340 NR NR NR
1.000 25.4 9-8211 164 80 6 0.15 0.19 4.8 65 4.5 115 340 NR NR NR
CUTMASTER 35mm, 40mm
Type Torch: SL100 With Shielded Tip Type Material: Mild Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
0.250 6.4
0.375 9.5
0.500 12.7
0.625 15.9
0.750 19.0
1.000 25.4
9-8212 9-8212 9-8212 9-8212 9-8212 9-8212
124 127 132 136 140 147
Type Torch: SL100 With Shielded Tip Type Material: Stainless Steel
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
6.4 9-8212
0.250
0.375
0.500
0.625
0.750
1.000
9.5 9-8212
12.7 9-8212
15.9 9-8212
19.0 9-8212
25.4 9-8212
121 100 110 125 100 60 132 100 35 137 100 20 144 100 15 154 100 8
100 100 100 100 100 100
110
75 50 30 18
10
2.80
1.90
1.30
0.75
0.45
0.25
2.80
1.50
0.90
0.50
0.40
0.20
4.6 75 5.2 130 390
0.180
4.6 75 5.2 130 390
0.180
4.6 75 5.2 130 390
0.180
4.6 75 5.2 130 390
0.180
4.8 75 5.2 130 390
0.190
0.190
0.125
0.150
0.150
0.150
0.190
0.190
4.8 75 5.2
3.2 75 5.2 130 390
3.8 75 5.2 130 390
3.8 75 5.2 130 390
3.8 75 5.2 130 390
4.8 75 5.2 130 390
4.8 75 5.2 130 390
130
390
0.4 0.200
0.5 0.200
0.6 0.200
0.8 0.200
2.0 0.225
NR NR
0.5 0.200
0.8 0.200
1.0 0.200
2.0 0.225
NR NR
NR NR
5.1
5.1
5.1
5.1
5.7 NR
5.1
5.1
5.1
5.7 NR NR
Type Torch: SL100 With Shielded Tip
Type Material: Aluminum
Type Plasma Gas: Air Type Secondary Gas: Single Gas Torch
Thickness Tip Output Amperage Speed (Per Minute) Standoff Plasma Gas Press Flow (CFH) Pierce Pierce Height
Inches mm (Cat. No.) Volts(VDC) (Amps) Inches Meters Inches mm psi* bar Plasma Total** Delay (Sec) Inches mm
6.4 9-8212
0.250
0.375
0.500
0.625
0.750
1.000
9.5 9-8212
12.7 9-8212
15.9 9-8212
19.0 9-8212
25.4 9-8212
120 128 130 135
140
148
* Gas pressure shown is for torches with leads up to 25’ / 7.6 m long. For 50’ / 15.2 m leads, refer to section
4.02 "Operating Pressure".
** Total flow rate includes plasma and secondary gas flow.
100 100 100 100 100 100
120
65 45 30 25
10
3.05
1.65
1.15
0.75
0.65
0.25
0.180
0.180
0.180
0.180
0.180
0.190
NOTES
65 4.5 105 360 65 4.5 105 360 65 4.5 105 360 65 4.5 105 360 65 4.5 105 360 65 4.5
105 360 NR NR
0.2 0.225
0.4 0.225
0.5 0.225
0.8 0.225
1.0 0.225
5.7
5.7
5.7
5.7
5.7 NR
Manual 0-5118 4T-17 OPERATION
CUTMASTER 40mm
OPERATION 4T-18 Manual 0-5118

PATENT INFORMATION

Plasma Cutting Torch Patents
The following parts are covered under U.S. and Foreign Patents as follows:
Catalog # Description Patent(s)
9-8215 Electrode US Pat No(s) 6163008; 6987238 Other Pat(s) Pending 9-8213 Cartridge US Pat No(s) 6903301; 6717096; 6936786; 6703581; D496842; D511280; D492709; D499620; D504142 Other Pat(s) Pending 9-8205 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8206 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8207 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8252 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8208 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8209 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8210 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8231 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8211 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8212 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8253 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8225 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8226 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8227 Tip US Pat No(s) 6774336; 7145099; 6933461
Other Pat(s) Pending 9-8228 Tip US Pat No(s) 6774336; 7145099; 6933461 Other Pat(s) Pending 9-8241 Shield Cap US Pat No(s) 6914211; D505309 Other Pat(s) Pending 9-8243 Shield Cap US Pat No(s) 6914211; D493183 Other Pat(s) Pending 9-8235 Shield Cap US Pat No(s) 6914211; D505309 Other Pat(s) Pending 9-8236 Shield Cap US Pat No(s) 6914211; D505309 Other Pat(s) Pending 9-8237 Shield Cup US Pat No(s) 6914211; D501632; D511633 Other Pat(s) Pending 9-8238 Shield Cap US Pat No(s) 6914211; D496951 Other Pat(s) Pending 9-8239 Shield Cap US Pat No(s) 6914211; D496951 Other Pat(s) Pending 9-8244 Shield Cap US Pat No(s) 6914211; D505309 Other Pat(s) Pending
9-8245 Shield Cap US Pat No(s) 6914211; D496951
Other Pat(s) Pending
The following parts are also licensed under U.S. Patent No. 5,120,930 and 5,132,512:
Catalog # Description
9-8235 Shield Cap 9-8236 Shield Cap 9-8237 Shield Cup 9-8238 Shield Cap 9-8239 Shield Cap 9-8244 Shield Cap 9-8245 Shield Cap
CUTMASTER 35mm, 40mm
Manual 0-5118 4T-19 OPERATION
CUTMASTER 40mm
This Page Intentionally Blank
OPERATION 4T-20 Manual 0-5118
SECTION 5 SYSTEM:
Warning! Disconnect input power before maintaining.
Each Use
Visual check of torch tip and electrode
Weekly
Visually inspect the torch body tip, electrode, start cartridge and shield cup
Visually inspect the cables and leads. Replace as needed
3 Months
Clean exterior of power supply
6 Months
Replace all broken parts
Visually check and Carefully clean the interior
Maintain more often if used under severe conditions
Art # A-07938_AB

5.01 General Maintenance

CUTMASTER 35mm, 40mm
SERVICE
Manual 0-5118 5-1 SERVICE
CUTMASTER 35mm, 40mm
SERVICE 5-2 Manual 0-5118

