Texas Instruments orporated WL18SBMOD User Manual

WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board for TI Sitara™ Platform
User's Guide
Literature Number: SWRU359C
September 2013–Revised January 2014
Preface ....................................................................................................................................... 3
1 Introduction ........................................................................................................................ 4
1.1 Features .................................................................................................................. 4
1.2 Applications .............................................................................................................. 5
1.3 TI Module Key Benefits ................................................................................................. 5
2 Board Pin Assignment ......................................................................................................... 6
2.1 Pin Descriptions ......................................................................................................... 7
3 Electrical Characteristics ..................................................................................................... 9
4 Antenna Characteristics ....................................................................................................... 9
4.1 VSWR ..................................................................................................................... 9
4.2 Efficiency ................................................................................................................ 10
5 Antenna Characteristics ..................................................................................................... 10
5.1 Radio Pattern ........................................................................................................... 10
6 Circuit Design ................................................................................................................... 14
6.1 Schematic ............................................................................................................... 14
6.2 Bill of Materials (BOM) ................................................................................................ 15
7 Layout Guidelines ............................................................................................................. 16
7.1 Board Layout ........................................................................................................... 16
2

Table of Contents SWRU359C–September 2013–Revised January 2014

Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
About This Manual
This user's guide describes how to use the TI WL1835MODCOM8B board to evaluate the performance of the TI WL18MODGB module.
Related Documentation From Texas Instruments
TI WiLink8 Single-Band Combo Module – Wi-Fi, Bluetooth, and BLE (SWRS152)
WiLink 8 Wiki: http://www.ti.com/wilink8wiki
If You Need Assistance
The primary sources of WL18MODGB information are the device-specific data sheets and user’s guides. For the most up-to-date version of the user’s guide and data sheets, go to
http://www.ti.com/product/wl1835mod.
Warning
The WL1835MODCOM8B board is tested to comply with ETSI/R&TTE over temperatures from –20 to +70°C.
This board should not be modified to operate in other frequency bands other than what they are designed for.
FCC Licensing Requirements for EVM’s Wifi and Bluetooth Radio Module:
For evaluation only; not FCC approved for resale. This kit is designed to allow:
1. Product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product
2. Software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18, or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.”
Per TI’s Regulatory Compliance Information located in the WL1835ModCOMB8A User’s Guide’s “Evaluation Board/Kit/Module (EVM) Additional Terms,” this EVM cannot be used for production purposes and is explicitly restricted from end-product introduction.
Use of this EVM requires the developer to provide a minimum distance of at least 20 cm from the antenna to all persons in order to minimize risk of potential radiation hazards.
Industry Canada Licensing Requirements:
The radio module is Industry Canada certified, but does not apply to the EVM. This EVM is not authorized for sale or use inCanada unless special provisions are arranged between developer and Industry Canada.

Preface

SWRU359C–September 2013–Revised January 2014
Read This First
CAUTION
Do not leave the EVM powered when unattended.
SWRU359C–September 2013–Revised January 2014 Preface
Submit Documentation Feedback
Copyright © 2013–2014, Texas Instruments Incorporated
3
User's Guide
SWRU359C–September 2013–Revised January 2014
WL1835MODCOM8B WLAN MIMO and Bluetooth®Module
Evaluation Board for TI Sitara™ Platform

1 Introduction

The WL1835MODCOM8B device is a WiFi®MIMO, Bluetooth, and Bluetooth Low Energy (BLE) module board with the TI WL18MODGB module. WL18MODGB is built-in TI WL1835 IEEE 802.11 b/g/n and Bluetooth 4.0 solutions to provide the best WiFi and Bluetooth coexistence interoperability and power­saving technologies from TI.

1.1 Features

WLAN, Bluetooth, BLE on a module board
100-pin board card
Dimension 76.0 mm(L) x 31.0 mm(W)
WLAN 2.4 GHz SISO (20- and 40-MHz channels), 2.4-GHz MIMO (20-MHz channels)
Support for BLE dual mode
Seamless integration with TI Sitara and other application processors
Design for TI AM335X general-purpose EVM
WLAN and Bluetooth, BLE cores are software and hardware compatible with prior WL127x, WL128x and CC256x offerings, for smooth migration to device.
Shared HCI transport for Bluetooth and BLE over UART and SDIO for WLAN.
WiFi / Bluetooth single antenna co-existence
Built-in chip antenna
4
WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board SWRU359C–September 2013–Revised January 2014 for TI Sitara™ Platform
Figure 1. WL1835MODCOM8B Top View
Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com
Optional U.FL RF connector for external 2.4-GHz band antenna
Direct connection to battery using external switching mode power supply supporting 4.8-V to 2.9-V operation
VIO in the 1.8-V domain

