Texas Instruments TVP5147M1PFP User Manual

Page 1

l
 y    !"  #$%E %& '( )%*+$& % % ,( 
Data M anua
March 2007 Digital Audio Video
SLES140A
Page 2
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty . Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Low Power Wireless www.ti.com/lpw Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video Wireless www.ti.com/wireless
Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright 2007, Texas Instruments Incorporated
Page 3
Contents
Contents
Section Page
1 Introduction 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.1 Detailed Functionality 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2 TVP5147M1 Applications 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Related Products 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.4 Ordering Information 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.5 Functional Block Diagram 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.6 Terminal Assignments 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.7 Terminal Functions 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Functional Description 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1 Analog Processing and A/D Converters 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Video Input Switch Control 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.2 Analog Input Clamping 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.3 Automatic Gain Control 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.4 Analog Video Output 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.5 A/D Converters 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 Digital Video Processing 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 2y Decimation Filter 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.2 Composite Processor 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.3 Luminance Processing 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.4 Color Transient Improvement 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3 Clock Circuits 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4 Real-Time Control (RTC) 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5 Output Formatter 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.1 Separate Syncs 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.5.2 Embedded Syncs 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6 I2C Host Interface 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.1 Reset and I2C Bus Address Selection 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.2 I2C Operation 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.6.3 VBUS Access 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7 VBI Data Processor 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.1 VBI FIFO and Ancillary Data in Video Stream 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.7.2 VBI Raw Data Output 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.8 Reset and Initialization 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.9 Adjusting External Syncs 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.10 Internal Control Registers 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11 Register Definitions 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.1 Input Select Register 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.2 AFE Gain Control Register 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.3 Video Standard Register 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.4 Operation Mode Register 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.5 Autoswitch Mask Register 33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.6 Color Killer Register 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.7 Luminance Processing Control 1 Register 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.8 Luminance Processing Control 2 Register 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.9 Luminance Processing Control 3 Register 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.10 Luminance Brightness Register 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
July 2005 SLES140
iii
Page 4
Contents
Section Page
2.11.11 Luminance Contrast Register 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.12 Chrominance Saturation Register 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.13 Chroma Hue Register 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.14 Chrominance Processing Control 1 Register 36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.15 Chrominance Processing Control 2 Register 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.16 AVID Start Pixel Register 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.17 AVID Stop Pixel Register 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.18 HSYNC Start Pixel Register 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.19 HSYNC Stop Pixel Register 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.20 VSYNC Start Line Register 38 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.21 VSYNC Stop Line Register 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.22 VBLK Start Line Register 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.23 VBLK Stop Line Register 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.24 CTI Delay Register 39 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.25 CTI Control Register 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.26 Sync Control Register 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.27 Output Formatter 1 Register 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.28 Output Formatter 2 Register 41 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.29 Output Formatter 3 Register 42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.30 Output Formatter 4 Register 43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.31 Output Formatter 5 Register 44 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.32 Output Formatter 6 Register 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.33 Clear Lost Lock Detect Register 45 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.34 Status 1 Register 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.35 Status 2 Register 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.36 AGC Gain Status Register 47 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.37 Video Standard Status Register 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.38 GPIO Input 1 Register 48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.39 GPIO Input 2 Register 49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.40 AFE Coarse Gain for CH 1 Register 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.41 AFE Coarse Gain for CH 2 Register 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.42 AFE Coarse Gain for CH 3 Register 51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.43 AFE Coarse Gain for CH 4 Register 51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.44 AFE Fine Gain for Pb Register 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.45 AFE Fine Gain for Y_Chroma Register 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.46 AFE Fine Gain for Pr Register 52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.47 AFE Fine Gain for CVBS_Luma Register 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.48 Field ID Control Register 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.49 F-bit and V-bit Control 1 Register 54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.50 Back-End AGC Control Register 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.51 AGC Decrement Speed Control Register 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.52 ROM Version Register 55 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.53 AGC White Peak Processing Register 56 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.54 F and V Bit Control Register 57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.55 VCR Trick Mode Control Register 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.56 Horizontal Shake Increment Register 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.57 AGC Increment Speed Register 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.58 AGC Increment Delay Register 58 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv
July 2005SLES140
Page 5
Contents
Section Page
2.11.59 Analog Output Control 1 Register 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.60 Chip ID MSB Register 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.61 Chip ID LSB Register 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.62 CPLL Speed Control Register 59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.63 Status Request Register 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.64 Vertical Line Count Register 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.65 AGC Decrement Delay Register 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.66 VDP TTX Filter And Mask Registers 61 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.67 VDP TTX Filter Control Register 62 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.68 VDP FIFO Word Count Register 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.69 VDP FIFO Interrupt Threshold Register 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.70 VDP FIFO Reset Register 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.71 VDP FIFO Output Control Register 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.72 VDP Line Number Interrupt Register 64 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.73 VDP Pixel Alignment Register 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.74 VDP Line Start Register 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.75 VDP Line Stop Register 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.76 VDP Global Line Mode Register 65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.77 VDP Full Field Enable Register 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.78 VDP Full Field Mode Register 66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.79 VBUS Data Access With No VBUS Address Increment Register 66 . . . . . . . . . . . . . . .
2.11.80 VBUS Data Access With VBUS Address Increment Register 66 . . . . . . . . . . . . . . . . . .
2.11.81 FIFO Read Data Register 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.82 VBUS Address Access Register 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.83 Interrupt Raw Status 0 Register 67 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.84 Interrupt Raw Status 1 Register 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.85 Interrupt Status 0 Register 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.86 Interrupt Status 1 Register 69 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.87 Interrupt Mask 0 Register 70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.88 Interrupt Mask 1 Register 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.89 Interrupt Clear 0 Register 71 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.11.90 Interrupt Clear 1 Register 72 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12 VBUS Register Definitions 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.1 VDP Closed Caption Data Register 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.2 VDP WSS Data Register 73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.3 VDP VITC Data Register 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.4 VDP V-Chip TV Rating Block 1 Register 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.5 VDP V-Chip TV Rating Block 2 Register 74 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.6 VDP V-Chip TV Rating Block 3 Register 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.7 VDP V-CHIP MPAA Rating Data Register 75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.8 VDP General Line Mode and Line Address Register 76 . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.9 VDP VPS/Gemstar Data Register 77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.10 Analog Output Control 2 Register 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.12.11 Interrupt Configuration Register 78 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 Electrical Specifications 79 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.1 Absolute Maximum Ratings† 79 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2 Recommended Operating Conditions 79 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.1 Crystal Specifications 79 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
July 2005 SLES140
v
Page 6
Contents
Section Page
3.3 Electrical Characteristics 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.1 DC Electrical Characteristics 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.2 Analog Processing and A/D Converters 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.3 Timing 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Example Register Settings 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1 Example 1 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.1 Assumptions 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.1.2 Recommended Settings 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2 Example 2 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.1 Assumptions 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.2.2 Recommended Settings 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3 Example 3 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.1 Assumptions 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.3.2 Recommended Settings 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 Application Information 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.1 Application Example 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.2 Designing With PowerPAD Devices 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
vi
July 2005SLES140
Page 7
List of Illustrations
List of Illustrations
Figure Title Page
1−1 Functional Block Diagram 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1−2 Terminal Assignments Diagram 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−1 Analog Processors and A/D Converters 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−2 Digital Video Processing Block Diagram 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−3 Composite and S-Video Processing Block Diagram 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−4 Color Low-Pass Filter Frequency Response 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−5 Color Low-Pass Filter With Filter Characteristics, NTSC/PAL ITU-R BT.601 Sampling 13 . . . . . . . . .
2−6 Chroma Trap Filter Frequency Response, NTSC ITU-R BT.601 Sampling 13 . . . . . . . . . . . . . . . . . . . .
2−7 Chroma Trap Filter Frequency Response, PAL ITU-R BT.601 Sampling 13 . . . . . . . . . . . . . . . . . . . . . .
2−8 Luminance Edge-Enhancer Peaking Block Diagram 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−9 Peaking Filter Response, NTSC/PAL ITU-R BT.601 Sampling 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−10 Reference Clock Configurations 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−11 RTC Timing 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−12 Vertical Synchronization Signals for 525-Line System 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−13 Vertical Synchronization Signals for 625-Line System 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−14 Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−15 Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−16 VSYNC Position With Respect to HSYNC 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−17 VBUS Access 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−18 Reset Timing 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−19 Teletext Filter Function 63 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3−1 Clocks, Video Data, and Sync Timing 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
3−2 I
5−1 Example Application Circuit 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C Host Port Timing 81 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
July 2005 SLES140
vii
Page 8
List of Tables
List of Tables
Table Title Page
1−1 Terminal Functions 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−1 Output Format 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−2 Summary of Line Frequencies, Data Rates, and Pixel/Line Counts 16 . . . . . . . . . . . . . . . . . . . . . . . . .
2−3 EAV and SAV Sequence 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
2−4 I
2−5 I2C Address Selection 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−6 Supported VBI System 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−7 Ancillary Data Format and Sequence 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−8 VBI Raw Data Output Format 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−9 Reset Sequence 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−10 I2C Register Summary 27 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−11 VBUS Register Summary 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2−12 Analog Channel and Video Mode Selection 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C Host Interface Terminal Description 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
viii
July 2005SLES140
Page 9
1 Introduction
Macrovision is a trademark of Macrovision Corporation. O
The TVP5147M1 device is a high-quality, single-chip digital video decoder that digitizes and decodes all popular baseband analog video formats into digital component video. The TVP5147M1 decoder supports the analog-to-digital (A/D) conversion of component YPbPr signals, as well as the A/D conversion and decoding of NTSC, PAL, and SECAM composite and S-video into component YCbCr. This decoder includes two 10-bit 30-MSPS A/D converters (ADCs). Preceding each ADC in the device, the corresponding analog channel contains an analog circuit that clamps the input to a reference voltage and applies a programmable gain and offset. A total of 10 video input terminals can be configured to a combination of YPbPr, CVBS, or S-video video inputs.
Composite or S-video signals are sampled at 2× the ITU-R BT.601 clock frequency, line-locked alignment, and are then decimated to the 1× pixel rate. CVBS decoding uses five-line adaptive comb filtering for both the luma and chroma data paths to reduce both cross-luma and cross-chroma artifacts. A chroma trap filter is also available. On CVBS and S-video inputs, the user can control video characteristics such as contrast, brightness, saturation, and hue via an I programmable gain is included, as well as a patented chroma transient improvement (CTI) circuit.
The following output formats can be selected: 20-bit 4:2:2 YCbCr or 10-bit 4:2:2 YCbCr. The TVP5147M1 decoder generates synchronization, blanking, field, active video window, horizontal and
vertical syncs, clock, genlock (for downstream video encoder synchronization), host CPU interrupt and programmable logic I/O signals, in addition to digital video outputs.
Introduction
2
C host port interface. Furthermore, luma peaking (sharpness) with
The TVP5147M1 decoder includes methods for advanced vertical blanking interval (VBI) data retrieval. The VBI data processor (VDP) slices, parses, and performs error checking on teletext, closed caption (CC), and other VBI data. A built-in FIFO stores up to 11 lines of teletext data, and with proper host port synchronization, full-screen teletext retrieval is possible. The TVP5147M1 decoder can pass through the output formatter 2× sampled raw luma data for host-based VBI processing.
The main blocks of the TVP5147M1 decoder include:
Robust sync detection for weak and noisy signals as well as VCR trick modes
Y/C separation by 2-D 5-line adaptive comb or chroma trap filter
Two 10-bit, 30-MSPS A/D converters with analog preprocessors [clamp and automatic gain control
(AGC)]
Analog video output
Luminance processor
Chrominance processor
Clock/timing processor and power-down control
Software-controlled power-saving standby mode
Output formatter
2
I
C host port interface
VBI data processor
Macrovision copy protection detection circuit (Type 1, 2, 3, and separate color stripe detection)
3.3-V tolerant digital I/O ports
ther trademarks are the property of their respective owners.