5.02 Maintenance Schedule

NOTE
The actual frequency of maintenance may need to be adjusted according to the operating environment.
Daily Operational Checks or Every Six
Cutting Hours:
1. Check torch consumable parts, replace if dam­aged or worn.
2. Check plasma and secondary supply and pres­sure/flow.
3. Purge plasma gas line to remove any moisture build-up.
Weekly or Every 30 Cutting Hours:
1. Check fan for proper operation and adequate air flow.
2. Inspect torch for any cracks or exposed wires, replace if necessary.
3. Inspect input power cable for damage or ex­posed wires, replace if necessary.
Six Months or Every 720 Cutting Hours:
1. Check the in-line air filter(s), clean or replace as required
2. Check cables and hoses for leaks or cracks, replace if necessary.
3. Check all contactor points for severe arcing or pits, replace if necessary.
4. Vacuum dust and dirt out of the entire ma­chine.
CAUTION
Do not blow air into the power supply during cleaning. Blowing air into the unit can cause metal particles to interfere with sensitive electri­cal components and cause damage to the unit.

5.03 Common Faults

Problem -
Symptom Common Cause
Insufficient
Penetration
Main Arc
Extinguishes
Excessive Dross
Formation
Short Torch Parts
Life
Difficult Starting 1. Worn torch parts.
1. Cutting speed too fast.
2. Torch tilted too much.
3. Metal too thick.
4. Worn torch parts
5. Cutting current too low.
6. Non - Genuine Thermal Dynamics parts used
7. Incorrect gas pressure
1. Cutting speed too slow.
2. Torch standoff too high from workpiece.
3. Cutting current too high.
4. Work cable disconnected.
5. Worn torch parts.
6. Non - Genuine Thermal Dynamics parts used
1. Cutting speed too slow.
2. Torch standoff too high from workpiece.
3. Worn torch parts.
4. Improper cutting current.
5. Non - Genuine Thermal Dynamics parts used
6. Incorrect gas pressure
1. Oil or moisture in air source.
2. Exceeding system capability (material too thick).
3. Excessive pilot arc time
4. Gas pressure too low.
5. Improperly assembled torch.
6. Non - Genuine Thermal Dynamics parts used
2. Non - Genuine Thermal Dynamics parts used.
3. Incorrect gas pressure.

5.04 Fault Indicator

A
+
PSI BAR
MAX MAX
MIN MIN
!
1
2
3
4
Art# A-07988
MIN
MAX
0
1
2
3
4
5
6
7
5
At initial power up, two lights will temporarily illu­minate for 2-3 seconds to show the version of software used.
To determine the first digit, count the function indica­tors left to right, 1 through 5. To determine the second digit count the pressure indicators, reading from bot­tom to top, 0 through 7. In the example below the Temp indicator and 75 psi indicators are on indicating the version would be 2.3.
CUTMASTER 35mm, 40mm
When the !"Fault" indicator is on or blinking it will be accompanied by one of the pressure indi­cator lights depending on what the Fault is. The following table explains each of those Faults.
Pressure
Fault
Indicator
Max Over Pressure
90 Internal Error
85 Shorted Torch
80 Consumables Missing
75 Start Error
70 Parts in Place
65 Input Power
Min Under Pressure
Fault explanations are covered in the following tables.
NOTE
Manual 0-5118 5-3 SERVICE
CUTMASTER 35mm, 40mm
SERVICE 5-4 Manual 0-5118