1.2 Applications

Internet of Things Multimedia
Home Electronics
Home Appliances and White Goods
Industrial and Home Automation
Smart Gateway and Metering
Video Conferencing
Video Camera and Security

1.3 TI Module Key Benefits

Reduces Design Overhead: Single WiLink8™ Module Scales Across Wi-Fi and Bluetooth.
WLAN High Throughput: 80 Mbps (TCP), 100 Mbps (UDP)
Bluetooth 4.0 + BLE (Smart Ready)
WiFi-Bluetooth Single Antenna Coexistence
Low Power (30–50% Less than Previous Generation)
Available as Easy-to-Use FCC, ETSI, and Telec Certified Module
Lower Manufacturing Costs, Saving Board Space and Minimizing RF Expertise
AM335x Linux®and Android™ Reference Platform Accelerates Customer Development and Time to Market
Introduction
SWRU359C–September 2013–Revised January 2014 WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board
Submit Documentation Feedback
Copyright © 2013–2014, Texas Instruments Incorporated
for TI Sitara™ Platform
5
U1 WL18MODGB
Board Pin Assignment

2 Board Pin Assignment

www.ti.com
Figure 2. Board Top View
Figure 3. Board Bottom View
6
WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board SWRU359C–September 2013–Revised January 2014 for TI Sitara™ Platform
Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com

2.1 Pin Descriptions

No. Name Type Description
1 SLOW_CLK I Slow clock input 2 GND G Ground 3 GND G Ground 4 WL_EN I WLAN Enable 5 VBAT P Power supply input 6 GND G Ground 7 VBAT P Power supply input 8 VIO P Power supply input for I/O pin 9 GND G Ground 10 N.C. No connection 11 WL_RS232_TX O WLAN tool RS232 output 12 N.C. No connection 13 WL_RS232_RX I WLAN tool RS232 input 14 N.C. No connection 15 WL_UART_DBG O WLAN Logger output 16 N.C. No connection 17 N.C. No connection 18 GND G Ground 19 GND G Ground 20 SDIO_CLK I WLAN SDIO clock 21 N.C. No connection 22 GND G Ground 23 N.C. No connection 24 SDIO_CMD I/O WLAN SDIO command 25 N.C. No connection 26 SDIO_D0 I/O WLAN SDIO data bit 0 27 N.C. No connection 28 SDIO_D1 I/O WLAN SDIO data bit 1 29 N.C. No connection 30 SDIO_D2 I/O WLAN SDIO data bit 2 31 N.C. No connection 32 SDIO_D3 I/O WLAN SDIO data bit 3 33 N.C. No connection 34 WLAN_IRQ O WLAN SDIO interrupt out 35 N.C. No connection 36 N.C. No connection 37 GND G Ground 38 N.C. No connection 39 N.C. No connection 40 N.C. No connection 41 N.C. No connection 42 GND G Ground 43 N.C. No connection 44 N.C. No connection 45 N.C. No connection 46 N.C. No connection 47 GND G Ground
Board Pin Assignment
SWRU359C–September 2013–Revised January 2014 WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board for
Submit Documentation Feedback
Copyright © 2013–2014, Texas Instruments Incorporated
TI Sitara™ Platform
7
Board Pin Assignment
No. Name Type Description
48 N.C. No connection 49 N.C. No connection 50 N.C. No connection 51 N.C. No connection 52 PCM_IF_CLK I/O Bluetooth PCM clock input or output 53 N.C. No connection 54 PCM_IF_FSYNC I/O Bluetooth PCM frame sync input or output 55 N.C. No connection 56 PCM_IF_DIN I Bluetooth PCM data input 57 N.C. No connection 58 PCM_IF_DOUT O Bluetooth PCM data output 59 N.C. No connection 60 GND G Ground 61 N.C. No connection 62 N.C. No connection 63 GND G Ground 64 GND G Ground 65 N.C. No connection 66 BT_UART_IF_TX O Bluetooth HCI UART transmit output 67 N.C. No connection 68 BT_UART_IF_RX I Bluetooth HCI UART receive input 69 N.C. No connection 70 BT_UART_IF_CTS I Bluetooth HCI UART Clear to Send input 71 N.C. No connection 72 BT_UART_IF_RTS O Bluetooth HCI UART Request to Send output 73 N.C. No connection 74 BT_FUNC1 O BT_HOST_WAKE_UP Signal to wake up the host from Bluetooth 75 N.C. No connection 76 BT_UART_DEBUG O Bluetooth Logger UART output 77 GND G Ground 78 GPIO9 I/O General-purpose I/O 79 N.C. No connection 80 N.C. No connection 81 N.C. No connection 82 N.C. No connection 83 GND G Ground 84 N.C. No connection 85 N.C. No connection 86 N.C. No connection 87 GND G Ground 88 N.C. No connection 89 BT_EN I Bluetooth Enable 90 N.C. No connection 91 N.C. No connection 92 GND G Ground 93 BT_FUNC2 I BT_WAKE_UP Bluetooth wakeup from host 94 N.C. No connection 95 GND G Ground 96 GPIO11 I/O General-purpose I/O
www.ti.com
8
WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board for SWRU359C–September 2013–Revised January 2014 TI Sitara™ Platform
Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com
No. Name Type Description
97 GND G Ground 98 GPIO12 I/O General-purpose I/O 99 N.C. General-purpose I/O 100 GPIO10 I/O General-purpose I/O