SLES140A—March 2007 TVP5147M1PFP
1
Page 10
Introduction
1.1 Detailed Functionality
Two 30-MSPS, 10-bit A/D channels with programmable gain control
Supports NTSC (J, M, 4.43), PAL (B, D, G, H, I, M, N, Nc, 60) and SECAM (B, D, G, K, K1, L) CVBS, and
S-video
Supports analog component YPbPr video format with embedded sync
10 analog video input terminals for multisource connection
Supports analog video output
User-programmable video output formats
10-bit ITU-R BT.656 4:2:2 YCbCr with embedded syncs
10-bit 4:2:2 YCbCr with separate syncs
20-bit 4:2:2 YCbCr with separate syncs
−2× sampled raw VBI data in active video during a vertical blanking period
Sliced VBI data during a vertical blanking period or active video period (full field mode)
HSYNC/VSYNC outputs with programmable position, polarity, width, and field ID (FID) output
Composite and S-video processing
Adaptive 2-D 5-line adaptive comb filter for composite video inputs; chroma-trap available
Automatic video standard detection (NTSC/PAL/SECAM) and switching
Luma-peaking with programmable gain
Patented chroma transient improvement (CTI)
Patented architecture for locking to weak, noisy, or unstable signals
Single 14.31818-MHz reference crystal for all standards
Line-locked internal pixel sampling clock generation with horizontal and vertical lock signal outputs
Genlock output RTC format for downstream video encoder synchronization
Certified Macrovision copy protection detection
2
SLES140A—March 2007TVP5147M1PFP
Page 11
VBI data processor
Gemstar is a trademark of Gemstar-TV Guide Intermational. P
Teletext (NABTS, WST)
CC and extended data service (EDS)
Wide screen signaling (WSS)
Copy generation management system (CGMS)
Video program system (VPS/PDC)
Vertical interval time code (VITC)
Gemstar 1×/2× mode
V-Chip decoding
Register readback of CC, WSS (CGMS), VPS/PDC, VITC and Gemstar 1×/2× sliced data
2
I
C host port interface
Reduced power consumption: 1.8-V digital core, 3.3-V for digital I/O, and 1.8-V/3.3 V analog core with power-save and power-down modes
80-terminal TQFP PowerPAD package
1.2 TVP5147M1 Applications
DLP projectors
Digital TV
LCD TV/monitors
DVD recorders
PVR
PC video cards
Video capture/video editing
Video conferencing
Introduction
1.3 Related Products
TVP5146M2 NTSC/PAL/SECAM 2y10-Bit Digital VIdeo Decoder With MacrovisionE Detection, YPbPr/RGB Inputs, and 5-Line Comb Filter (SLES141)
TVP5150AM1 Ultralow Power NTSC/PAL/SECAM Video Decoder With Robust Sync Detector (SLES098)
1.4 Ordering Information
T
A
0°C to 70°C TVP5147M1PFP
owerPAD is a trademark of Texas Instruments.
PACKAGED DEVICES
80-TERMINAL PLASTIC
FLAT-PACK PowerPADE PACKAGE
SLES140A—March 2007 TVP5147M1PFP
3
Page 12
Introduction
1.5 Functional Block Diagram
CVBS/
C/Pb
CVBS/
Y
CVBS/
C/Pr
CVBS/Y
VI_1_A VI_1_B
VI_1_C
VI_2_A VI_2_B
VI_2_C
VI_3_A VI_3_B
VI_3_C
VI_4_A
Analog
Front End
Clamping
AGC
2 × 11-Bit
ADC
Sampling Clock
Copy
Protection
Detector
M U X
Timing Processor
With Sync Detector
CVBS/Y
CVBS/Y
C/CbCr
VBI
Data
Processor
Composite and S-Video Processor
Y/C
Separation
5-line
Adaptive
Comb
Y
C
Luma
Processing
Chroma
Processing
YCbCr
Y[9:0]
Output
Formatter
C[9:0]
GPIO
Host
Interface
FID
XTAL1
XTAL2
PWDN
RESETB
AVID
DATACLK
GLCO
HS/CS
VS/VBLK
Figure 1−1. Functional Block Diagram
SCL
SDA
4
SLES140A—March 2007TVP5147M1PFP
Page 13
1.6 Terminal Assignments
VI_1_A
CH1_A18GND
CH1_A18VDD
PLL_A18GND
PLL_A18VDD
XTAL2
XTAL1
PFP PACKAGE
(TOP VIEW)
VS/VBLK/GPIO
HS/CS/GPIO
FID/GPIO
C_0/GPIO
C_1/GPIO
DGND
DVDD
C_2/GPIO
C_3/GPIO
C_4/GPIO
C_5/GPIO
IOGND
IOVDD
Introduction
VI_1_B VI_1_C
CH1_A33GND
CH1_A33VDD CH2_A33VDD
CH2_A33GND
VI_2_A VI_2_B VI_2_C
CH2_A18GND
CH2_A18VDD A18VDD_REF
A18GND_REF
NC
NC VI_3_A VI_3_B VI_3_C
NC
NC
79 78 77 76 7580 74 72 71 7073
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
22 23
24
NC
NC
VI_4_A
25 26 27 28
AGND
A18VDD
A18GND
29
SCL
DGND
69 682167 66 65 64
30 31 32 33
SDA
DVDD
INTREQ
34 35 36 37 38 39 40
PWDN
GPIO
DGND
RESETB
AVID/GPIO
63 62 61
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
IOVDD
IOGND
GLCO/I2CA
DATACLK
C_6/GPIO C_7/GPIO C_8/GPIO C_9/GPIO DGND DVDD Y_0 Y_1 Y_2 Y_3 Y_4 IOGND IOVDD Y_5 Y_6 Y_7 Y_8 Y_9 DGND DVDD
Figure 1−2. Terminal Assignments Diagram
SLES140A—March 2007 TVP5147M1PFP
5
Page 14
Introduction
I/O
DESCRIPTION
VI_2_B
8
I
VI_4_A: Analog video input for CVBS/Y
VI_2_B
8
I
VI_4_A: Analog video input for CVBS/Y
1.7 Terminal Functions
TERMINAL
NAME NUMBER
Analog Video
VI_1_A VI_1_B VI_1_C VI_2_A
80
I/O
VI_1_A: Analog video input for CVBS/Pb/C or analog video output (see Section 2.11.59) 1 2 7
VI_1_x: Analog video input for CVBS/Pb/C
I
VI_2_x: Analog video input for CVBS/Y
I
VI_3_x: Analog video input for CVBS/Pr/C
I
Table 1−1. Terminal Functions
VI_2_C VI_3_A VI_3_B VI_3_C VI_4_A
Clock Signals
DATACLK 40 O Line-locked data output clock XTAL1 74 I XTAL2 75 O External clock reference output. Not connected if XTAL1 is driven by an external single-ended oscillator.
Digital Video
C_[9:0]/ GPIO[9:0]
Y[9:0]
Miscellaneous Signals
GPIO 35 I/O Programmable general-purpose I/O GLCO/I2CA 37 I/O INTREQ 30 O Interrupt request
NC
PWDN 33 I
RESETB 34 I Reset input, active low (see Section 2.8)
Host Interface
SCL 28 I I2C clock input SDA 29 I/O I2C data bus
9
16 17 18 23
57, 58, 59, 60, 63, 64, 65, 66,
69, 70
43, 44, 45, 46, 47, 50, 51, 52,
53, 54
14, 15, 19, 20,
21, 22
I
Up to 10 composite, 4 S-video, and 2 composite or 3 component video inputs (or a combination thereof)
I
can be supported.
I
The inputs must be ac-coupled. The recommended coupling capacitor is 0.1 µF.
I
The possible input configurations are listed in the input select register at I2C subaddress 00h (see
I
Section 2.11.1).
External clock reference input. It can be connected to an external oscillator with a 1.8-V compatible clock
signal or a 14.31818-MHz crystal oscillator.
Digital video output of CbCr, C[9] is MSB and C[0] is LSB. Also, these terminals can be programmable
general-purpose I/O.
I/O
For the 8-bit mode, the two LSBs are ignored. Unused outputs can be left unconnected.
Digital video output of Y/YCbCr, Y[9] is MSB and Y[0] is LSB.
O
For the 8-bit mode, the two LSBs are ignored. Unused outputs can be left unconnected.
Genlock control output (GLCO) uses real time control (RTC) format.
During reset, this terminal is an input used to program the I2C address LSB.
Not connected. These terminals can be connected to power or ground (compatible with TVP5146
terminals), internally floating.
Power down input:
1 = Power down
0 = Normal mode
6
SLES140A—March 2007TVP5147M1PFP
Page 15
Table 1−1. Terminal Functions (Continued)
I/O
DESCRIPTION
TERMINAL
NAME NUMBER
Power Supplies
AGND 26 Analog ground. Connect to analog ground. A18GND_REF 13 Analog 1.8-V return A18VDD_REF 12 Analog power for reference 1.8 V CH1_A18GND
CH2_A18GND A18GND
CH1_A18VDD CH2_A18VDD A18VDD
CH1_A33GND CH2_A33GND
CH1_A33VDD CH2_A33VDD
DGND
DVDD IOGND 39, 49, 62 Digital power return
IOVDD 38, 48, 61 Digital power. Connect to 3.3 V or less for reduced noise. PLL_A18GND 77 Analog power return PLL_A18VDD 76 Analog power. Connect to 1.8 V.
Sync Signals
HS/CS/GPIO 72 I/O
VS/VBLK/GPIO 73 I/O
FID/GPIO 71 I/O
AVID/GPIO 36 I/O
79 10 24
78 11 25
3 6
4 5
27, 32, 42,
56, 68
31, 41, 55,
67
Analog 1.8-V return
Analog power. Connect to 1.8 V.
Analog 3.3-V return
Analog power. Connect to 3.3 V.
Digital return
Digital power. Connect to 1.8 V.
Horizontal sync output or digital composite sync output Programmable general-purpose I/O
Vertical sync output (for modes with dedicated VSYNC) or VBLK output Programmable general-purpose I/O
Odd/even field indicator output. This terminal needs a pulldown resistor (see Figure 5−1). Programmable general-purpose I/O
Active video indicator output Programmable general-purpose I/O
Introduction
SLES140A—March 2007 TVP5147M1PFP
7
Page 16
Introduction
8
SLES140A—March 2007TVP5147M1PFP
Page 17
2 Functional Description
C
C
C
C
2.1 Analog Processing and A/D Converters
Figure 2−1 shows a functional diagram of the analog processors and A/D converters, which provide the analog interface to all video inputs. It accepts up to 10 inputs and performs source selection, video clamping, video amplification, A/D conversion, and gain and offset adjustments to center the digitized video signal. The TVP5147M1 supports one analog video output for the selected analog input video.
I/O
M
VI_1_A
PGA
U X
Functional Description
Analog Front End
VBS/
Pb/C
VBS/
VBS/
VBS/
Pr/C
Y
Y
VI_1_B VI_1_C
VI_2_A VI_2_B VI_2_C
VI_3_A VI_3_B
VI_3_C
VI_4_A
M U X
M U X
M U X
Clamp
Clamp
Clamp
Clamp
PGA
PGA
11-Bit
ADC
11-Bit
ADC
CH1 A/D
CH2 A/D
Line-Locked Sampling Clock
Figure 2−1. Analog Processors and A/D Converters
2.1.1 Video Input Switch Control
The TVP5147M1 decoder has two analog channels that accept up to 10 video inputs. The user can configure the internal analog video switches via the I
2
C interface. The 10 analog video inputs can be used for different
input configurations, some of which are:
SLES140A—March 2007 TVP5147M1PFP
9
Page 18
Functional Description
Up to 10 selectable individual composite video inputs
Up to four selectable S-video inputs
Up to three selectable analog YPbPr video inputs and one CVBS input
Up to two selectable analog YPbPr video inputs, two S-video inputs, and two CVBS inputs
The input selection is performed by the input select register at I
2.1.2 Analog Input Clamping
An internal clamping circuit restores the ac-coupled video signal to a fixed dc level. The clamping circuit provides line-by-line restoration of the video sync level to a fixed dc reference voltage. The selection between bottom and mid clamp is performed automatically by the TVP5147M1 decoder.
2.1.3 Automatic Gain Control
The TVP5147M1 decoder uses two programmable gain amplifiers (PGAs), one per channel. The PGA can scale a signal with a voltage-input compliance of 0.5-V range. A 4-bit code sets the coarse gain with individual adjustment per channel. Minimum gain corresponds to a code 0x0 (2.0-V full scale, +6-dB gain). The TVP5147M1 decoder also has 12-bit fine gain controls for each channel and applies independently to coarse gain controls. For composite video, the input video signal amplitude can vary significantly from the nominal level of 1 V automatically: an automatic gain control (AGC) can be enabled and can adjust the signal amplitude such that the maximum range of the ADC is reached without clipping. Some nonstandard video signals contain peak white levels that saturate the ADC. In these cases, the AGC automatically cuts back gain to avoid clipping. If the AGC is on, then the TVP5147M1 decoder can read the gain currently being used.
full-scale input, −6-dB gain) while maximum gain corresponds to code 0xF (0.5 V
PP
2
C subaddress 00h (see Section 2.11.1).
to 2.0-VPP to a full-scale 10-bit A/D output code
PP
. The TVP5147M1 decoder can adjust its PGA setting
PP
PP
The TVP5147M1 AGC comprises the front-end AGC before Y/C separation and the back-end AGC after Y/C separation. The back-end AGC restores the optimum system gain whenever an amplitude reference such as the composite peak (which is only relevant before Y/C separation) forces the front-end AGC to set the gain too low. The front-end and back-end AGC algorithms can use up to four amplitude references: sync height, color burst amplitude, composite peak, and luma peak.