5.05 Basic Troubleshooting Guide

WARNING
There are extremely dangerous voltage and power levels present inside this unit. Do not attempt to diagnose or repair unless you have had training in power electronics measurement and troubleshooting techniques.
Problem -
Symptom Possible Cause Recommended Action
ON / OFF Switch is on but the A/C Indicator does not light
Fault indicator flashing, 65 PSI indicator flashing
TEMPERATURE indicator on. FAULT indicator flashing.
GAS LED off, FAULT and MIN pressure indicators flashing.
FAULT and 70 PSI indicators flashing.
FAULT and 75 PSI indicators flashing.
1. Primary power disconnect is in OFF position.
2. Primary fuses / breakers are blown or tripped.
3. Units internal fuse blown.
4. Faulty components in unit.
1. Improper Input Voltage.
2. Primary input voltage problem.
3. Faulty components in unit.
1. Air flow through or around the unit is obstructed.
2. Duty cycle of the unit has been exceeded
3. Failed components in unit
1. Gas supply not connected to unit.
2. Gas supply not turned on.
3. Gas supply pressure too low.
4. AIR PRESSURE CONTROL regulator set too low.
5. Failed components in unit.
1. Shield Cup loose.
2. Torch not properly connected to power supply.
3. Problem in torch and leads PIP circuit.
4. Failed components in unit.
1. Start signal is active when ON/OFF SWITCH is turned to ON position.
2. Problem in the torch and leads switch circuit.
3. Failed components in unit.
1. Turn primary power disconnect switch to ON position.
2. a) Have qualified person check primary fuses / breakers. b) Connect unit to known good primary power receptacle
3. a) Replace fuse. b) If fuse blows again, return to authorized service center for repair or replacement.
4. Return to authorized service center for repair or replace­ ment.
1. Check for proper primary input voltage.
2. Have qualified person check primary voltage to insure it meets unit requirements see section 2.05.
3. Return to authorized service center for repair or replace­ ment.
1. Refer to clearance information – section 2.04
2. Allow unit to cool.
3. Return to authorized service center for repair or replace­ ment.
1. Connect gas supply to unit.
2. Turn gas supply on.
3. Set air supply inlet pressure to unit to 120 psi.
4. Adjust regulator to set air pressure - see section 4.02.
5. Return to authorized service center for repair or replace­ ment.
1. Hand tighten the shield cup until it is snug.
2. Insure torch ATC is securely fastened to unit.
3. Replace torch and leads or return to authorized service center for repair or replacement.
4. Return to authorized service center for repair or replace­ ment.
1. Start can be active for one of the following:
• Hand torch switch held closed
• Hand pendant switch held closed
• CNC START signal is active low
• Release the START signal source
2. Replace torch and leads or return to authorized service center for repair or replacement.
3. Return to authorized service center for repair or replace­ ment.
CUTMASTER 35mm, 40mm
Problem ­Symptom
FAULT & 80 PSI indicators flashing. Gas flow is cycling on and off.
Nothing happens when torch switch or remote switch is closed ( Or CNC START signal is active) No gas flow, DC LED OFF.
FAULT and 85 PSI indicators flashing.
Possible Cause Recommended Action
1. Torch shield cup is loose.
2. Torch tip, electrode or starter cartridge missing.
3. Torch starter cartridge is stuck.
4. Open conductor in torch leads.
5. Problem in the torch and leads switch circuit.
6. Failed components in unit.
1. Problem in the torch and leads switch circuit (Remote pendant switch circuit).
2. CNC Controller device not providing Start signal.
3. Failed components in unit.
1. Upper O-Ring on torch head is in wrong position.
2. Torch starter cartridge is stuck.
3. Worn or faulty torch parts.
4. Shorted Torch.
5. Temporary Short indicated by 5 blinks per second.
6. Power Supply Failure (Standard rate of blinking)
1. Tighten shield cup by hand. Do not overtighten.
2. Turn off power supply. Remove shield cup. Install missing parts.
3. Turn off power supply. Bleed down system pressure. Remove shield cup, tip and starter cartridge. Check starter cartridge lower end fitting for free movement. Replace if fitting does not move freely.
4. Replace torch and leads or return to authorized service center for repair or replacement.
5. Replace torch and leads or return to authorized service center for repair or replacement.
6. Return to authorized service center for repair or
1. Take Torch and Leads (Remote Pendant) to Authorized Repair Facility.
2. Contact Controller manufacturer.
3. Return to authorized service center for repair or replace­ ment.
1. Remove shield cup from torch; check upper O-Ring position; correct if necessary.
2. Turn off power supply. Bleed down system pressure. Remove shield cup, tip and starter cartridge. Check starter cartridge lower end fitting for free movement. Replace if fitting does not move freely.
3. Inspect torch consumable parts. Replace if necessary.
4. Replace torch and leads or return to an authorized service center for repair.
5. Release torch switch and reactivate.
6. Return to autorized service center for repair or replacement.
No Fault lights on, no arc in torch.
Fault and 90 PSI indicators flashing
Pilot arc is on but cutting arc will not establish
Torch cutting is diminished
1. Failed components in unit. 1. Return to an authorized service center for repair.
1. Internal Error 1. Turn the ON / OFF switch OFF then back ON again. If that does not clear the fault, return to an authorized service center for repair.
1. Work cable not connected to
work piece.
2. Work cable/connector broken.
3. Failed components in unit.
1. Incorrect current setting.
2. Worn torch consumables.
3. Poor work cable connection to
work piece.
4. Torch being moved too fast.
5. Excessive oil or water in torch.
6. Failed components in unit.
1. Connect work cable.
2. Replace work cable.
3. Return to an authorized service center for repair.
1. Check and adjust to proper setting.
2. Check torch consumables and replace as needed.
3. Check the connection of the Work Lead to the work piece.
4. Reduce cutting speed.
5. Refer to "Check air quality" in section 3 Torch.
6. Return to an authorized service center for repair.
Manual 0-5118 5-5 SERVICE
CUTMASTER 35mm, 40mm
SERVICE 5-6 Manual 0-5118
Art # A-08429
Lower Screws
Lower Screws
Slots
Upper Screws
Art # A-07989
1
2
3
4
5
6mm
5.06 Power Supply Basic Parts Replacement
WARNING
Disconnect primary power to the system be­fore disassembling the torch, leads, or power supply.
This section describes procedures for basic parts re­placement. For more detailed parts replacement pro­cedures, refer to the Power Supply Service Manual.
A. Cover Removal
1. Remove the upper and lower screws which secure the cover to the main assembly. Do not loosen the lower screws inside the cut out slots in the bottom of the cover.
C. Filter Element Assembly Replacement
The Filter Element Assembly is in the rear panel. For better system performance, the filter element should be checked per the Maintenance Schedule (Subsection
5.02), and either cleaned or replaced.
1. Remove power from the power supply; turn off the gas supply and bleed down the system.
2. Remove the system cover. See "A Cover Re­moval" in this section.
3. Locate the internal air line and the fitting from the filter assembly. Number 1 in the following illustration.
4. Hold a wrench or similar tool against the lock­ing ring on the filter assembly fitting, then pull on the hose to release it. (Numbers 2 and 3 in the following illustration).
2. Carefully pull the Cover up and away from the unit.
B. Cover Installation
1. Reconnect the ground wire, if necessary.
2. Place the cover onto the power supply so that slots in the bottom edges of the cover engage the lower screws.
3. Tighten lower screws.
4. Reinstall and tighten the upper screws.
CUTMASTER 35mm, 40mm
Art # A-07990
Filter Element
Art # A-02476
Filter
Element
(Cat. No. 9-7741)
Housing
Cover
Barbed
Fitting
Spring
Assembled Filter
O-ring
(Cat. No. 9-7743)
5. Remove the fitting from the filter element as­sembly by inserting a 6 mm hex wrench into the internal hex fitting and turning it counter clock-wise (left). Numbers 4 and 5 in the previ­ous illustration.
6. Disconnect the input line from the filter element assembly.
7. Remove the filter element assembly through the rear opening.
NOTE
If replacing or cleaning just the filter element refer to the following illustration for disas­sembly.
Optional Single-Stage Filter Element
Replacement
These instructions apply to power supplies where the optional Single-Stage Filter has been installed.
The Power Supply shuts down automatically when the Filter Element becomes completely saturated. The Filter Element can be removed from its housing, dried, and reused. Allow 24 hours for Element to dry. Refer to Section 6, Parts List, for replacement filter element catalog number.
1. Remove power from power supply.
2. Shut off air supply and bleed down system before disassembling Filter to change Filter Element.
3. Disconnect gas supply hose.
4. Turn the Filter Housing Cover counter-clock­wise and remove it. The Filter Element is located inside the Housing.
8. Install the new or cleaned assembly by reversing these procedures.
9. Turn on the air supply and check for leaks before reinstalling the cover.
Optional Single-Stage Filter Element Replacement
5. Remove the Filter Element from the Housing and set Element aside to dry.
6. Wipe inside of housing clean, then insert the replacement Filter Element open side first.
7. Replace Housing on Cover.
8. Reattach gas supply.
NOTE
If unit leaks between housing and cover, inspect the "O" Ring for cuts or other damage.
Manual 0-5118 5-7 SERVICE
CUTMASTER 35mm, 40mm
First & Second Stage Cartridges (as marked)
Art # A-02942
Optional Two-Stage Filter Element
Replacement
The Two-Stage Air Filter has two Filter Elements. When the Filter Elements become dirty the Power Supply will continue to operate but cut quality may become unacceptable. Refer to Section 6, Parts List, for replacement filter element catalog number.
1. Shut off primary input power.
2. Shut off air supply and bleed down system.
WARNING
Always turn off the air supply and bleed the system before disassembling the Filter Assembly as injury could result.
3. Loosen the two bolts on the top of the Filter Assembly enough to allow the Filter Elements to move freely.
4. Note the location and orientation of the old Filter Elements.
5. Slide out the old Filter Elements.
Optional Two-Stage Filter Replacement
6. Slide the replacement Filter Elements into the Filter Assembly, with the same orientation as noted in Step 4 above.
7. Hand tighten the two bolts evenly, then torque each bolt to 20 - 30 in-lbs (2.3 - 3.4 Nm). Im­proper torque may damage the gasket.
8. Slowly apply air pressure to the assembly, checking for leaks.
NOTE
A small amount of air leakage from the bottom fitting is normal.
This completes the parts replacement procedures.
SERVICE 5-8 Manual 0-5118
Upper Groove with Vent Holes Must Remain Open
Threads
Upper O-Ring in Correct Groove
Lower O-Ring
Art # A-03725
ATC Male Connector
Art #A-03791
Gas Fitting
O-Ring
SECTION 5 TORCH:

5T.01 General Maintenance

NOTE
Refer to Previous "Section 5 System" for com­mon and fault indicator descriptions.
Cleaning Torch
Even if precautions are taken to use only clean air with a torch, eventually the inside of the torch be­comes coated with residue. This buildup can affect the pilot arc initiation and the overall cut quality of the torch.
WARNINGS
Disconnect primary power to the system before disassembling the torch or torch leads.
CUTMASTER 35mm, 40mm
SERVICE
Torch Head O-Ring
DO NOT touch any internal torch parts while the AC indicator light of the Power Supply is ON.
The inside of the torch should be cleaned with electrical contact cleaner using a cotton swab or soft wet rag. In severe cases, the torch can be removed from the leads and cleaned more thoroughly by pouring electrical contact cleaner into the torch and blowing it through with compressed air.
CAUTION
Dry the torch thoroughly before reinstalling.
O-Ring Lubrication
An o-ring on the Torch Head and ATC Male Con­nector requires lubrication on a scheduled basis. This will allow the o-rings to remain pliable and provide a proper seal. The o-rings will dry out, becoming hard and cracked if the lubricant is not used on a regular basis. This can lead to potential performance problems.
It is recommended to apply a very light film of o­ring lubricant (Catalog # 8-4025) to the o-rings on a weekly basis.
ATC O-Ring
NOTE
DO NOT use other lubricants or grease, they
may not be designed to operate within high temperatures or may contain “unknown ele­ments” that may react with the atmosphere. This reaction can leave contaminants inside the torch. Either of these conditions can lead to inconsistent performance or poor parts life.
Manual 0-5118 5T-1 SERVICE
CUTMASTER 35, 40mm
Art # A-08067
Drag Shield Cap
Shield
Cup Body
O-Ring No. 8-3488
Art # A-03878
Good Tip
Worn Tip
A-03406
Art # A-08064
Spring-Loaded Lower End Fitting Full Compression 1/8”
Spring-Loaded Lower End Fitting at Rest / Full Extension
Worn Electrode
New Electrode
Art # A-03284
5T.02 Inspection and Replacement
of Consumable Torch Parts
WARNINGS
Disconnect primary power to the system before disassembling the torch or torch leads.
DO NOT touch any internal torch parts while the AC indicator light of the Power Supply is ON.
Remove the consumable torch parts as follows:
NOTE
The shield cup holds the tip and starter cartridge in place. Position the torch with the shield cup facing upward to prevent these parts from fall­ing out when the cup is removed.
1. Unscrew and remove the shield cup from the torch.
NOTE
Slag built up on the shield cup that cannot be removed may effect the performance of the system.
2. Inspect the cup for damage. Wipe it clean or replace if damaged.
Shield Cups
4. Remove the tip. Check for excessive wear (in­dicated by an elongated or oversized orifice). Clean or replace the tip if necessary.
Example of Tip Wear
5. Remove the starter cartridge. Check for exces­sive wear, plugged gas holes, or discoloration. Check the lower end fitting for free motion. Replace if necessary.
3. On torches with a shield cup body and a shield cap or deflector, ensure that the cap or deflector is threaded snugly against the shield cup body. In shielded drag cutting operations (only), there may be an O-ring between the shield cup body and drag shield cap. Do not lubricate the O­ring.
SERVICE 5T-2 Manual 0-5118
6. Pull the Electrode straight out of the Torch Head. Check the face of the electrode for exces­sive wear. Refer to the following figure.
Electrode Wear
CUTMASTER 35mm, 40mm
SECTION 6:
PARTS LISTS

6.01 Introduction

A. Parts List Breakdown
The parts list provide a breakdown of all replaceable components. The parts lists are arranged as follows:
Section 6.03 Complete Power Supply Replacement
Section 6.04 Replacement Parts
Section 6.05 Options and Accessories
Section 6.06 Replacement Parts for Hand Torch
Section 6.07 Replacement Parts - for Machine Torches with Unshielded Leads
Section 6.08 Replacement Shielded Machine Torch Leads Assemblies
Section 6.09 Torch Consumable Parts (SL100)
NOTE
Parts listed without item numbers are not shown, but may be ordered by the catalog number shown.
B. Returns
If a product must be returned for service, contact your distributor. Materials returned without proper autho­rization will not be accepted.

6.02 Ordering Information

Order replacement parts by catalog number and complete description of the part or assembly, as listed in the parts list for each type item. Also include the model and serial number of the power supply. Address all inqui­ries to your authorized distributor.