3 Electrical Characteristics

Refer to the detailed data in the WL18MODGB data sheet for electrical characteristics.

4 Antenna Characteristics

4.1 VSWR

Figure 4 shows the antenna VSWR.
Electrical Characteristics
Figure 4. Antenna VSWR
SWRU359C–September 2013–Revised January 2014 WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board
Submit Documentation Feedback
Copyright © 2013–2014, Texas Instruments Incorporated
for TI Sitara™ Platform
9
Antenna Characteristics

4.2 Efficiency

Figure 5 shows the antenna efficiency.
www.ti.com

5 Antenna Characteristics

5.1 Radio Pattern

Figure 6 shows the radio pattern of the WL1835MODCOM8B device.
Figure 5. Antenna Efficiency
10
Figure 6.
WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board SWRU359C–September 2013–Revised January 2014 for TI Sitara™ Platform
Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com

5.1.1 ANT1

Figure 7 shows the ANT1 polarization of the WL1835MODCOM8B device.
Antenna Characteristics
Figure 7.
Figure 8.
SWRU359C–September 2013–Revised January 2014 WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board
Submit Documentation Feedback
Copyright © 2013–2014, Texas Instruments Incorporated
for TI Sitara™ Platform
11
Antenna Characteristics

5.1.2 ANT2

Figure 10 shows the ANT2 polarization of the WL1835MODCOM8B device.
www.ti.com
Figure 9.
12
Figure 10.
WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board SWRU359C–September 2013–Revised January 2014 for TI Sitara™ Platform
Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com
Antenna Characteristics
Figure 11.
Figure 12.
SWRU359C–September 2013–Revised January 2014 WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board
Submit Documentation Feedback
Copyright © 2013–2014, Texas Instruments Incorporated
for TI Sitara™ Platform
13
EDGE CONNECTOR - MALE
WL_BG ANT2WL_BG/BT ANT1
Short PIN Header (1-2) for entering test mode. Open for function mode.
These two TPs for test mode when WL_IRQ pull high.
WL_UART_DBG
BT_AUD_CLK
BT_AUD_FSYNC
BT_AUD_IN
WL_RS232_TX
WL_RS232_RX
BT_HCI_TX
BT_HCI_RX
BT_HCI_CTS
BT_HCI_RTS
BT_EN_SOC
BT_UART_DBG
SDIO_CLK_WL
SDIO_CMD_WL
SDIO_D0_WL
SDIO_D2_WL
SDIO_D3_WL
SDIO_D1_WL
WLAN_EN_SOC
BT_AUD_OUT
BT_FUNC1
GPIO9
GPIO11
GPIO12
GPIO10
SLOW_CLK
BT_FUNC2
WLAN_IRQ
2G4_ANT1_WB
2G4_ANT2_W
SDIO_D3_WL
GPIO12
SDIO_D2_WL
GPIO11
SDIO_D0_WL
SDIO_D1_WL
GPIO9
WLAN_IRQ
GPIO10
2G4_ANT2_W
WL_RS232_TX
WL_RS232_RX