The specific amplitude references being used by the front-end and back-end AGC algorithms can be independently controlled using the AGC white peak processing register located at subaddress 74h. The TVP5147M1 gain increment speed and gain increment delay can be controlled using the AGC increment speed register located at subaddress 78h and the AGC increment delay register located at subaddress 79h.
2.1.4 Analog Video Output
One of the analog input signals is available at the analog video output terminal, which is shared with input selected by I voltage is 2 V p-p, thus the signal can be used to drive a 75- line. The magnitude is maintained with an AGC in 16 steps controlled by the TVP5147M1 decoder. In order to use this function, terminal VI_1_A must be set as an output terminal. The input mode selection register also selects an active analog output signal.
2
C registers. The signal at this terminal must be buffered by a source follower . The nominal output
2.1.5 A/D Converters
All ADCs have a resolution of 10 bits and can operate up to 30 MSPS. All A/D channels receive an identical clock from the on-chip phase-locked loop (PLL) at a frequency between 24 MHz and 30 MHz. All ADC reference voltages are generated internally.
10
SLES140A—March 2007TVP5147M1PFP
Page 19
2.2 Digital Video Processing
Figure 2−2 is a block diagram of the TVP5147M1 digital video decoder processing. This block receives digitized video signals from the ADCs and performs composite processing for CVBS and S-video inputs and YCbCr signal enhancements for CVBS and S-video inputs. It also generates horizontal and vertical syncs and other output control signals such as genlock for CVBS and S-video inputs. Additionally, it can provide field identification, horizontal and vertical lock, vertical blanking, and active video window indication signals. The digital data output can be programmed to two formats: 20-bit 4:2:2 with external syncs or 10-bit 4:2:2 with embedded/separate syncs. The circuit detects pseudosync pulses, AGC pulses, and color striping in Macrovision-encoded copy-protected material. Information present in the VBI interval can be retrieved and either inserted in the ITU-R BT.656 output as ancillary data or stored in internal FIFO and/or registers for retrieval via the host port interface.
Functional Description
CH1 A/D
CH2 A/D
2×
Decimation
2×
Decimation
Protection
Detector
XTAL1 XTAL2
RESETB
PWDN
DATACLK
Copy
CVBS/Y C/CbCr
Timing
Processor
VBI Data
Processor
Composite Processor
FID VS/VBLK HS/CS GLCO AVID
Slice VBI Data
YCbCr
Figure 2−2. Digital Video Processing Block Diagram
Output
Formatter
Host
Interface
Y[9:0]
C[9:0]
SCL SDA
2.2.1 2× Decimation Filter
All input signals are typically oversampled by a factor of 2 (27 MHz). The A/D outputs initially pass through decimation filters that reduce the data rate to 1× the pixel rate. The decimation filter is a half-band filter. Oversampling and decimation filtering can effectively increase the overall signal-to-noise ratio by 3 dB.
2.2.2 Composite Processor
Figure 2−3 is a block diagram of the TVP5147M1 digital composite video processing circuit. This processing circuit receives a digitized composite or S-video signal from the ADCs and performs Y/C separation (bypassed for S-video input), chroma demodulation for PAL/NTSC and SECAM, and YUV signal enhancements.
The 10-bit composite video is multiplied by the subcarrier signals in the quadrature demodulator to generate color difference signals U and V. The U and V signals are then sent to low-pass filters to achieve the desired bandwidth. An adaptive 5-line comb filter separates UV from Y based on the unique property of color phase shifts from line to line. The chroma is remodulated through a quadrature modulator and subtracted from line-delayed composite video to generate luma. This form of Y/C separation is completely complementary, thus there is no loss of information. However, in some applications, it is desirable to limit the U/V bandwidth to avoid crosstalk. In that case, notch filters can be turned on. To accommodate some viewing preferences, a peaking filter is also available in the luma path. Contrast, brightness, sharpness, hue, and saturation controls are programmable through the host port.
SLES140A—March 2007 TVP5147M1PFP
11
Page 20
Functional Description
CVBS/Y
CVBS
Line
Delay
SECAM Luma
SECAM
Color
Demodulation
Peaking
NTSC/PAL
Remodulation
U
Color LPF
2
Accumulator
Accumulator
Burst
(U)
Burst
(V)
5-Line
Adaptive
Comb
Filter
Delay
Notch
Filter
Notch
Filter
Notch
Filter
Y
Delay
Contrast
Brightness
Saturation
Adjust
U
Y
Cb
Cr
V
CVBS/C
NTSC/PAL
Demodulation
Figure 2−3. Composite and S-Video Processing Block Diagram
2.2.2.1 Color Low-Pass Filter
High filter bandwidth preserves sharp color transitions and produces crisp color boundaries. However, for nonstandard video sources that have asymmetrical U and V side bands, it is desirable to limit the filter bandwidth to avoid UV crosstalk. The color low-pass filter bandwidth is programmable to enable one of the three notch filters. Figure 2−4 and Figure 2−5 represent the frequency responses of the wideband color low-pass filters.
Color LPF
2
Notch
Filter
Delay
V
12
SLES140A—March 2007TVP5147M1PFP
Page 21
Functional Description
0
10
0
−10
−20
−30 ITU-R BT.601 −3 dB
−40
Amplitude − dB
−50
−60
−70
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
@ 1.42 MHz
f − Frequency − MHz
Figure 2−4. Color Low-Pass Filter Frequency
Response
2.2.2.2 Y/C Separation
10
0
−10
−20
−30
−40
Amplitude − dB
−50
−60
−70
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4. f − Frequency − MHz
Filter 2
−3 dB @ 844 kHz Filter 0
−3 dB @ 1.41 MHz
Filter 3
−3 dB @ 554 kHz Filter 1
−3 dB
@ 1.03 MHz
Figure 2−5. Color Low-Pass Filter With Filter
Characteristics, NTSC/PAL ITU-R BT.601
Sampling
Y/C separation can be done using adaptive 5-line (5-H delay) comb filters or a chroma trap filter. The comb filter can be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path, then chroma trap filters are used which are shown in Figure 2−6 and Figure 2−7. The TI patented adaptive comb filter algorithm reduces artifacts such as hanging dots at color boundaries. It detects and properly handles false colors in high-frequency luminance images such as a multiburst pattern or circle pattern.
10
5
0
−5
−10 Notch 1 Filter
−15
−20
Amplitude − dB
Notch 2 Filter
−25
No Notch Filter
−30
−35
−40
01234567
Notch 3 Filter
f − Frequency − MHz
10
5
0
−5
−10
−15
−20
Amplitude − dB
−25
−30
−35
−40
Notch 1 Filter
Notch 2 Filter
No Notch Filter
01234567
f − Frequency − MHz
Notch 3 Filter
Figure 2−6. Chroma Trap Filter Frequency
Response, NTSC ITU-R BT.601 Sampling
SLES140A—March 2007 TVP5147M1PFP
Figure 2−7. Chroma Trap Filter Frequency
Response, PAL ITU-R BT.601 Sampling
13
Page 22
Functional Description
Gain
2.2.3 Luminance Processing
The digitized composite video signal passes through either a luminance comb filter or a chroma trap filter, either of which removes chrominance information from the composite signal to generate a luminance signal. The luminance signal is then fed into the input of a peaking circuit. Figure 2−8 illustrates the basic functions of the luminance data path. In the case of S-video, the luminance signal bypasses the comb filter or chroma trap filter and is fed directly to the circuit. A peaking filter (edge enhancer) amplifies high-frequency components of the luminance signal. Figure 2−9 shows the characteristics of the peaking filter at four dif ferent gain settings that are user-programmable via the I
2
C interface.
IN
Peak
Detector
Bandpass
Filter
×
Peaking
Filter
Delay
+
OUT
Figure 2−8. Luminance Edge-Enhancer Peaking Block Diagram
7
6
5
4
3
2
Amplitude − dB
1
0
−1 01234567
f − Frequency − MHz
Peak at
f = 2.64 MHz
Gain = 2
Gain = 1
Gain = 0.5
Gain = 0
Figure 2−9. Peaking Filter Response,
NTSC/PAL ITU-R BT.601 Sampling
2.2.4 Color Transient Improvement
Color transient improvement (CTI) enhances horizontal color transients. The color difference signal transition points are maintained, but the edges are enhanced for signals which have bandwidth-limited color components.
14
SLES140A—March 2007TVP5147M1PFP
Page 23
2.3 Clock Circuits
An internal line-locked PLL generates the system and pixel clocks. A 14.318-MHz clock is required to drive the PLL. This can be input to the TVP5147M1 decoder at the 1.8-V level on terminal 74 (XTAL1), or a crystal of 14.318-MHz fundamental resonant frequency can be connected across terminals 74 and 75 (XTAL2). If a parallel resonant circuit is used as shown in Figure 2−10, then the external capacitors must have the following relationship:
C
= CL2 = 2C
L1
where C configurations. The TVP5147M1 decoder generates the DATACLK signal used for clocking data.
is the terminal capacitance with respect to ground. Figure 2−10 shows the reference clock
STRAY
Functional Description
− C
L
STRAY
,
TVP5147M1
XTAL1
XTAL2
74
75
Figure 2−10. Reference Clock Configurations
2.4 Real-Time Control (RTC)
Although the TVP5147M1 decoder is a line-locked system, the color burst information is used to determine accurately the color subcarrier frequency and phase. This ensures proper operation with nonstandard video signals that do not follow exactly the required frequency multiple between color subcarrier frequency and video line frequency . The frequency control word of the internal color subcarrier PLL and the subcarrier reset bit are transmitted via terminal 37 (GLCO) for optional use in an end system (for example, by a video encoder). The frequency control word is a 23-bit binary number. The instantaneous frequency of the color subcarrier can be calculated using the following equation:
F
F
PLL
where F
PLL
two times the pixel frequency. This information can be generated on the GLCO terminal. Figure 2−11 shows the detailed timing diagram.
ctrl
+
F
23
2
sclk
is the frequency of the subcarrier PLL, F
14.318-MHz Clock
TVP5147M1
XTAL1
XTAL2
is the 23-bit PLL frequency control word, and F
ctrl
Valid
Sample
74
75
Invalid
Sample
14.318-MHz Crystal
C
L1
C
L2
sclk
is
Reserved
RTC
1 CLK
Start
Bit
NOTE: RTC reset bit (R) is active-low, Sequence bit (S) P AL: 1 = (R-Y) line normal, 0 = (R-Y) line inverted, NTSC: 1 = no change
M
S B
22
45 CLK18 CLK
23-Bit Fsc PLL Increment
L S B
0
Figure 2−11. RTC Timing
2.5 Output Formatter
The output formatter sets how the data is formatted for output on the TVP5147M1 output buses. Table 2−1 shows the available output modes.
SLES140A—March 2007 TVP5147M1PFP
RS
3 CLK128 CLK
15
Page 24
Functional Description
Table 2−1. Output Format
TERMINAL
NAME
Y_9 43 Cb9, Y9, Cr9 Y9 Y_8 44 Cb8, Y8, Cr8 Y8 Y_7 45 Cb7, Y7, Cr7 Y7 Y_6 46 Cb6, Y6, Cr6 Y6 Y_5 47 Cb5, Y5, Cr5 Y5 Y_4 50 Cb4, Y4, Cr4 Y4 Y_3 51 Cb3, Y3, Cr3 Y3 Y_2 52 Cb2, Y2, Cr2 Y2 Y_1 53 Cb1, Y1, Cr1 Y1 Y_0 54 Cb0, Y0, Cr0 Y0 C_9 57 Cb9, Cr9 C_8 58 Cb8, Cr8 C_7 59 Cb7, Cr7 C_6 60 Cb6, Cr6 C_5 63 Cb5, Cr5 C_4 64 Cb4, Cr4 C_3 65 Cb3, Cr3 C_2 66 Cb2, Cr2 C_1 69 Cb1, Cr1 C_0 70 Cb0, Cr0
TERMINAL
NUMBER
10-Bit 4:2:2
YCbCr
20-Bit 4:2:2
YCbCr
Table 2−2. Summary of Line Frequencies, Data Rates, and Pixel/Line Counts
STANDARDS
601 sampling
NTSC-J, M 858 720 525 13.5 3.579545 15.73426 NTSC-4.43 858 720 525 13.5 4.43361875 15.73426 PAL-M 858 720 525 13.5 3.57561149 15.73426 PAL-60 858 720 525 13.5 4.43361875 15.73426 PAL-B, D, G, H, I 864 720 625 13.5 4.43361875 15.625 PAL-N 864 720 625 13.5 4.43361875 15.625 PAL-Nc 864 720 625 13.5 3.58205625 15.625
SECAM 864 720 625 13.5
PIXELS PER
LINE
ACTIVE PIXELS
PER LINE
LINES PER
FRAME
PIXEL
FREQUENCY
(MHz)
COLOR
SUBCARRIER
FREQUENCY (MHz)
Dr = 4.406250
Db = 4.250000
HORIZONTAL
LINE RATE (kHz)
15.625
2.5.1 Separate Syncs
VS, HS, and VBLK are independently software programmable to a 1× pixel count. This allows any possible alignment to the internal pixel count and line count. The default settings for 525-line and 625-line video outputs are given as examples below. FID changes at the same transient time when the trailing edge of vertical sync occurs. The polarity of FID is programmable by an I
2
C interface.