6.03 Power Supply Replacement

The following items are included with the replacement power supply: work cable & clamp, input power cable, gas pressure regulator / filter, and operating manual.
Qty Description Catalog #
1 CutMaster 35mm Non CE Power Supply with 400VAC, 3 phase input power cable 3-1330-3 1 CutMaster 40mm Non CE Power Supply with 400VAC, 3 phase input power cable 3-1730-3
1 CutMaster 35mm CE Power Supply with 400VAC, 3 phase input power cable 3-1330-4 1 CutMaster 40mm CE Power Supply with 400VAC, 3 phase input power cable 3-1730-4
Manual 0-5118 6-1 PARTS LIST
CUTMASTER 35mm, 40mm
PARTS LIST 6-2 Manual 0-5118
Art # A-02476
Filter
Element
(Cat. No. 9-7741)
Housing
Cover
Barbed
Fitting
Spring
Assembled Filter
O-ring
(Cat. No. 9-7743)
First & Second Stage Cartridges (as marked)
Art # A-02942

6.04 Replacement Power Supply Parts

Qty Description Catalog #
1 Regulator 9-0115 1 Filter Assembly Replacement Element 9-0116 1 CutMaster 35mm Input Power Cord for 380/400 V Power Supply 9-0216 1 CutMaster 40mm Input Power Cord for 380/400 V Power Supply 9-0217

6.05 Options and Accessories

Qty Description Catalog #
1 Single - Stage Filter Kit (includes Filter & Hose) 7-7507 1 Replacement Filter Body 9-7740 1 Replacement Filter Hose (not shown) 9-7742 2 Replacement Filter Element 9-7741 1 Two - Stage Filter Kit (includes Hose & Mounting Screws) 9-9387 1 Two - Stage Air Filter Assembly 9-7527 1 First Stage Cartridge 9-1021 1 Second Stage Cartridge 9-1022 1 Extended Work Cable ( 50 ft / 15.2 m ) with Clamp 9-8529 1 ` Automation Harness 9-8385 1 Automation Interface Kit 9-8311 1 25' / 7.6 m CNC Cable for Automation Interface Kit 9-8312 1 50' /15.2 m CNC Cable for Automation Interface Kit 9-8313 1 Nylon Dust Cover 9-7071
Optional Single - Stage Filter Kit Optional Two - Stage Filter Kit
CUTMASTER 35mm, 40mm

6.06 Replacement Parts for Hand Torch

Item # Qty Description Catalog #
1 1 Torch Handle Replacement Kit (includes items No. 2 & 3) 9-7030 2 1 Trigger Assembly Replacement Kit 9-7034 3 1 Handle Screw Kit (5 each, 6-32 x 1/2” cap screw, and wrench) 9-8062 4 1 Torch Head Assembly Replacement Kit (includes items No. 5 & 6) 9-8219 5 1 Large O - Ring 8-3487 6 1 Small O - Ring 8-3486 7 Leads Assemblies with ATC connectors (includes switch assemblies) 1 SL100, 20 - foot Leads Assembly with ATC connector 4-7836 1 SL100 , 50 - foot Leads Assembly with ATC connector 4-7837 8 1 Switch Kit 9-7031 10 1 Torch Control Cable Adapter (includes item # 11) 7-3447 11 1 Through - Hole Protector 9-8103
Manual 0-5118 6-3 PARTS LIST
CUTMASTER 35mm, 40mm
PARTS LIST 6-4 Manual 0-5118

6.07 Replacement Parts - for Machine Torches with Unshielded Leads

Item No. Qty Description Catalog No.
1 1 Torch Head Assembly without leads (includes items 2, 3, and 14) 9-8220 2 1 Large O - Ring 8-3487 3 1 Small O - Ring 8-3486 4 1 PIP Switch Kit 9-7036 5 Unshielded Automated Leads Assemblies with ATC connectors 1 5 - foot / 1.5 m Leads Assembly with ATC connector 4-7850 1 10 - foot / 3.05 m Leads Assembly with ATC connector 4-7851 1 25 - foot / 7.6 m Leads Assembly with ATC connector 4-7852 1 50 - foot / 15.2 m Leads Assembly with ATC connector 4-7853 6 Unshielded Mechanized Leads Assemblies with ATC connectors 1 5 - foot / 1.5 m Leads Assembly with ATC connector 4-7842 1 10 - foot / 3.05 m Leads Assembly with ATC connector 4-7843 1 25 - foot / 7.6 m Leads Assembly with ATC connector 4-7844 1 50 - foot / 15.2 m Leads Assembly with ATC connector 4-7845 7 1 11” / 279 mm Rack 9-7041 8 1 11” / 279 mm Mounting Tube 9-7043 9 1 End Cap Assembly 9-7044 10 2 Body, Mounting, Pinch Block 9-4513 11 1 Pin, Mounting, Pinch Block 9-4521 12 1 Torch Holder Sleeve 7-2896 13 1 PIP Plunger and Return Spring Kit 9-7045 1 Pinion Assembly (Not shown) 7-2827
1 5” / 126 mm Positioning Tube (Not shown) 9-7042
NOTE
* Does not include Control Cable Adapter or Through - Hole Protector.
Refer to Section 6.09 for Replacement Shielded Leads Assemblies.
CUTMASTER 35mm, 40mm
A-07994
6
1
4
2
3
5
7
8
9
10
12
11
10
Manual 0-5118 6-5 PARTS LIST
CUTMASTER 35mm, 40mm
PARTS LIST 6-6 Manual 0-5118
A-03684
1
Torch Continuity ('PIP') Switch
Remote Pendant Adapter is present on Mechanized leads only.

6.08 Replacement Shielded Machine Torch Leads Assemblies

Item No. Qty Description Catalog No.
1 Mechanized Shielded Leads Assemblies with ATC Connectors 1 5 - foot / 1.5 m Leads Assembly with ATC Connector 4-7846 1 10 - foot / 3.05 m Leads Assembly with ATC Connector 4-7847 1 25 - foot / 7.6 m Leads Assembly with ATC Connector 4-7848 1 50 - foot / 15.2 m Leads Assembly with ATC Connector 4-7849