2G4_ANT1_WB
BT_FUNC1
BT_FUNC2
BT_HCI_RX
BT_HCI_TX
BT_HCI_CTS
BT_HCI_RTS
BT_AUD_IN
BT_AUD_OUT
BT_AUD_CLK
BT_AUD_FSYNC
SDIO_CMD_WL
SDIO_CLK_WL
SLOW_CLK
WL_UART_DBG
BT_UART_DBG
BT_EN_SOC
WLAN_EN_SOC
VBAT_IN
VIO_IN
VIO_IN
VBAT_IN
VIO_IN
VIO_IN
R20 10k
0402
R25 0R 0402
C5 10pF
0402
J6 U.FL-R-SMT(10)
U.FL
1
2
3
C14 4pF
0402
ANT2 ANT016008LCD2442MA1
ANT-N3-1.6X0.8MM-B
5G
B2
FEED
A
2.4G
B1
R17
0R 0402
C6 10pF
0402
J2 NU_100pin Micro Edge MEC6
SD-100P
1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52
53 54
55 56
57 58
59 60
61 62
63 64
65 66
67 68
69 70
71 72
73 74
75 76
77 78
79 80
81 82
83 84
85 86
87 88
89 90
91 92
93 94
95 96
97 98
99 100
TP4
1
C7 NU_10pF
0402
C9 2pF
0402
R12 0R 0402
C11
1.2pF
0402
R11 0R 0402
ANT1 ANT016008LCD2442MA1
ANT-N3-1.6X0.8MM-A
5G
B2
FEED
A
2.4G
B1
C1 1uF
0402
R30 0R 0402
R9 0R 0402
J5 U.FL-R-SMT(10)
U.FL
1
2
3
C10 NU_0.3pF
0402
R10 0R
0402
TP1
1
TP5
1
R2 0R 0402
0RR21 0402
TP6
1
0RR19 0402
OSC1 1V8 / 32.768kHz
OSC-3.2X2.5
EN
1
VCC
4
OUT
3
GND
2
R6 0R
0402
R3 0R 0402
R16 0R 0402
U1 WL1835MODGB
E-13.4X13.3-N100_0.75-TOP
GPIO93GPIO125GPIO112GPIO10
4
GND
17
VIO
38
VBAT
47
EXT_32K
36
BT_AUD_FSYNC
58
BT_AUD_IN
56
BT_AUD_OUT
57
BT_AUD_CLK
60
WL_SDIO_D2
12
WL_SDIO_CLK
8
WL_SDIO_D313WL_SDIO_D010WL_SDIO_D1
11
WL_SDIO_CMD
6
BT_HCI_RTS
50
BT_HCI_RX
53
BT_HCI_TX
52
BT_HCI_CTS
51
GND
16
GPIO_4
25
GPIO_2
26
GPIO_1
27
BT_EN_SOC
41
WLAN_IRQ
14
WLAN_EN_SOC
40
BT_UART_DBG
43
WL_UART_DBG
42
GND
G13
GND
G14
GND
G15
GND
G16
GND
G9
GND
G10
GND
48
GND
G11
GND
G12
VBAT
46
GND
28
GND
G1
GND
G2
GND
G3
GND
G4
GND
G5
GND
G6
GND
G7
GND
G8
2G4_ANT1_WB
32
GND
64
GND
1
GND
20
RESERVED1
21
RESERVED2
22
GND
37
GND
19
RESERVED3
62
GND
G17
GND
G18
GND
G19
GND
G20
GND
G21
GND
G22
GND
G23
GND
G24
GND
G25
GND
G26
GND
G27
GND
G28
GND
G29
GND
G30
GND
G31
GND
G32
GND
G33
GND
G34
GND
G35
GND
23
GND
59
GND
34
GND
29
GND
7
2G4_ANT2_W
18
GND
49
GND
9
GND
31
GND
35
GND
15
GND
55
GND45GND
44
GND
30
GND
24
GND
63
GND
61
GND
39
GND
33
GND
54
GND
G36
C2 10uF
0603
R31 0R
0402
J1 HEADER 1x2
H-1X2_2MM
1
2
R1 0R 0402
R29 0R 0402
R8 0R 0402
L1
0402
1.1nH
TP3
1
R28 0R 0402
0RR24 0402
R7 0R 0402
TP8
1
R14 0R 0402
C8
NU_10pF
0402
C4
0.1uF
0402
R27 0R 0402
R13 0R 0402
R15 0R 0402
C3
0.1uF
0402
0RR22 0402
R18 0R 0402
R4 0R 0402
R23 0R 0402
R32 0R
0402
C13 8pF
0402
R5 NU_0R
0402
C12 NU
0402
J3 HEADER 1x2
H-1X2_2MM
1
2
J4 HEADER 1x2
H-1X2_2MM
1
2
0RR26 0402
L2
1.5nH
0402
TP2
1
Circuit Design