16
SLES140A—March 2007TVP5147M1PFP
Page 25
First Field Video
HS
VS
CS
FID
VBLK
Functional Description
525-Line
525
12345678910 2021
VS Start VS Stop
VBLK Start VBLK Stop
262
263 264 265 266 267 268 269 270 271 272 273 283 284
Second Field Video
HS
VS
CS
FID
VBLK
VBLK Start VBLK Stop
NOTE: Line numbering conforms to ITU-R BT.470
Figure 2−12. Vertical Synchronization Signals for 525-Line System
VS Start VS Stop
SLES140A—March 2007 TVP5147M1PFP
17
Page 26
Functional Description
First Field Video
HS
VS
CS
FID
VBLK
625-Line
6226236246251234567 232425
VS Start VS Stop
VBLK Start VBLK Stop
310
311 312 313 314 315 316 317 318 319 320 336 337
Second Field Video
HS
VS
CS
FID
VBLK
VBLK Start VBLK Stop
NOTE: Line numbering conforms to ITU-R BT.470
Figure 2−13. Vertical Synchronization Signals for 625-Line System
338
VS Start VS Stop
18
SLES140A—March 2007TVP5147M1PFP
Page 27
D
ATACLK
0
Y[9:0]
Cb
Y Cr Y
EAV
1
EAV
2
EAV3EAV
4
Horizontal Blanking
SAV1SAV2SAV3SAV
4
Functional Description
Cb0 Y0 Cr0 Y1
HS Start
HS
A C
AVID
AVID Stop AVID Start
DATACLK = 2× Pixel Clock
Mode A BC
NTSC 601 106 PAL 601
NOTE: ITU-R BT.656 10-bit 4:2:2 timing with 2× pixel clock reference
112
HS Stop
B
D
128 1284248
D
276 288
Figure 2−14. Horizontal Synchronization Signals for 10-Bit 4:2:2 Mode
SLES140A—March 2007 TVP5147M1PFP
19
Page 28
Functional Description
D
0
ATACLK
Y[9:0] Y Y Y Y Y0 Y1 Y2 Y3Horizontal Blanking
CbCr[9:0]
HS
AVID
NOTE: AVID rising edge occurs 4 clock cycles early.
NOTE: 20-bit 4:2:2 timing with 1× pixel clock reference
Cb
Cr Cb Cr Cb0 Cr0 Cb1 Cr1
A C
AVID Stop AVID Start
DATACLK = 1× Pixel Clock
Mode A BC
NTSC 601 53 PAL 601
Horizontal Blanking
HS Start
5664641922
HS Stop
B
D
2
D
136 142
20
Figure 2−15. Horizontal Synchronization Signals for 20-Bit 4:2:2 Mode
SLES140A—March 2007TVP5147M1PFP
Page 29
HS
Functional Description
First Field B/2
VS
HS
Second Field
VS
10-Bit (PCLK = 2× Pixel Clock)
Mode B/2 NTSC 601 64 PAL 601
H/2 + B/2 H/2 + B/2
64
Figure 2−16. VSYNC Position With Respect to HSYNC
H/2 858 864
20-Bit (PCLK = 1× Pixel Clock)
B/2
32 32
H/2 429 432
B/2
2.5.2 Embedded Syncs
Standards with embedded syncs insert the SA V and EAV codes into the data stream on the rising and falling edges of AVID. These codes contain the V and F bits which also define vertical timing. Table 2−3 gives the format of the SAV and EAV codes.
H equals 1 always indicates EA V. H equals 0 always indicates SAV. The alignment of V and F to the line and field counter varies depending on the standard.
The P bits are protection bits:
P3 = V xor H; P2 = F xor H; P1 = F xor V; P0 = F xor V xor H
Table 2−3. EAV and SAV Sequence
D9 (MSB) D8 D7 D6 D5 D4 D3 D2 D1 D0
Preamble 1 1 1 1 1 1 1 1 1 1 Preamble 0 0 0 0 0 0 0 0 0 0 Preamble 0 0 0 0 0 0 0 0 0 0 Status word 1 F V H P3 P2 P1 P0 0 0
2.6 I2C Host Interface
Communication with the TVP5147M1 decoder is via an I2C host interface. The I2C standard consists of two signals, the serial input/output data (SDA) line and the serial input clock line (SCL), which carry information between the devices connected to the bus. A third signal (I2CA) is used for slave address selection. Although
2
an I
C system can be multimastered, the TVP5147M1 decoder functions as a slave device only.
Because SDA an d S C L a r e kept open-drain at a logic-high output level or when the bus is not driven, the user must connect SDA and SCL to a positive supply voltage via a pullup resistor on the board. The slave addresses select signal, terminal 37 (I2CA), enables the use of two TVP5147M1 devices tied to the same I because it controls the least significant bit of the I
2
C device address.
2
C bus,
SLES140A—March 2007 TVP5147M1PFP
21
Page 30
Functional Description
T able 2−4. I2C Host Interface Terminal Description
SIGNAL TYPE DESCRIPTION
I2CA I Slave address selection SCL I Input clock line SDA I/O Input/output data line
2.6.1 Reset and I2C Bus Address Selection
The TVP5147M1 decoder can respond to two possible chip addresses. The address selection is made at reset by an externally supplied level on the I2CA terminal. The TVP5147M1 decoder samples the level of terminal 37 at power up or at the trailing edge of RESETB and configures the I
2
C bus address bit A0. The I2CA terminal
has an internal pulldown resistor to pull the terminal low to set a zero.
2
T able 2−5. I
A6 A5 A4 A3 A2 A1 A0 (I2CA) R/W HEX
1 0 1 1 1 0 0 (default) 1/0 B9/B8 1 0 1 1 1 0 1
If terminal 37 is strapped to DVDD via a 2.2-k resistor, I2C device address A0 is set to 1.
C Address Selection
1/0 BB/BA
2.6.2 I2C Operation
Data transfers occur using the following illustrated formats.
S 10111000 ACK Subaddress ACK Send data ACK P
Read from I2C control registers
S 10111000 ACK Subaddress ACK S 10111001 ACK Receive data NAK P
S = I2C bus start condition
2
P = I
C bus stop condition ACK = Acknowledge generated by the slave NAK = Acknowledge generated by the master, for multiple-byte read master with ACK each byte except
last byte Subaddress = Subaddress byte Data = Data byte. If more than one byte of data is transmitted (read and write), the subaddress pointer is
automatically incremented.
2
I
C bus address = Example shown that I2CA is in default mode. Write (B8h), read (B9h)
2.6.3 VBUS Access
The TVP5147M1 decoder has additional internal registers accessible through an indirect access to an internal 24-bit address wide VBUS. Figure 2−17 shows the VBUS register access.
22
SLES140A—March 2007TVP5147M1PFP
Page 31
Functional Description
I2C Registers
00h
HOST
Processor
VBUS Write
Single Byte
B8S ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK P
B8S ACK E0 ACK Send Data ACK P
I2C
E0h
E1h E8h
EAh
FFh
VBUS
Data
VBUS[23:0]
VBUS
Address
VBUS Registers
CC
WSS
VITC
Line
Mode
VPS
FIFO
00 0000h
80 051Ch
80 0520h 80 052Ch
80 0600h
80 0700h
90 1904h
FF FFFFh
Multiple Bytes
S ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK P
B8
B8S ACK E1 ACK Send Data ACK ACK PSend Data•••
VBUS Read
Single Byte
S ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK P
B8
B8S ACK E0 ACK ACK
Multiple Bytes
S ACK E8 ACK VA0 ACK VA1 ACK VA2 ACK P
B8
B8S ACK E1 ACK ACK NAK PRead Data•••
NOTE: Examples use default I2C address
ACK = Acknowledge generated by the slave NAK = No acknowledge generated by the master
Read Data NAK PSB9
SB9ACK Read Data
Figure 2−17. VBUS Access
SLES140A—March 2007 TVP5147M1PFP
23
Page 32
Functional Description
2.7 VBI Data Processor
The TVP5147M1 VBI data processor (VDP) slices various data services like teletext (WST, NABTS), closed caption (CC), wide screen signaling (WSS), program delivery control (PDC), vertical interval time code (VITC), video program system (VPS), copy generation management system (CGMS) data, and electronic program guide (Gemstar) 1x/2x. Table 2−6 shows the supported VBI system.
These services are acquired by programming the VDP to enable the reception of one or more vertical blank interval (VBI) data standard(s) during the VBI. The VDP can be programmed on a line-per-line basis to enable simultaneous reception of different VBI formats, one per line. The results are stored in a FIFO and/or registers. Because of the high data bandwidth, teletext results are stored in FIFO only. The TVP5147M1 decoder provides fully decoded V-Chip data to the dedicated registers at subaddresses 80 0540h−80 0543h.
Table 2−6. Supported VBI System
VBI SYSTEM STANDARD LINE NUMBER NUMBER OF BYTES
Teletext WST A SECAM 6−23 (Fields 1 and 2) 38 Teletext WST B PAL 6−22 (Fields 1 and 2) 43 Teletext NABTS C NTSC 10−21 (Fields 1 and 2) 34 Teletext NABTS D NTSC-J 10−21 (Fields 1 and 2) 35 Closed Caption PAL 22 (Fields 1 and 2) 2 Closed Caption NTSC 21 (Fields 1 and 2) 2 WSS PAL 23 (Fields 1 and 2) 14 bits WSS-CGMS NTSC 20 (Fields 1 and 2) 20 bits VITC PAL 6−22 9 VITC NTSC 10−20 9 VPS (PDC) PAL 16 13 V-Chip (decoded) NTSC 21 (Fields 1 and 2) 2 Gemstar 1x NTSC 2 Gemstar 2x NTSC 5 with frame byte User Any Programmable Programmable
24
SLES140A—March 2007TVP5147M1PFP
Page 33
2.7.1 VBI FIFO and Ancillary Data in Video Stream
Ancillary data preamble
1 word
N word
Sliced VBI data can be output as ancillary data in the video stream in ITU-R BT.656 mode. VBI data is output on the Y[9:2] terminals during the horizontal blanking period. Table 2−7 shows the header format and sequence of the ancillary data inserted into the video stream. This format is also used to store any VBI data into the FIFO. The size of the FIFO is 512 bytes. Therefore, the FIFO can store up to 1 1 lines of teletext data with the NTSC NABTS standard.
Table 2−7. Ancillary Data Format and Sequence
Functional Description
BYTE
NO.
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 3 NEP EP 0 1 0 DID2 DID1 DID0 Data ID (DID) 4 NEP EP F5 F4 F3 F2 F1 F0 Secondary data ID (SDID) 5 NEP EP N5 N4 N3 N2 N1 N0 Number of 32-bit data (NN) 6 Video line # [7:0] Internal data ID0 (IDID0) 7 0 0 0 Data
8 1. Data Data byte 9 2. Data Data byte
10 3. Data Data byte
11 4. Data Data byte
: : : :
4N+7 0 0 0 0 0 0 0 0 Fill byte
NOTE: The number of bytes (m) varies depending on the VBI data service.
D7
(MSB)
D6 D5 D4 D3 D2 D1 D0
(LSB)
Ancillary data preamble
Match#1Match#2Video line # [9:8] Internal data ID1 (IDID1)
error
m. Data Data byte CS[7:0] Check sum
DESCRIPTION
1st word
Nth word
EP: Even parity for D0−D5, NEP: Negated even parity DID: 91h: Sliced data of VBI lines of first field
SDID: This field holds the data format taken from the line mode register bits [2:0] of the corresponding line. NN: Number of Dwords beginning with byte 8 through 4N+7. Note this value is the number of Dwords
IDID0: Transaction video line number [7:0] IDID1: Bit 0/1 = Transaction video line number [9:8]
CS: Sum of D0−D7 of first data through last data byte. Fill byte: Fill bytes make a multiple of 4 bytes from byte 0 to last fill byte. For teletext modes, byte 8 is the sync
SLES140A—March 2007 TVP5147M1PFP
53h: Sliced data of line 24 to end of first field 55h: Sliced data of VBI lines of second field 97h: Sliced data of line 24 to end of second field
where each Dword is 4 bytes.
Bit 2 = Match 2 flag Bit 3 = Match 1 flag Bit 4 = 1 if an error was detected in the EDC block. 0 if no error was detected.
pattern byte. Byte 9 is the first data byte.