6.09 Torch Consumable Parts (SL100)

CUTMASTER 35mm, 40mm
Manual 0-5118 6-7 PARTS LIST
CUTMASTER 35mm, 40mm
This Page Intentionally Blank
PARTS LIST 6-8 Manual 0-5118
CUTMASTER 35mm, 40mm
ACTION:
ON / OFF switch to ON
RESULT:
AC indicator ON.
Fan(s) ON.
GAS indicator ON
when input
pressure is adequate
for power supply operation.
Power circuit ready.
ACTION:
Protect eyes and activate torch.
RESULT:
Gas flows briefly, then stops.
Gas restarts.
DC indicator ON
Pilot arc established.
Art #A-07979
ACTION:
Unplug input
power cord or
open external
disconnect.
RESULT:
No power to system.
ACTION:
Connect work cable to workpiece.
Set output amperage.
RESULT:
System is ready
for operation.
ACTION:
RUN / Rapid Auto Restart / SET / LATCH switch
to SET
RESULT:
Gas flows to set
pressure.
ACTION:
RUN / Rapid Auto Restart /
SET / LATCH
switch to RUN
(for most applications)
or to
Rapid Auto Restart
(for gouging, trimming,
or expanded metal
applications)
or to
LATCH
is used for specific applications
(torch switch can be released
after main arc transfer).
RESULT: Gas flow stops.
ACTION:
Release torch trigger.
RESULT:
Main arc stops.
Gas flow stops after post - flow.
ACTION:
ON / OFF switch
to OFF
RESULT:
All indicators off.
Power supply fan(s) shuts off.
ACTION:
Close external
disconnect switch.
RESULT:
Power to system.
ACTION:
Torch moved within
transfer distance of workpiece.
RESULT:
Main arc transfers.
Pilot arc off.
PILOT ARC
ACTION:
Torch moved away from work (while
still activated).
RESULT:
Main arc stops.
Pilot arc automatically
restarts.
APPENDIX 1: SEQUENCE OF OPERATION
(BLOCK DIAGRAM)
Manual 0-5118 A-1 APPENDIX
CUTMASTER 35mm, 40mm
APPENDIX A-2 Manual 0-5118
1/3
f
f
1
2
West Lebanon, NH USA 03784
Made in USA
Model:
U
1
1
1
1max 1eff
I
I
U
2
S/N
U
0
=
X
Standard Symbols
Ø
AC
DC
Phase
NOTES:
1. Symbol shown indicates single- or three-phase AC input, static frequency converter-transformer-rectifier, DC output.
2. Indicates input voltages for this power supply. Most power supplies carry a label at the input power cord showing input voltage requirements for the power supply as built.
3. Top row: Duty cycle values. IEC duty cycle value is calculated as specified by the International ElectroTechnical Commission. TDC duty cycle value is determined under the power supply manufacturer's test procedures. Second row: Rated cutting current values. Third row: Conventional load voltage values.
4. Sections of the Data Tag may be applied to separate areas of the power supply.
I
Art # A-03288
Date of Mfr:
Output Range (Amperage/ Voltage)
Type of Power Supply (Note 1)
Output Current Type
Rated No­Load Voltage
Plasma Cutting Symbol
Manufacturer's Name and/or Logo, Location, Model and Revision Level, Serial Number and Production Code
Conventional Load Voltage
Regulatory Standard Covering This Type of Power Supply
Duty Cycle Data (Note 3)
Duty Cycle Factor
Input Power Specifications (Phase, AC or DC Hertz Rating)
Input Power Symbol
Rated Supply Voltage (Note 2)
Rated Maximum Supply Current
Maximum Effective Supply Current
Degree of Protection
Manufacturer's Electrical Schematic File Number and Revision Level

APPENDIX 2: DATA TAG INFORMATION

APPENDIX 3: TORCH PIN - OUT DIAGRAMS

1
2
3
4
5
6
7
8
5
6
7
8
1
2
3
4
ATC Female Receptacle
Front View
Pilot
Pilot
6 - Open
7 - Open
8 - Open
5 - Open
Negative / Plasma
6 - Open
7 - Open
5 - Open
2 - PIP
3 - Switch
4 - Switch
1 - PIP
4 - Green / Switch
2- Orange / PIP
3 - White / Switch
1 - Black / PIP
Negative / Plasma
8 - Ground
ATC Male Connector
Front View
A-03701
ATC Female Receptacle
Front View
ATC Male Connector
Front View
Negative / Plasma
3 - White ­Pendant Connector
4- Black ­Pendant Connector
2 - Orange / PIP
1 - Black / PIP
Pilot
2 - PIP
1 - PIP
6 - Open
7 - Open
5 - Open
8 - Ground
8 - Green ­Pendant Connector Ground
5 - White / Not Used
7 - Green / Not Used
6 - Open
UNSHIELDED MACHINE TORCH
3 - Switch
4 - Switch
Art # A-03799
Negative / Plasma
Pilot
1
2
3
4
5
6
7
8
5
6
8
1
2
3
4
7
A. Hand Torch Pin - Out Diagram
B. Mechanized (Machine) Torch Pin - Out Diagram
CUTMASTER 35mm, 40mm
Manual 0-5118 A-3 APPENDIX
CUTMASTER 35mm, 40mm
APPENDIX A-4 Manual 0-5118
Torch: SL60 / SL100 Hand Torch Leads: Torch Leads with ATC Connector Power Supply: with ATC Receptacle
Pilot
Negative / Plasma
Power
Supply
PIP
Switch
Male
ATC Leads
Connector
ATC Female
Receptacle
Pilot
Negative / Plasma
Black
Orange
Torch Leads
Torch
Head
To Power Supply
Circuitry
Art # A-03797
1
2
5
6
4
3
8
7
1
2
5
6
4
3
8
7
Torch
Switch
Green
White
To Power Supply
Circuitry
Torch: Unshielded Mechanized SL100 Machine Torch Leads: Leads with ATC Connector and Remote Pendant Connector Power Supply: with ATC Female Receptacle
Pilot
Negative / Plasma
Power
Supply
To Remote Control
Remote
Pendant
Connector
PIP
Switch
Not
Used
Male
ATC Leads
Connector
ATC Female
Receptacle
Pilot Lead
Negative / Plasma Lead
Torch Leads
Torch
Head
Art # A-03798
1
2
5
6
4
3
8
7
To Power Supply
Circuitry
Green
To Power Supply
Circuitry
1
2
5
6
4
3
8
7
Black
White
Green
Black
Orange
White