6 Circuit Design

6.1 Schematic

www.ti.com
Figure 13. Schematic
14
WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board for SWRU359C–September 2013–Revised January 2014 TI Sitara™ Platform
Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com

6.2 Bill of Materials (BOM)

Table 1 lists the bill of materials.
1 TI WL1835 WiFi/Bluetooth Module WL18MODGB U1 2 XOSC 3225 / 32.768 kHz / 1.8 V / ±50 ppm 7XZ3200005 OSC1 3 ANT / Chip / 2.4 GHz, 5 GHz / Peak Gain >5 dBi ANT016008LCD2442MA1 ANT1, ANT2 4 CON Male 1x2 / Pitch P301-SGP-040/028-02 J1, J3, J4 5 DC JUMPER / PITCH 2.0 mm CMJ-20BB J1, J3 6 Mini RF Header Receptacle U.FL-R-SMT-1(10) J5, J6 7 IND 0402 / 1.1 nH / ±0.05 nH / SMD LQP15MN1N1W02 L1 8 IND 0402 / 1.5 nH / ±0.05 nH / SMD LQP15MN1N5W02 L2
9 CAP 0402 / 1.2 pF / 50 V / C0G / ±0.1 pF GJM1555C1H1R2BB01 C11 10 CAP 0402 / 2.2 pF / 50 V / C0G / ±0.1 pF GJM1555C1H2R2BB01 C9 11 CAP 0402 / 4 pF / 50 V / C0G / ±0.1 pF GJM1555C1H4R0BB01 C14 12 CAP 0402 / 8 pF / 50 V / C0G / ±0.1 pF GJM1555C1H8R0BB01 C13 13 CAP 0402 / 10 pF / 50 V / NPO / ±5% 0402N100J500LT C7, C8 14 CAP 0402 / 0.1 µF / 6.3 V / X7R / ±10% 0402B104K100CT C3, C4 15 CAP 0402 / 1 µF / 6.3 V / X5R / ±10% / HF GRM155R60J105KE19D C1 16 CAP 0603 / 10 µF / 6.3 V / X5R / ±20% C1608X5R0J106M C2
17 RES 0402 / 0R / ±5% WR04X000 PTL R16, R17, R18, R19, R21, R22,
18 RES 0402 / 10K / ±5% WR04X103 JTL R20
Circuit Design
Table 1. BOM
R1, R2, R3, R4, R5, R6, R7, R8, R9,
R10, R11, R12, R13, R14, R15, R23, R24, R25, R26, R27, R28,
R29, R30, R31, R32
SWRU359C–September 2013–Revised January 2014 WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board
Submit Documentation Feedback
Copyright © 2013–2014, Texas Instruments Incorporated
for TI Sitara™ Platform
15
Layout Guidelines