25
Page 34
Functional Description
(i.e., NTSC 601: n = 1707)
2.7.2 VBI Raw Data Output
The TVP5147M1 decoder can output raw A/D video data at twice the sampling rate for external VBI slicing. This is transmitted as an ancillary data block, although somewhat differently from the way the sliced VBI data is transmitted in the FIFO format as described in Section 2.7.1. The samples are transmitted during the active portion of the line. VBI raw data uses ITU-R BT.656 format having only luma data. The chroma samples are replaced by luma samples. The TVP5147M1 decoder inserts a four-byte preamble 000h 3FFh 3FFh 180h before data start. There are no checksum bytes and fill bytes in this mode.
Table 2−8. VBI Raw Data Output Format
BYTE
NO.D9(MSB)
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 3 0 1 1 0 0 0 0 0 0 0 4 1. Data 5 2. Data
: :
n−1 n−5. Data
n n–4. Data
D8 D7 D6 D5 D4 D3 D2 D1 D0
2.8 Reset and Initialization
Reset is initiated at power up or any time terminal 34 (RESETB) is brought low. Table 2−9 describes the status of the TVP5147M1 terminals during and immediately after reset.
Table 2−9. Reset Sequence
SIGNAL NAME DURING RESET RESET COMPLETED
Y[9:0], C[9:0] Input High-impedance RESETB, PWDN, SDA, SCL, FSS,
AVID, GLCO, HS, VS, FID INTREQ Input Output DATACLK Output High-impedance
Input Input
(LSB)
DESCRIPTION
VBI raw data preamble
2× pixel rate luma data
(3.3 V and 1.8 V)
POWER
RESETB
(Pin 34)
(Pin 29)
The following register writes must be made before normal operation of the device.
26
SDA
1 ms (min)
200 ns (min)
Reset
Invalid I2C Cycle Valid
Figure 2−18. Reset Timing
STEP I2C SUBADDRESS I2C DATA
1 0x03 0x01 2 0x03 0x00
Normal Operation
1 ms (min)
SLES140A—March 2007TVP5147M1PFP
Page 35
2.9 Adjusting External Syncs
The proper sequence to program the following external syncs is:
To set NTSC, PAL-M, NTSC 443, PAL60 (525-line modes):
Set the video standard to NTSC (register 02h)
Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h)
To set PAL, PAL-N, SECAM (625-line modes):
Set the video standard to PAL (register 02h)
Set HSYNC, VSYNC, VBLK, and AVID external syncs (registers 16h through 24h)
For autoswitch, set the video standard to autoswitch (register 02h)
2.10 Internal Control Registers
The TVP5147M1 decoder is initialized and controlled by a set of internal registers that define the operating parameters of the entire device. Communication between the external controller and the TVP5147M1 is through a standard I registers. Detailed programming information for each register is described in the following sections. Additional registers are accessible through an indirect procedure involving access to an internal 24-bit address wide VBUS. Table 2−11 shows the summary of the VBUS registers.
NOTE: Do not write to reserved registers. Reserved bits in any defined register must be written
with 0s, unless otherwise noted.
2
C host port interface, as described earlier. Table 2−10 shows the summary of these
T able 2−10. I
2
C Register Summary
Functional Description
REGISTER NAME I2C SUBADDRESS DEFAULT R/W
Input select 00h 00h R/W AFE gain control 01h 0Fh R/W Video standard 02h 00h R/W Operation mode 03h 00h R/W Autoswitch mask 04h 23h R/W Color killer 05h 10h R/W Luminance processing control 1 06h 00h R/W Luminance processing control 2 07h 00h R/W Luminance processing control 3 08h 02h R/W Luminance brightness 09h 80h R/W Luminance contrast 0Ah 80h R/W Chrominance saturation 0Bh 80h R/W Chroma hue 0Ch 00h R/W Chrominance processing control 1 0Dh 00h R/W Chrominance processing control 2 0Eh 0Eh R/W Reserved 0Fh−15h AVID start pixel 16h−17h 055h R/W AVID stop pixel 18h−19h 325h R/W HSYNC start pixel 1Ah−1Bh 000h R/W HSYNC stop pixel 1Ch−1Dh 040h R/W VSYNC start line 1Eh−1Fh 004h R/W VSYNC stop line 20h−21h 007h R/W
NOTE: R = Read only
W = Write only R/W = Read and write Reserved register addresses must not be written to.
SLES140A—March 2007 TVP5147M1PFP
27
Page 36
Functional Description
VBLK start line 22h−23h 001h R/W VBLK stop line 24h−25h 015h R/W Reserved 26h−2Ah Overlay delay 2Bh 00h R/W Reserved 2Ch CTI delay 2Dh 00h R/W CTI control 2Eh 00h R/W Reserved 2Fh−31h Sync control 32h 00h R/W Output formatter 1 33h 40h R/W Output formatter 2 34h 00h R/W Output formatter 3 35h FFh R/W Output formatter 4 36h FFh R/W Output formatter 5 37h FFh R/W Output formatter 6 38h FFh R/W Clear lost lock detect 39h 00h R/W Status 1 3Ah R Status 2 3Bh R AGC gain status 3Ch−3Dh R Reserved 3Eh Video standard status 3Fh R GPIO input 1 40h R GPIO input 2 41h R Reserved 42h−45h AFE coarse gain for CH1 46h 20h R/W AFE coarse gain for CH2 47h 20h R/W AFE coarse gain for CH3 48h 20h R/W AFE coarse gain for CH4 49h 20h R/W AFE fine gain for Pb 4Ah−4Bh 900h R/W AFE fine gain for chroma 4Ch−4Dh 900h R/W AFE fine gain for Pr 4Eh−4Fh 900h R/W AFE fine gain for CVBS_Luma 50h−51h 900h R/W Reserved 52h−56h Field ID control 57h 00h R/W Reserved 58h−68h F-bit and V-bit control 1 69h 00h R/W Reserved 6Ah−6Bh Back-end AGC control 6Ch 08h R/W Reserved 6Dh−6Eh AGC decrement speed control 6Fh 04h R/W ROM version 70h R Reserved 71h−73h AGC white peak processing 74h 00h R/W
NOTE: R = Read only
T able 2−10. I2C Register Summary (Continued)
REGISTER NAME I2C SUBADDRESS DEFAULT R/W
W = Write only R/W = Read and write Reserved register addresses must not be written to.
28
SLES140A—March 2007TVP5147M1PFP
Page 37
T able 2−10. I2C Register Summary (Continued)
REGISTER NAME I2C SUBADDRESS DEFAULT R/W
F and V bit control 75h 12h R/W VCR trick mode control 76h 8Ah R/W Horizontal shake increment 77h 64h R/W AGC increment speed 78h 05h R/W AGC increment delay 79h 1Eh R/W Reserved 7Ah−7Eh Analog output control 1 7Fh 00h R/W Chip ID MSB 80h 51h R Chip ID LSB 81h 47h R Reserved 82h CPLL speed control 83h 09h R/W Reserved 84h−96h Status request 97h 00h R/W Reserved 98h−99h Vertical line count 9Ah−9Bh R Reserved 9Ch−9Dh AGC decrement delay 9Eh 00h R/W Reserved 9Fh−B0h VDP TTX filter 1 mask 1 B1h 00h R/W VDP TTX filter 1 mask 2 B2h 00h R/W VDP TTX filter 1 mask 3 B3h 00h R/W VDP TTX filter 1 mask 4 B4h 00h R/W VDP TTX filter 1 mask 5 B5h 00h R/W VDP TTX filter 2 mask 1 B6h 00h R/W VDP TTX filter 2 mask 2 B7h 00h R/W VDP TTX filter 2 mask 3 B8h 00h R/W VDP TTX filter 2 mask 4 B9h 00h R/W VDP TTX filter 2 mask 5 BAh 00h R/W VDP TTX filter control BBh 00h R/W VDP FIFO word count BCh R VDP FIFO interrupt threshold BDh 80h R/W Reserved BEh VDP FIFO reset BFh 00h R/W VDP FIFO output control C0h 00h R/W VDP line number interrupt C1h 00h R/W VDP pixel alignment C2h−C3h 01Eh R/W Reserved C4h−D5h VDP line start D6h 06h R/W VDP line stop D7h 1Bh R/W VDP global line mode D8h FFh R/W VDP full field enable D9h 00h R/W VDP full field mode DAh FFh R/W Reserved DBh−DFh
NOTE: R = Read only
W = Write only R/W = Read and write Reserved register addresses must not be written to.
Functional Description
SLES140A—March 2007 TVP5147M1PFP
29
Page 38
Functional Description
VBUS data access with no VBUS address increment E0h 00h R/W VBUS data access with VBUS address increment E1h 00h R/W FIFO read data E2h R Reserved E3h−E7h VBUS address access E8h−EAh 00 0000h R/W Reserved EBh−EFh Interrupt raw status 0 F0h R Interrupt raw status 1 F1h R Interrupt status 0 F2h R Interrupt status 1 F3h R Interrupt mask 0 F4h 00h R/W Interrupt mask 1 F5h 00h R/W Interrupt clear 0 F6h 00h R/W Interrupt clear 1 F7h 00h R/W Reserved F8h−FFh
NOTE: R = Read only
T able 2−10. I2C Register Summary (Continued)
REGISTER NAME I2C SUBADDRESS DEFAULT R/W
W = Write only R/W = Read and write Reserved register addresses must not be written to.
Table 2−11. VBUS Register Summary
REGISTER NAME I2C SUBADDRESS DEFAULT R/W
Reserved 00 0000h−80051Bh VDP closed caption data 80 051Ch−80 051Fh R VDP WSS data 80 0520h−80 0526h R Reserved 80 0527h−80 052Bh VDP VITC data 80 052Ch−80 0534h R Reserved 80 0535h−80 053Fh VDP V-Chip data 800540h−80 0543h R Reserved 80 0544h−80 05FFh VDP general line mode and line address 80 0600h−800611h 00h, FFh R/W Reserved 80 0612h−80 06FFh VDP VPS (PDC)/Gemstar data 80 0700h−80070Ch R Reserved 80 070Dh−90 1903h VDP FIFO read 90 1904h R Reserved 90 1905h−A0 005Dh Analog output control 2 A0 05Eh B2h R/W Reserved A0 005Fh−B0 005Fh Interrupt configuration B0 0060h 00h R/W Reserved B0 0061h−FF FFFFh
NOTE: Writing any value to a reserved register may cause erroneous operation of the TVP5147M1 decoder.
It is recommended not to access any data to/from reserved registers.
30
SLES140A—March 2007TVP5147M1PFP
Page 39
Functional Description
OUTPUT
MODE
INPUT(S) SELECTED
OUTPUT
2.11 Register Definitions
2.11.1 Input Select Register
Subaddress 00h Default 00h
7 6 5 4 3 2 1 0
Input select [7:0]
Table 2−12. Analog Channel and Video Mode Selection
INPUT SELECT [7:0]
7 6 5 4 3 2 1 0 HEX
CVBS VI_1_A (default) 0 0 0 0 0 0 0 0 00 N/A
VI_1_B 0 0 0 0 0 0 0 1 01 VI_1_B VI_1_C 0 0 0 0 0 0 1 0 02 VI_1_C VI_2_A 0 0 0 0 0 1 0 0 04 VI_2_A VI_2_B 0 0 0 0 0 1 0 1 05 VI_2_B VI_2_C 0 0 0 0 0 1 1 0 06 VI_2_C VI_3_A 0 0 0 0 1 0 0 0 08 VI_3_A VI_3_B 0 0 0 0 1 0 0 1 09 VI_3_B VI_3_C 0 0 0 0 1 0 1 0 0A VI_3_C VI_4_A 0 0 0 0 1 1 0 0 0C VI_4_A
S-video VI_2_A(Y), VI_1_A(C) 0 1 0 0 0 1 0 0 44 N/A
VI_2_B(Y), VI_1_B(C) 0 1 0 0 0 1 0 1 45 VI_2_B(Y) VI_2_C(Y), VI_1_C(C) 0 1 0 0 0 1 1 0 46 VI_2_C(Y) VI_2_A(Y), VI_3_A(C) 0 1 0 1 0 1 0 0 54 VI_2_A(Y) VI_2_B(Y), VI_3_B(C) 0 1 0 1 0 1 0 1 55 VI_2_B(Y) VI_2_C(Y), VI_3_C(C) 0 1 0 1 0 1 1 0 56 VI_2_C(Y) VI_4_A(Y), VI_1_A(C) 0 1 0 0 1 1 0 0 4C N/A VI_4_A(Y), VI_1_B(C) 0 1 0 0 1 1 0 1 4D VI_4_A(Y) VI_4_A(Y), VI_1_C(C) 0 1 0 0 1 1 1 0 4E VI_4_A(Y) VI_4_A(Y), VI_3_A(C) 0 1 0 1 1 1 0 0 5C VI_4_A(Y) VI_4_A(Y), VI_3_B(C) 0 1 0 1 1 1 0 1 5D VI_4_A(Y) VI_4_A(Y), VI_3_C(C) 0 1 0 1 1 1 1 0 5E VI_4_A(Y)
YPbPr VI_1_A(Pb), VI_2_A(Y), VI_3_A(Pr) 1 0 0 1 0 1 0 0 94 N/A
VI_1_B(Pb), VI_2_B(Y), VI_3_B(Pr) 1 0 0 1 0 1 0 1 95 VI_2_B(Y) VI_1_C(Pb), VI_2_C(Y), VI_3_C(Pr) 1 0 0 1 0 1 1 0 96 VI_2_C(Y)
NOTE 1: When VI_1_A is set to output, the total number of inputs is nine. The video output can be either CVBS or luma.