APPENDIX 4: TORCH CONNECTION DIAGRAMS

A. Hand Torch Connection Diagram
B. Mechanized Torch Connection Diagram
CUTMASTER 35mm, 40mm
This Page Intentionally Blank
Manual 0-5118 A-5 APPENDIX
CUTMASTER 35mm, 40mm
APPENDIX A-6 Manual 0-5118
Art # A-08534
5
5
4
4
D D
C C
B B
A A
+12VDC
+12VDC
+12VDC
24VAC
+12VDC
+12VDC
+12VDC
_
INRUSH RESISTORS
FAN
3.3VDC TXD RXD
Q2
D
SERIAL PORT
*CM 35mm C7 & C10 not installed
_
/400
8
9
7A
L1
L2
L3
L4
T1
T2
T3
T4
PCB1
+
+
+
+
Q1
24VAC RET
5
PRIMARY AC INPUT 400VAC 3PH
6
/SOLENOID
CM 35mm 19X2371 / CAT# 9-0108 CM 40mm 19X2416 / CAT# 9-0125
MAIN PCB
7
/INRUSH
D1
L1
L2
L3
GND
C
D
B
A
_
Q2
_
B
CM 35mm 19X2478 / CAT# 9-0192 CM 40mm 19X2545 / CAT# 9-0202
A
PCB5
CM 35mm 40 AMP PCB 19X2417 / CAT# 9-0194
CM 40mm 50 AMP PCB 19X2417 / CAT# 9-0203
PCB2
Q1
FAN
/FAN
FAN
/FAN
D1
C
D
CAPACITOR PCB
1 /OVERTEMP 2 /FAN_ON 3 /CSR 4 CUR_SET 5 MAIN_PCB_ID 6 COMMON
SYNC
SYNC
1
2
3
4
1
2
3
4
EMI FILTER
CE UNITS ONLY
K3K3
40A_AC240A_AC2
+
C12-13+C12-13
J4J4
123456789
10
K1K1
MTH7MTH7
TP8TP8
SW1SW1
1 3
2 4
W1W1
J12J12
123
PMTH1PMTH1
PMTH2PMTH2
J14J14
40A_AC340A_AC3
AC1AC1
MOT2MOT2
+-
MTH4MTH4
AC3AC3
TP3TP3
TP4TP4
+
C16-17+C16-17
AC2AC2
MTH8MTH8
SOL 1SOL 1
J1J1
1 2
40A_AC140A_AC1
80A_AC180A_AC1
MOT1MOT1
+ -
J1J1
1 2 3 4 5
J3J3
1
2
PMTH3PMTH3
PRI 2PRI 2
MOT3MOT3
+-
J5J5
1 2 3
J1J1
1 2 3
80A_AC280A_AC2
PRI 2 PRI 2
+
C3,C4,C7,C8*+C3,C4,C7,C8*
PMTH1PMTH1
J13J13
12345
6
TP5TP5
J2J2
1 2
PRI 1 PRI 1
PRI 4PRI 4
AC1AC1
J4J4
1 2 3 4 5
PMTH4PMTH4
TP1TP1
PRI 3PRI 3
+
C5,C6,C9,C10*+C5,C6,C9,C10*
K4K4
MTH6MTH6
AC3AC3
J6J6
1 2
PRI 4 PRI 4
J9J9
TP2TP2 MTH2MTH2
J7J7
1 2
PMTH4PMTH4
PMTH2PMTH2
PRI 4 PRI 4
PRI 1PRI 1
J2J2
1 2
W1W1
MTH1MTH1
PMTH3PMTH3
PRI 3PRI 3
80A_AC380A_AC3
K3,K4K3,K4
AC2AC2
PRI 3PRI 3