7 Layout Guidelines

7.1 Board Layout

Figure 14 shows the WL1835MODCOM8B 4-layer board. Table 2, Figure 15, Figure 16, Figure 17, Figure 18, and Figure 19 show instances of good layout practices.
www.ti.com
Figure 14. Layer 1
16
Figure 15. Layer 2
WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board SWRU359C–September 2013–Revised January 2014 for TI Sitara™ Platform
Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com
Layout Guidelines
Figure 16. Layer 3
Figure 17. Layer 4
Table 2. Module Layout Guidelines
Reference Guideline Description
1 The proximity of ground vias must be close to the pad. 2 Signal traces must not be run underneath the module on the layer where the module is mounted. 3 Have a complete ground pour in layer 2 for thermal dissipation. 4 Have a solid ground plane and ground vias under the module for stable system and thermal dissipation.
5
6
SWRU359C–September 2013–Revised January 2014 WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board
Submit Documentation Feedback
Increase the ground pour in the first layer and have all of the traces from the first layer on the inner layers, if possible.
Signal traces can be run on a third layer under the solid ground layer, which is below the module mounting layer.
Copyright © 2013–2014, Texas Instruments Incorporated
for TI Sitara™ Platform
17
Layout Guidelines
www.ti.com
Figure 18. Module Layout Guidelines (Top Layer)
18
Figure 19. Module Layout Guidelines (Bottom Layer)
Figure 20 shows the trace design for the PCB. A 50-Ω impedance match on the trace to the antenna
should be used. Also, 50-Ω traces are recommended for the PCB layout.
WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board SWRU359C–September 2013–Revised January 2014 for TI Sitara™ Platform
Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com
Figure 21 shows layer 1 with the trace to the antenna over ground layer 2.
Layout Guidelines
Figure 20. Trace Design for the PCB Layout
Figure 21. Layer 1 Combined With Layer 2
Table 3, Figure 22, and Figure 23 describe instances of good layout practices for the antenna and RF
trace routing.
Table 3. Antenna and RF Trace Routing Layout Guidelines
Reference Guideline Description
1
2 3 RF traces must have via stitching on the ground plane beside the RF trace on both sides
4 RF traces must have constant impedance (microstrip transmission line). 5 6 There must be no traces or ground under the antenna section. 7
SWRU359C–September 2013–Revised January 2014 WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board for
Submit Documentation Feedback
The RF trace antenna feed must be as short as possible beyond the ground reference. At this point, the trace starts to radiate.
The RF trace bends must be gradual with an approximate maximum bend of 45 degrees with trace mitered. RF traces must not have sharp corners.
For best results, the RF trace ground layer must be the ground layer immediately below the RF trace. The ground layer must be solid.
RF traces must be as short as possible. The antenna, RF traces, and modules must be on the edge of the PCB product. The proximity of the antenna to the enclosure and the enclosure material must also be considered.
TI Sitara™ Platform
Copyright © 2013–2014, Texas Instruments Incorporated
19
Layout Guidelines
www.ti.com
Figure 22. Top Layer – Antenna and RF Trace Routing Layout Guidelines
20
Figure 23. Bottom Layer – Antenna and RF Trace Routing Layout Guidelines
WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board SWRU359C–September 2013–Revised January 2014 for TI Sitara™ Platform
Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
www.ti.com
Figure 24 describes the MIMO antenna spacing. The distance of ANT1 and ANT2 must be greater than
half of wavelength (62.5 mm @ 2.4 GHz).
The supply routing guidelines are as follows:
For power supply routing, the power trace for V
The 1.8-V trace must be at least 18 mil wide.
Make V
If possible, shield V The digital signals routing guidelines are as follows:
SDIO signals traces (CLK, CMD, D0, D1, D2, and D3) should be routed in parallel to each other and
SDIO Clock, PCM clock… These digital clock signals are a source of noise. Keep the traces of these
Layout Guidelines
Figure 24. MIMO Antenna Spacing
must be at least 40 mil wide.
BAT
traces as wide as possible to ensure reduced inductance and trace resistance.
BAT
traces with ground above, below, and beside the traces.
BAT
as short as possible (less than 12 cm). In addition, every trace length must be the same as the others. There should be enough space between traces – greater than 1.5 times the trace width or ground – to ensure signal quality, especially for the SDIO_CLK trace. Remember to keep them away from the other digital or analog signal traces. TI recommends adding ground shielding around these buses.
signals as short as possible. Whenever possible, maintain a clearance around them.
SWRU359C–September 2013–Revised January 2014 WL1835MODCOM8B WLAN MIMO and Bluetooth®Module Evaluation Board
Submit Documentation Feedback
Copyright © 2013–2014, Texas Instruments Incorporated
for TI Sitara™ Platform
21
Revision History
www.ti.com
This user's guide revision history highlights the technical changes made to the SWRU359 device-specific user's guide.
Revision History
Revision Date Description / Changes
Changed all references of the module from
SWRS359C January 2014
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
WL1835MODGB to WL18MODGB. In Warning: Changed tested-temperature range from 0 –
+70, to –20 – +70.
22
Revision History SWRU359C–September 2013–Revised January 2014
Copyright © 2013–2014, Texas Instruments Incorporated
Submit Documentation Feedback
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated
Loading...