(see Note 1)
Ten input terminals can be configured to support composite, S-video, and component YPbPr as listed in Table 2−12. User must follow this table properly for S-video and component applications because only the terminal configurations listed in Table 2−12 are supported.
SLES140A—March 2007 TVP5147M1PFP
31
Page 40
Functional Description
2.11.2 AFE Gain Control Register
Subaddress 01h Default 0Fh
7 6 5 4 3 2 1 0
Reserved 1 1 AGC chroma AGC luma
Bit 3: 1 must be written to this bit. Bit 2: 1 must be written to this bit. AGC chroma enable: Controls automatic gain in the chroma/PbPr channel:
0 = Manual (if AGC luma is set to manual, AGC chroma is forced to be in manual) 1 = Enabled auto gain, applied a gain value acquired from the sync channel for S-video and component
mode. When AGC luma is set, this state is valid. (default)
AGC luma enable: Controls automatic gain in the embedded sync channel of CVBS, S-video, component video:
0 = Manual gain, AFE coarse and fine gain frozen to the previous gain value set by AGC when this bit is set
to 0. 1 = Enabled auto gain applied to only the embedded sync channel (default)
These settings only affect the analog front-end (AFE). The brightness and contrast controls are not affected by these settings.
2.11.3 Video Standard Register
Subaddress 02h Default 00h
7 6 5 4 3 2 1 0
Reserved Video standard [2:0]
Video standard [2:0]:
CVBS and S-Video Component Video
000 = Autoswitch mode (default) Autoswitch mode (default) 001 = (M, J) NTSC Component 525 010 = (B, D, G, H, I, N) PAL Component 625 011 = (M) PAL Reserved 100 = (Combination-N) PAL Reserved 101 = NTSC 4.43 Reserved 110 = SECAM Reserved 111 = PAL 60 Reserved
With the autoswitch code running, the user can force the decoder to operate in a particular video standard mode by writing the appropriate value into this register. Changing these bits causes the register settings to be reinitialized.
32
SLES140A—March 2007TVP5147M1PFP
Page 41
2.11.4 Operation Mode Register
Subaddress 03h Default 00h
7 6 5 4 3 2 1 0
Reserved Power save
Power save:
Functional Description
0 = Normal operation (default)
1 = Power-save mode. Reduces the clock speed of the internal processor and switches off the ADCs. I
interface is active and all current operating settings are preserved.
2.11.5 Autoswitch Mask Register
Subaddress 04h Default 23h
7 6 5 4 3 2 1 0
Reserved PAL 60 SECAM NTSC 4.43 (Nc) PAL (M) PAL PAL (M, J) NTSC
Autoswitch mode mask: Limits the video formats between which autoswitch is possible. PAL 60:
0 = Autoswitch does not include PAL 60 (default)
1 = Autoswitch includes PAL60
SECAM:
0 = Autoswitch does not include SECAM
1 = Autoswitch includes SECAM (default)
NTSC 4.43:
0 = Autoswitch does not include NTSC 4.43 (default)
1 = Autoswitch includes NTSC 4.43
(Nc) PAL:
0 = Autoswitch does not include (Nc) PAL (default)
1 = Autoswitch includes (Nc) PAL
2
C
(M) PAL:
0 = Autoswitch does not include (M) PAL (default)
1 = Autoswitch includes (M) PAL
PAL:
0 = Reserved
1 = Autoswitch includes (B, D, G, H, I, N) PAL (default)
(M, J ) NTSC:
0 = Reserved
1 = Autoswitch includes (M, J) NTSC (default)
NOTE: Bits 1 and 0 must always be 1.
SLES140A—March 2007 TVP5147M1PFP
33
Page 42
Functional Description
2.11.6 Color Killer Register
Subaddress 05h Default 10h
7 6 5 4 3 2 1 0
Reserved Automatic color killer Color killer threshold [4:0]
Automatic color killer:
00 = Automatic mode (default) 01 = Reserved 10 = Color killer enabled, the UV terminals are forced to a zero color state. 11 = Color killer disabled
Color killer threshold [4:0]:
1 1111 = 31 (maximum) 1 0000 = 16 (default) 0 0000 = 0 (minimum)
2.11.7 Luminance Processing Control 1 Register
Subaddress 06h Default 00h
7 6 5 4 3 2 1 0
Reserved Pedestal not present Reserved VBI raw Luminance signal delay [3:0]
Pedestal not present:
0 = 7.5 IRE pedestal is present on the analog video input signal (default) 1 = Pedestal is not present on the analog video input signal
VBI raw:
0 = Disabled (default) 1 = Enabled
During the duration of the vertical blanking as defined by the VBLK start and stop line registers at subaddresses 22h through 25h (see Sections 2.11.22 and 2.11.23), the chroma samples are replaced by luma samples. This feature can be used to support VBI processing performed by an external device during the vertical blanking interval. In order to use this bit, the output format must be 10-bit ITU-R BT.656 mode.
Luminance signal delay [3:0]: Luminance signal delays with respect to the chroma signal in 1× pixel clock increments.
0111 = Reserved 0110 = 6-pixel delay 0001 = 1-pixel delay 0000 = 0 delay (default) 1111 = −1-pixel delay 1000 = −8-pixel delay
34
SLES140A—March 2007TVP5147M1PFP
Page 43
2.11.8 Luminance Processing Control 2 Register
Subaddress 07h Default 00h
7 6 5 4 3 2 1 0
Luma filter select [1:0] Reserved Peaking gain [1:0] Reserved
Luma filter selected [1:0]:
00 = Luminance adaptive comb enabled (default on CVBS)
01 = Luminance adaptive comb disabled (trap filter selected)
10 = Luma comb/trap filter bypassed (default on S-video, component mode, and SECAM)
11 = Reserved
Peaking gain [1:0]:
00 = 0 (default)
01 = 0.5
10 = 1
11 = 2
2.11.9 Luminance Processing Control 3 Register
Subaddress 08h Default 02h
Functional Description
7 6 5 4 3 2 1 0
Reserved Trap filter select [1:0]
Trap filter select [1:0] selects one of the four trap filters to produce the luminance signal by removing the chrominance signal from the composite video signal. The stop band of the chroma trap filter is centered at the chroma subcarrier frequency with the stop-band bandwidth controlled by the two control bits.
Trap filter stop-band bandwidth (MHz):
Filter select [1:0]
NTSC ITU-R BT.601 PAL ITU-R BT.601 00 = 1.2129 1.2129 01 = 0.8701 0.8701 10 = (default) 0.7183 0.7383 11 = 0.5010 0.5010
2.11.10 Luminance Brightness Register
Subaddress 09h Default 80h
7 6 5 4 3 2 1 0
Brightness [7:0]
Brightness [7:0]: This register works for CVBS, S-video, and component video luminance.
1111 1111 = 255 (bright) 1000 0000 = 128 (default) 0000 0000 = 0 (dark)
SLES140A—March 2007 TVP5147M1PFP
35
Page 44
Functional Description
2.11.11 Luminance Contrast Register
Subaddress 0Ah Default 80h
7 6 5 4 3 2 1 0
Contrast [7:0]
Contrast [7:0]: This register works for CVBS, S-video, and component video luminance.
1111 1111 = 255 (maximum contrast) 1000 0000 = 128 (default) 0000 0000 = 0 (minimum contrast)
2.11.12 Chrominance Saturation Register
Subaddress 0Bh Default 80h
7 6 5 4 3 2 1 0
Saturation [7:0]
Saturation [7:0]: This register works for CVBS, S-video, and component video luminance.
1111 1111 = 255 (maximum) 1000 0000 = 128 (default) 0000 0000 = 0 (no color)
2.11.13 Chroma Hue Register
Subaddress 0Ch Default 00h
7 6 5 4 3 2 1 0
Hue [7:0]
Hue [7:0] (does not apply to component video)
0111 1111 = +180 degrees 0000 0000 = 0 degrees (default) 1000 0000 = −180 degrees
2.11.14 Chrominance Processing Control 1 Register
Subaddress 0Dh Default 00h
7 6 5 4 3 2 1 0
Reserved Color PLL reset
Color PLL reset:
0 = Color subcarrier PLL not reset (default) 1 = Color subcarrier PLL reset
Chrominance adaptive comb enable: This bit is effective on composite video only.
0 = Enabled (default) 1 = Disabled
Chrominance adaptive
comb enable
Reserved Automatic color gain control [1:0]
36
Automatic color gain control (ACGC) [1:0]:
00= ACGC enabled (default) 01 = Reserved 10= ACGC disabled, ACGC set to the nominal value 11= ACGC frozen to the previous set value
SLES140A—March 2007TVP5147M1PFP
Page 45
2.11.15 Chrominance Processing Control 2 Register
Subaddress 0Eh Default 0Eh
7 6 5 4 3 2 1 0
Reserved PAL compensation WCF Chrominance filter select [1:0]
PAL compensation:
0 = Disabled 1 = Enabled (default)
Wideband chroma LPF filter (WCF):
0 = Disabled 1 = Enabled (default)
Chrominance filter select [1:0]:
00 = Disabled 01 = Notch 1 10 = Notch 2 (default) 11 = Notch 3
Functional Description
See Figure 2−6 and Figure 2−7 for characteristics.
2.11.16 AVID Start Pixel Register
Subaddress 16h−17h Default 055h
Subaddress 7 6 5 4 3 2 1 0
16h AVID start [7:0] 17h Reserved AVID active Reserved AVID start [9:8]
AVID active:
0 = AVID out active in VBLK (default) 1 = AVID out inactive in VBLK
AVID start [9:0]: AVID start pixel number, this is an absolute pixel location from HSYNC start pixel 0.
NTSC 601 NTSC Sqp PAL 601 PAL Sqp
default 85 (55h) 86 (56h) 88 (58h) 103 (67h)
The TVP5147M1 decoder updates the AVID start only when the AVID start MSB byte is written to. If the user changes these registers, then the TVP5147M1 decoder retains values in different modes until this device resets. The AVID start pixel register also controls the position of the SAV code.
SLES140A—March 2007 TVP5147M1PFP
37
Page 46
Functional Description
2.11.17 AVID Stop Pixel Register
Subaddress 18h−19h Default 325h
Subaddress 7 6 5 4 3 2 1 0
18h AVID stop [7:0] 19h Reserved AVID stop [9:8]
A VID stop [9:0]: AVID stop pixel number. The number of pixels of active video must be an even number. This is an absolute pixel location from HSYNC start pixel 0.
NTSC 601 NTSC Sqp PAL 601 PAL Sqp
default 805 (325h) 726 (2D6h) 808 (328h) 696 (2B8h)
The TVP5147M1 decoder updates the AVID stop only when the AVID stop MSB byte is written to. If the user changes these registers, then the TVP5147M1 decoder retains values in different modes until this device resets. The AVID start pixel register also controls the position of the EAV code.
2.11.18 HSYNC Start Pixel Register
Subaddress 1Ah−1Bh Default 000h
Subaddress 7 6 5 4 3 2 1 0
1Ah HSYNC start [7:0] 1Bh Reserved HSYNC start [9:8]
HSYNC start pixel [9:0]: This is an absolute pixel location from HSYNC start pixel 0. The TVP5147M1 decoder updates the HSYNC start only when the HSYNC start MSB is written to. If the user changes these registers, then the TVP5147M1 decoder retains values in different modes until this device resets.
2.11.19 HSYNC Stop Pixel Register
Subaddress 1Ch−1Dh Default 040h
Subaddress 7 6 5 4 3 2 1 0
1Ch HSYNC stop [7:0] 1Dh Reserved HSYNC stop [9:8]
HSYNC stop [9:0]: This is an absolute pixel location from HSYNC start pixel 0. The TVP5147M1 decoder updates the HSYNC stop only when the HSYNC stop MSB is written to. If the user changes these registers, then the TVP5147M1 decoder retains values in different modes until this device resets.