APPENDIX 5: SYSTEM SCHEMATIC, 400V UNITS

CUTMASTER 35mm, 40mm
Art # A-08534
3
3
2
2
1
1
+12VDC
+12VDC
+12VDC
+5VDC
+12VDC
DWG No:
Sheet
of
SupersedesScale
Create Date:
Drawn:
Reference
Date
By
Change DescriptionRev
Information Proprietary to THERMADYNE INDUSTRIES
Not For Release, Reproduction, or Distribution without Written Consent.
NOTE: UNLESS OTHERWISE SPECIFIED -
1. RESISTOR VALUES ARE EXPRESSED IN OHMS, 1/4W 5%.
2. CAPACITOR VALUES ARE EXPRESSED IN MICROFARADS (uF).
Chk: App:
TITLE:
Last Modified:
SCHEMATIC,
NONE
42X1321
Tuesday, July 01, 2008
1 1
82 Benning Street West Lebanon, NH 03784
CutMaster 35mm/40mm 400VAC Systems
07:56:12
THERMADYNE
ECO-B1014 MNC 07/01/08
<DRAWN>
AA
DWG No:
Sheet
of
SupersedesScale
Create Date:
Drawn:
Reference
Date
By
Change DescriptionRev
Information Proprietary to THERMADYNE INDUSTRIES
Not For Release, Reproduction, or Distribution without Written Consent.
NOTE: UNLESS OTHERWISE SPECIFIED -
1. RESISTOR VALUES ARE EXPRESSED IN OHMS, 1/4W 5%.
2. CAPACITOR VALUES ARE EXPRESSED IN MICROFARADS (uF).
Chk: App:
TITLE:
Last Modified:
SCHEMATIC,
NONE
42X1321
Tuesday, July 01, 2008
1 1
82 Benning Street West Lebanon, NH 03784
CutMaster 35mm/40mm 400VAC Systems
07:56:12
THERMADYNE
ECO-B1014 MNC 07/01/08
<DRAWN>
AA
DWG No:
Sheet
of
SupersedesScale
Create Date:
Drawn:
Reference
Date
By
Change DescriptionRev
Information Proprietary to THERMADYNE INDUSTRIES
Not For Release, Reproduction, or Distribution without Written Consent.
NOTE: UNLESS OTHERWISE SPECIFIED -
1. RESISTOR VALUES ARE EXPRESSED IN OHMS, 1/4W 5%.
2. CAPACITOR VALUES ARE EXPRESSED IN MICROFARADS (uF).
Chk: App:
TITLE:
Last Modified:
SCHEMATIC,
NONE
42X1321
Tuesday, July 01, 2008
1 1
82 Benning Street West Lebanon, NH 03784
CutMaster 35mm/40mm 400VAC Systems
07:56:12
THERMADYNE
ECO-B1014 MNC 07/01/08
<DRAWN>
AA
19X2369 / CAT# 9-0107
OVER PRESSURE INTERNAL ERROR SHORTED TORCH CONSUMABLES MISSING START ERROR PARTS IN PLACE INPUT POWER UNDER PRESSURE
ERROR IND
FAULT
PCB3
LATCH
SET
RUN
RAR
MAX 90 85 80 75 70 65 MIN
TP1 TP2 TP3 TP4 TP5 TP6 TP7
LOGIC PCB
GND +12 VDC +5 VDC
3.3 VDC
0.v - 5.0 VDC / 0-100PSI
1.8 VDC CURRENT DEMAND
TEST POINTS
TEMP CIRCUIT
80 81 82
83
E64
E35
78 79
-
+
ATC CONNECTOR
GND1 GND2 +12V1 48V1 I_DMD_1 TIP_SEN
COMMON COMMON +12 VDC SUPPLY +48 VDC SUPPLY CURRENT DEMAND TIP DRAG SENSE
TEST POINTS
CM 40mm ONLY
J2
J1
J2 PINOUT
1
3
4
7
811
12
14
OK-TO-MOVE
/PIP
/START
24VAC RETURN
24VAC SUPPLY
/OVERTEMP
TEMP CIRCUIT
PRESSURE TRANSDUCER
AIR INLET
FILTER
REGULATOR
SOLENOID VALVE
ATC
GAS CONTROL
0-100PSI / 0-4.5VDC
/OVERTEMP
D3
(5A @ 250VAC / 30VDC)
1TORCH
AUTOMATION TORCH SOLENOID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 29 34 35 36 37 38 39
-V_OUT_SIGNAL /TIP_VOLTS /TIP_SENSE /400V_IN N/A CUR_SET /RAR (RAPID AUTO RESTART) /INRUSH /W1_ON SHDN /TORCH_SOLENOID /SOLENOID_ON /OK_TO_MOVE /FAN_ON /LATCH_ACTIVE /TORCH_SWITCH /PIP AC_ON CSR /TORCH_SOLENOID_DETECT /OVERTEMP V_IN
+12VDC +12VDC COMMON COMMON MAIN_PCB_ID 460_IN +3.3VDC TXD RXD COMMON D
M-L M-L M-L L-M
L-M L-M L-M L-M L-M L-M L-M L-M L-M L-M M-L M-L M-L M-L M-L M-L M-L M-L M-L M-L M-L M-L M-L L-M M-L M-L L-M M-L
40 PIN RIBBON CABLE SIGNALS
D2
}
OK-TO-MOVE
OK TO MOVE
}
}
PCB4
AUTOMATION INTERFACE PCB 19X2479 / CAT# 9-8311
FULL FEATURED AUTOMATION INTERFACE PCB OPTION
BASIC CNC INTERFACE OPTION
(+)
}
To configure DIVIDED ARC VOLTS signal output Jumper pins 1 & 2 for ARC VOLTS / 50 Jumper pins 2 & 3 for ARC VOLTS / 16
K1
To -V OUT 1 on PCB1
}
/START / STOP
* *
}
DIVIDED ARC VOLTS
/START / STOP
(+)
(-)
(W/ 100K IN SERIES (2))
(-)
*
ARC VOLTS
NTCNTC
8080
SEC1SEC1
SEC1SEC1
J2J2
2
3
4
5
6
7
8
9
10
11
12
13
14
1
J1J1
1 2 3 4 5 6 7 8
MAXMAX
J1J1
1 2 3 4 5 6 7 8
TS1TS1
K10K10
TIP1TIP1
SEC2SEC2
8585
SEC2SEC2
J3J3
3 2 1
MINMIN
1 2 3 4 5 6 7 8
J11J11
1
2
WORK1WORK1
D1D1
J3J3
123
L1L1
D78 CSRD78 CSR
9090
D59 PCRD59 PCR
123
OVERTEMPOVERTEMP
Q5
PILOT IGBTQ5PILOT IGBT
PIP SWITCHPIP SWITCH
E1E1
7575
CHOKE1CHOKE1
Current ControlCurrent Control
-V OUT 1-V OUT 1
GASGAS
6565
P10P10
1 2 3 4 5 6 7 8
J2J2
2 3 4 5 6 7 8 9 10 11 12 13 14
1
+OUT_1+OUT_1
L2L2
T1T1
NTCNTC
7070
TORCH SWITCHTORCH SWITCH
J9J9
1 2 3 4 5 6 7
WORKWORK
DCDC
P10P10
1 2 3 4 5 6 7 8
ACAC
J10J10
3
5 6 7 8
1 2
4
T2T2
ERRORERROR
CHOKE1CHOKE1
ELECTRODE1ELECTRODE1
Manual 0-5118 A-7 APPENDIX
CUTMASTER 35mm, 40mm

APPENDIX 6: Publication History

Cover Date Rev. Change(s)
Sept. 30, 2008 AA Manual released.
APPENDIX A-8 Manual 0-5118
GLOBAL CUSTOMER SERVICE CONTACT
Thermadyne USA
2800 Airport Road Denton, Tx 76207 USA Telephone: (940) 566-2000 800-426-1888 Fax: 800-535-0557
Thermadyne Canada
2070 Wyecroft Road Oakville, Ontario Canada, L6L5V6 Telephone: (905)-827-1111 Fax: 905-827-3648
Thermadyne Europe
Europe Building Chorley North Industrial Park Chorley, Lancashire England, PR6 7Bx Telephone: 44-1257-261755 Fax: 44-1257-224800
Thermadyne Asia Sdn Bhd
Lot 151, Jalan Industri 3/5A Rawang Integrated Industrial Park - Jln Batu Arang 48000 Rawang Selangor Darul Ehsan West Malaysia Telephone: 603+ 6092 2988 Fax : 603+ 6092 1085
Cigweld, Australia
71 Gower Street Preston, Victoria Australia, 3072 Telephone: 61-3-9474-7400 Fax: 61-3-9474-7510
Thermadyne Italy
OCIM, S.r.L. Via Bolsena 7 20098 S. Giuliano Milan, Italy Tel: (39) 0236546801 Fax: (39) 0236546840
Thermadyne, China
RM 102A 685 Ding Xi Rd Chang Ning District Shanghai, PR, 200052 Telephone: 86-21-69171135 Fax: 86-21-69171139
Thermadyne International
2070 Wyecroft Road Oakville, Ontario Canada, L6L5V6 Telephone: (905)-827-9777 Fax: 905-827-9797
Corporate Headquarters
16052 Swingley Ridge Road Suite 300 St. Louis, MO 63017 Telephone: 636-728-3000 Email: TDCSales@Thermadyne.com
www.thermadyne.com
Loading...