2.11.20 VSYNC Start Line Register
Subaddress 1Eh−1Fh Default 004h
Subaddress 7 6 5 4 3 2 1 0
1Eh VSYNC start [7:0] 1Fh Reserved VSYNC start [9:8]
38
VSYNC start [9:0]: This is an absolute line number . The TVP5147M1 decoder updates the VSYNC start only when the VSYNC start MSB is written to. If the user changes these registers, then the TVP5147M1 decoder retains values in different modes until this decoder resets. NTSC: default 004h PAL: default 001h
SLES140A—March 2007TVP5147M1PFP
Page 47
Functional Description
2.11.21 VSYNC Stop Line Register
Subaddress 20h−21h Default 007h
Subaddress 7 6 5 4 3 2 1 0
20h VSYNC stop [7:0] 21h Reserved VSYNC stop [9:8]
VSYNC stop [9:0]: This is an absolute line number . The TVP5147M1 decoder updates the VSYNC stop only when the VSYNC stop MSB is written to. If the user changes these registers, the TVP5147M1 decoder retains values in different modes until this decoder resets. NTSC: default 007h PAL: default 004h
2.11.22 VBLK Start Line Register
Subaddress 22h−23h Default 001h
Subaddress 7 6 5 4 3 2 1 0
22h VBLK start [7:0] 23h Reserved VBLK start [9:8]
VBLK start [9:0]: This is an absolute line number . The TVP5147M1 decoder updates the VBLK start line only when the VBLK start MSB is written to. If the user changes these registers, the TVP5147M1 decoder retains values in different modes until this resets (see Section 2.11.16) NTSC: default 001h PAL: default 623 (26Fh)
2.11.23 VBLK Stop Line Register
Subaddress 24h−25h Default 015h
Subaddress 7 6 5 4 3 2 1 0
24h VBLK stop [7:0] 25h Reserved VBLK stop [9:8]
VBLK stop [9:0]: This is an absolute line number. The TVP5147M1 decoder updates the VBLK stop only when the VBLK stop MSB is written to. If the user changes these registers, then the TVP5147M1 decoder retains values in different modes until this device resets (see Section 2.11.16). NTSC: default 21 (015h) PAL: default 23 (017h)
2.11.24 CTI Delay Register
Subaddress 2Dh Default 00h
7 6 5 4 3 2 1 0
Reserved CTI delay [2:0]
CTI delay [2:0]: Sets the delay of the Y channel with respect to Cb/Cr in the CTI block
011 = 3-pixel delay 001 = 1-pixel delay 000 = 0 delay (default) 111 = −1-pixel delay 100 = −4-pixel delay
SLES140A—March 2007 TVP5147M1PFP
39
Page 48
Functional Description
2.11.25 CTI Control Register
Subaddress 2Eh Default 00h
7 6 5 4 3 2 1 0
CTI coring [3:0] CTI gain [3:0]
CTI coring [3:0]: 4-bit CTI coring limit control value, unsigned linear control range from 0 to ±60, step size = 4
1111 = ±60 0001 = ±4 0000 = 0 (default)
CTI gain [3:0]: 4-bit CTI gain control values, unsigned linear control range from 0 to 15/16, step size = 1/16
1111 = 15/16 0001 = 1/16 0000 = 0 disabled (default)
2.11.26 Sync Control Register
Subaddress 32h Default 00h
7 6 5 4 3 2 1 0
Reserved Polarity FID Polarity VS Polarity HS VS/VBLK HS/CS
Polarity FID: determines polarity of FID terminal
0 = First field high, second field low (default) 1 = First field low, second field high
Polarity VS: determines polarity of VS terminal
0 = Active low (default) 1 = Active high
Polarity HS: determines polarity of HS terminal
0 = Active low (default) 1 = Active high
VS or VBLK:
0 = VS terminal outputs vertical sync (default) 1 = VS terminal outputs vertical blank
HS or CS:
0 = HS terminal outputs horizontal sync (default) 1 = HS terminal outputs composite sync
40
SLES140A—March 2007TVP5147M1PFP
Page 49
2.11.27 Output Formatter 1 Register
Subaddress 33h Default 40h
7 6 5 4 3 2 1 0
Reserved YCbCr code range CbCr code Reserved Output format [2:0]
YCbCr output code range:
0 = ITU-R BT.601 coding range (Y ranges from 64 to 940. Cb and Cr range from 64 to 960.) 1 = Extended coding range (Y, Cb, and Cr range from 4 to 1016.) (default)
CbCr code format:
0 = Offset binary code (2s complement + 512) (default) 1 = Straight binary code (2s complement)
Output format [2:0]:
000 = 10-bit 4:2:2 (pixel x 2 rate) with embedded syncs (ITU-R BT.656) (default) 001 = 20-bit 4:2:2 (pixel rate) with separate syncs 010 = Reserved 011 = 10-bit 4:2:2 with separate syncs 100−111= Reserved
Functional Description
NOTE: 10-bit mode is also used for the raw VBI output mode when bit 4 (VBI raw) in the
luminance processing control 1 register at subaddress 06h is set (see Section 2.11.7).
2.11.28 Output Formatter 2 Register
Subaddress 34h Default 00h
7 6 5 4 3 2 1 0
Reserved Data enable Black Screen [1:0] CLK polarity Clock enable
Data enable: Y[9:0] AND C[9:0] output enable
0 = Y[9:0] and C[9:0] high impedance (default) 1 = Y [9:0] and C[9:0] active
Black Screen [1:0]:
00 = Normal operation (default) 01 = Black screen out when TVP5147M1 detects lost lock (using with tuner input but not with VCR) 10 = Black screen out 11 = Black screen out
CLK polarity:
0 = Data clocked out on the falling edge of DATACLK (default) 1 = Data clocked out on the rising edge of DATACLK
Clock enable:
0 = DATACLK outputs are high-impedance (default). 1 = DATACLK outputs are enabled.
SLES140A—March 2007 TVP5147M1PFP
41
Page 50
Functional Description
2.11.29 Output Formatter 3 Register
Subaddress 35h Default FFh
7 6 5 4 3 2 1 0
GPIO [1:0] AVID [1:0] GLCO [1:0] FID [1:0]
GPIO [1:0]: FSS terminal function select
00 = GPIO is logic 0 output. 01 = GPIO is logic 1 output. 10 = Reserved 11 = GPIO is logic input (default).
AVID [1:0]: AVID terminal function select
00 = AVID is logic 0 output. 01 = AVID is logic 1 output. 10 = AVID is active video indicator output. 11 = AVID is logic input (default).
GLCO [1:0]: GLCO terminal function select
00 = GLCO is logic 0 output. 01 = GLCO is logic 1 output. 10 = GCLO is genlock output. 11 = GCLO is logic input (default).
FID [1:0]: FID terminal function select
00 = FID is logic 0 output. 01 = FID is logic 1 output. 10 = FID is FID output. 11 = FID is logic input (default).
42
SLES140A—March 2007TVP5147M1PFP
Page 51
2.11.30 Output Formatter 4 Register
Subaddress 36h Default FFh
7 6 5 4 3 2 1 0
VS/VBLK [1:0] HS/CS [1:0] C_1 [1:0] C_0 [1:0]
VS/VBLK [1:0]: VS terminal function select
00 = VS/VBLK is logic 0 output. 01 = VS/VBLK is logic 1 output. 10 = VS/VBLK is vertical sync or vertical blank output corresponding to bit 1 (VS/VBLK) in the sync control
register at subaddress 32h (see Section 2.11.26).
11 = VS/VBLK is logic input (default).
HS/CS [1:0]: HS terminal function select
00 = HS/CS is logic 0 output. 01 = HS/CS is logic 1 output. 10 = HS/CS is horizontal sync or composite sync output corresponding to bit 0 (HS/CS) in the sync control
register at subaddress 32h (see Section 2.11.26).
11 = HS/CS is logic input (default).
C_1 [1:0]: C_1 terminal function select
Functional Description
00 = C_1 is logic 0 output. 01 = C_1 is logic 1 output. 10 = Reserved 11 = C_1 is logic input (default).
C_0 [1:0]: C_0 terminal function select
00 = C_0 is logic 0 output. 01 = C_0 is logic 1 output. 10 = Reserved 11 = C_0 is logic input (default).
C_x functions are only available in the 10-bit output mode.
SLES140A—March 2007 TVP5147M1PFP
43
Page 52
Functional Description
2.11.31 Output Formatter 5 Register
Subaddress 37h Default FFh
7 6 5 4 3 2 1 0
C_5 [1:0] C_4 [1:0] C_3 [1:0] C_2 [1:0]
C_5 [1:0]: C_5 terminal function select
00 = C_5 is logic 0 output. 01 = C_5 is logic 1 output. 10 = Reserved 11 = C_5 is logic input (default).
C_4 [1:0]: C_4 terminal function select
00 = C_4 is logic 0 output. 01 = C_4 is logic 1 output. 10 = Reserved 11 = C_4 is logic input (default).
C_3 [1:0]: C_3 terminal function select
00 = C_3 is logic 0 output. 01 = C_3 is logic 1 output. 10 = Reserved 11 = C_3 is logic input (default).
C_2 [1:0]: C_2 terminal function select
00 = C_2 is logic 0 output. 01 = C_2 is logic 1 output. 10 = Reserved 11 = C_2 is logic input (default).
C_x functions are only available in the 10-bit output mode.
44
SLES140A—March 2007TVP5147M1PFP
Page 53
2.11.32 Output Formatter 6 Register
Subaddress 38h Default FFh
7 6 5 4 3 2 1 0
C_9 [1:0] C_8 [1:0] C_7 [1:0] C_6 [1:0]
C_9 [1:0]: C_9 terminal function select
00 = C_9 is logic 0 output. 01 = C_9 is logic 1 output. 10 = Reserved 11 = C_9 is logic input (default).
C_8 [1:0]: C_8 terminal function select
00 = C_8 is logic 0 output. 01 = C_8 is logic 1 output. 10 = Reserved 11 = C_8 is logic input (default).
C_7 [1:0]: C_7 terminal function select
00 = C_7 is logic 0 output. 01 = C_7 is logic 1 output. 10 = Reserved 11 = C_7 is logic input (default).
Functional Description
C_6 [1:0]: C_6 terminal function select
00 = C_6 is logic 0 output. 01 = C_6 is logic 1 output. 10 = Reserved 11 = C_6 is logic input (default).
C_x functions are only available in the 10-bit output mode.
2.11.33 Clear Lost Lock Detect Register
Subaddress 39h Default 00h
7 6 5 4 3 2 1 0
Reserved Clear lost lock detect
Clear lost lock detect: Clear bit 4 (lost lock detect) in the status 1 register at subaddress 3Ah (see Section
2.11.34) 0 = No effect (default)
1 = Clears bit 4 in the status 1 register
SLES140A—March 2007 TVP5147M1PFP
45
Page 54
Functional Description
2.11.34 Status 1 Register
Subaddress 3Ah
Read only
7 6 5 4 3 2 1 0
Peak white
detect status
Peak white detect status:
Line-alternating status:
Field rate status:
Lost lock detect:
Line-alternating
status
0 = Peak white is not detected. 1 = Peak white is detected.
0 = Nonline-alternating 1 = Line-alternating
0 = 60 Hz 1 = 50 Hz
Field rate
status
Lost lock
detect
Color subcarrier
lock status
Vertical sync
lock status
Horizontal sync
lock status
TV/VCR
status
0 = No lost lock since this bit was cleared. 1 = Lost lock since this bit was cleared.
Color subcarrier lock status:
0 = Color subcarrier is not locked. 1 = Color subcarrier is locked.
Vertical sync lock status:
0 = Vertical sync is not locked. 1 = Vertical sync is locked.
Horizontal sync lock status:
0 = Horizontal sync is not locked. 1 = Horizontal sync is locked.
TV/VCR status:
0 = TV 1 = VCR
46
SLES140A—March 2007TVP5147M1PFP
Page 55
Functional Description
2.11.35 Status 2 Register
Subaddress 3Bh
Read only
7 6 5 4 3 2 1 0
Signal present Weak signal detection PAL switch polarity Field sequence status Color killed Macrovision detection [2:0]
Signal present detection:
0 = Signal not present 1 = Signal present
Weak signal detection:
0 = No weak signal 1 = Weak signal mode
PAL switch polarity of first line of odd field:
0 = PAL switch is zero. 1 = PAL switch is one.
Field sequence status:
0 = Even field 1 = Odd field
Color killed:
0 = Color killer not active 1 = Color killer activated
Macrovision detection [2:0]:
000 = No copy protection 001 = AGC pulses/pseudo syncs present (type 1) 010 = 2-line color stripe only present 011 = AGC pulses/pseudo syncs and 2-line color stripe present (type 2) 100 = Reserved 101 = Reserved 110 = 4-line color stripe only present 111 = AGC pulses/pseudo syncs and 4-line color stripe present (type 3)
2.11.36 AGC Gain Status Register
Subaddress 3Ch−3Dh
Read only
Subaddress 7 6 5 4 3 2 1 0
3Ch Fine gain [7:0] 3Dh Coarse gain [3:0] Fine gain [11:8]
Fine gain [11:0]: This register provides the fine gain value of sync channel.
1111 1111 1111 = 1.9995 1000 0000 0000 = 1 0010 0000 0000 = 0.5
Coarse gain [3:0]: This register provides the coarse gain value of sync channel.
1111 = 2 0101 = 1 0000 = 0.5
These AGC gain status registers are updated automatically by the TVP5147M1 decoder with AGC on. In manual gain control mode, these register values are not updated by the TVP5147M1 decoder.
SLES140A—March 2007 TVP5147M1PFP
47
Page 56
Functional Description
2.11.37 Video Standard Status Register
Subaddress 3Fh
Read only
7 6 5 4 3 2 1 0
Autoswitch Reserved Video standard [2:0]
Autoswitch mode:
0 = Stand-alone (forced video standard) mode 1 = Autoswitch mode
Video standard [2:0]:
CVBS and S-video
Component video 000 = Reserved Reserved 001 = (M, J) NTSC Component 525 010 = (B, D, G, H, I, N) PAL Component 625 011 = (M) PAL Reserved 100 = (Combination-N) PAL Reserved 101 = NTSC 4.43 Reserved 110 = SECAM Reserved 111 = PAL 60 Reserved
This register contains information about the detected video standard that the device is currently operating. When autoswitch code is running, this register must be tested to determine which video standard has been detected.
2.11.38 GPIO Input 1 Register
Subaddress 40h
Read only
7 6 5 4 3 2 1 0
C_7 C_6 C_5 C_4 C_3 C_2 C_1 C_0
C_x input status:
0 = Input is a low. 1 = Input is a high.
48
These status bits are only valid when terminals are used as input and its states updated at every line.
SLES140A—March 2007TVP5147M1PFP
Page 57
Functional Description
2.11.39 GPIO Input 2 Register
Subaddress 41h
Read only
7 6 5 4 3 2 1 0
GPIO AVID GLCO VS HS FID C_9 C_8
GPIO input terminal status:
0 = Input is a low. 1 = Input is a high.
AVID input terminal status:
0 = Input is a low. 1 = Input is a high.
GLCO input terminal status:
0 = Input is a low. 1 = Input is a high.
VS input terminal status:
0 = Input is a low. 1 = Input is a high.
HS input status:
0 = Input is a low. 1 = Input is a high.
FID input status:
0 = Input is a low. 1 = Input is a high.
C_x input status:
0 = Input is a low. 1 = Input is a high.
These status bits are only valid when terminals are used as input and its states updated at every line.
SLES140A—March 2007 TVP5147M1PFP
49
Page 58
Functional Description
2.11.40 AFE Coarse Gain for CH 1 Register
Subaddress 46h Default 20h
7 6 5 4 3 2 1 0
CGAIN 1 [3:0] Reserved
CGAIN 1 [3:0]: Coarse_Gain = 0.5 + (CGAIN 1)/10, where 0 CGAIN 1 15 This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2 1110 = 1.9 1101 = 1.8 1100 = 1.7 1011 = 1.6 1010 = 1.5 1001 = 1.4 1000 = 1.3 0111 = 1.2 0110 = 1.1 0101 = 1 0100 = 0.9 0011 = 0.8 0010 = 0.7 (default) 0001 = 0.6 0000 = 0.5
2.11.41 AFE Coarse Gain for CH 2 Register
Subaddress 47h Default 20h
7 6 5 4 3 2 1 0
CGAIN 2 [3:0] Reserved
CGAIN 2 [3:0]: Coarse_Gain = 0.5 + (CGAIN 2)/10, where 0 CGAIN 2 15 This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2 1110 = 1.9 1101 = 1.8 1100 = 1.7 1011 = 1.6 1010 = 1.5 1001 = 1.4 1000 = 1.3 0111 = 1.2 0110 = 1.1 0101 = 1 0100 = 0.9 0011 = 0.8 0010 = 0.7 (default) 0001 = 0.6 0000 = 0.5
50
SLES140A—March 2007TVP5147M1PFP
Page 59
2.11.42 AFE Coarse Gain for CH 3 Register
Subaddress 48h Default 20h
7 6 5 4 3 2 1 0
CGAIN 3 [3:0] Reserved
CGAIN 3 [3:0]: Coarse_Gain = 0.5 + (CGAIN 3)/10, where 0 CGAIN 3 15 This register works only in the manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2 1110 = 1.9 1101 = 1.8 1100 = 1.7 1011 = 1.6 1010 = 1.5 1001 = 1.4 1000 = 1.3 0111 = 1.2 0110 = 1.1 0101 = 1 0100 = 0.9 0011 = 0.8 0010 = 0.7 (default) 0001 = 0.6 0000 = 0.5
Functional Description
2.11.43 AFE Coarse Gain for CH 4 Register
Subaddress 49h Default 20h
7 6 5 4 3 2 1 0
CGAIN 4 [3:0] Reserved
CGAIN 4 [3:0]: Coarse_Gain = 0.5 + (CGAIN 4)/10, where 0 CGAIN 4 15 This register works only in the manual gain control mode. When AGC is active, writing to any value is ignored.
1111 = 2 1110 = 1.9 1101 = 1.8 1100 = 1.7 1011 = 1.6 1010 = 1.5 1001 = 1.4 1000 = 1.3 0111 = 1.2 0110 = 1.1 0101 = 1 0100 = 0.9 0011 = 0.8 0010 = 0.7 (default) 0001 = 0.6 0000 = 0.5
SLES140A—March 2007 TVP5147M1PFP
51
Page 60
Functional Description
2.11.44 AFE Fine Gain for Pb Register
Subaddress 4Ah−4Bh Default 900h
Subaddress 7 6 5 4 3 2 1 0
4Ah FGAIN 1 [7:0] 4Bh Reserved FGAIN 1 [11:8]
FGAIN 1 [11:0]: This fine gain applies to component Pb. Fine_Gain = (1/2048) * FGAIN 1, where 0 FGAIN 1 4095 This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995 1100 0000 0000 = 1.5 1001 0000 0000 = 1.125 (default) 1000 0000 0000 = 1 0100 0000 0000 = 0.5 0011 1111 1111 to 0000 0000 0000 = Reserved
2.11.45 AFE Fine Gain for Y_Chroma Register
Subaddress 4Ch−4Dh Default 900h
Subaddress 7 6 5 4 3 2 1 0
4Ch FGAIN 2 [7:0] 4Dh Reserved FGAIN 2 [11:8]
FGAIN 2 [11:0]: This gain applies to component Y channel or S-video chroma (see AFE fine gain for Pb register, Section 2.11.44).
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995 1100 0000 0000 = 1.5 1001 0000 0000 = 1.125 (default) 1000 0000 0000 = 1 0100 0000 0000 = 0.5 0011 1111 1111 to 0000 0000 0000 = Reserved
2.11.46 AFE Fine Gain for Pr Register
Subaddress 4Eh−4Fh Default 900h
Subaddress 7 6 5 4 3 2 1 0
4Eh FGAIN 3 [7:0] 4Fh Reserved FGAIN 3 [11:8]
FGAIN 3 [11:0]: This fine gain applies to component Pr (see AFE fine gain for Pb register, Section 2.11.44). This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995 1100 0000 0000 = 1.5 1001 0000 0000 = 1.125 (default) 1000 0000 0000 = 1 0100 0000 0000 = 0.5 0011 1111 1111 to 0000 0000 0000 = Reserved
52
SLES140A—March 2007TVP5147M1PFP
Page 61
Functional Description
2.11.47 AFE Fine Gain for CVBS_Luma Register
Subaddress 50h−51h Default 900h
Subaddress 7 6 5 4 3 2 1 0
50h FGAIN 4 [7:0] 51h Reserved FGAIN 4 [11:8]
FGAIN 4 [11:0]: This fine gain applies to CVBS or S-video luma (see AFE fine gain for Pb register, Section 2.11.44).
This register works only in manual gain control mode. When AGC is active, writing to any value is ignored.
1111 1111 1111 = 1.9995 1100 0000 0000 = 1.5 1001 0000 0000 = 1.125 (default) 1000 0000 0000 = 1 0100 0000 0000 = 0.5 0011 1111 1111 to 0000 0000 0000 = Reserved
2.11.48 Field ID Control Register
Subaddress 57h Default 00h
7 6 5 4 3 2 1 0
656 version FID control
656 Version
0 = ITU-R BT.656-4 (default) 1 = ITU-R BT.656-3
FID control
0 = 01 adapts to field 1, 10 adapts to field 1+ field 2 (default) 1 = 01 adapts to field 2, 10 adapts to field 1+ field 2 (for TVP5147M1 EVM)
SLES140A—March 2007 TVP5147M1PFP
53
Page 62
Functional Description
Mode
2.11.49 F-bit and V-bit Control 1 Register
Subaddress 69h Default 00h
7 6 5 4 3 2 1 0
Reserved VPLL Adaptive Reserved F-bit mode [1:0]
VPLL: VPLL time constant control
0 = VPLL adapts the time constant to the input signal (default) 1 = VPLL time constants are fixed
Adaptive:
0 = Enable F-bit and V-bit adaptation to detected lines per frame (default) 1 = Disable F-bit and V-bit adaptation to detected lines per frame
F-bit mode [1:0]:
00 = Auto mode. If lines per frame is standard decoded F and V bits as per 656 standard from line count else decode F bit from VSYNC input and set V-bit = 0 (default). 01 = Decode F and V bits from input syncs 10 = Reserved 11 = Always decode F and V bits from line count
This register is used in conjunction with the F-bit and V-bit control 2 register (subaddress 75h) as indicated below:
Reg 69h Reg 75h
Bit 1 Bit 0 Bit 1 Bit 0
0 0 0 0 Reserved Reserved Reserved Reserved Reserved 0 0 0 1 TVP5160 656 656 Toggle Switch9 0 0 1 0 TVP5160 656 656 Pulse 0 0 0 1 1 Reserved Reserved Reserved Reserved Reserved 0 1 0 0 Reserved Reserved Reserved Reserved Reserved 0 1 0 1 656 656 Toggle Switch9 0 1 1 0 656 656 Pulse 0 0 1 1 1 Reserved Reserved Reserved Reserved Reserved 1 0 0 0 Reserved Reserved Reserved Reserved Reserved 1 0 0 1 Reserved Reserved Reserved Reserved Reserved 1 0 1 0 Reserved Reserved Reserved Reserved Reserved 1 0 1 1 Reserved Reserved Reserved Reserved Reserved
1 1 0 0 TVP5146 656 656 1 1 0 1 TVP5146 656 656 Toggle Switch
1 1 1 0 TVP5146 656 656 Pulse Switch 1 1 1 1 Reserved Reserved Reserved Reserved Reserved
Standard LPF Nonstandard LPF
F V F V
Even = 1
Odd = toggle
Switch
54
656 = ITU-R BT.656 standard Toggle = Toggles from field to field Pulse = Pulses low for 1 line prior to field transition Switch = V bit switches high before the F bit transition and low after the F bit transition Switch9 = V bit switches high 1 line prior to F bit transition, then low after 9 lines Reserved = Not used
SLES140A—March 2007TVP5147M1PFP
Page 63
2.11.50 Back-End AGC Control Register
Subaddress 6Ch Default 08h
7 6 5 4 3 2 1 0
Reserved 1 Peak Color Sync
This register disables the back-end AGC when the front-end AGC uses specific amplitude references (sync-height, color burst, or composite peak) to decrement the front-end gain. For example, writing 0x09 to this register disables the back-end AGC whenever the front-end AGC uses the sync-height to decrement the front-end gain.
Peak: Disables back-end AGC when the front-end AGC uses the composite peak as an amplitude reference.
0 = Disabled (default) 1 = Enabled
Color: Disables back-end AGC when the front-end AGC uses color burst as an amplitude reference.
0 = Disabled (default) 1 = Enabled
Sync: Disables back-end AGC when the front-end AGC uses the sync height as an amplitude reference.
0 = Disabled (default) 1 = Enabled
Functional Description
2.11.51 AGC Decrement Speed Control Register
Subaddress 6Fh Default 04h
7 6 5 4 3 2 1 0
Reserved AGC decrement speed [2:0]
AGC decrement speed: Adjusts gain decrement speed. Only used for composite/luma peaks.
111 = 7 (slowest) 110 = 6 (default)
L
000 = 0 (fastest)
2.11.52 ROM Version Register
Subaddress 70h
Read only
7 6 5 4 3 2 1 0
ROM version [7:0]
ROM Version [7:0]: ROM revision number
SLES140A—March 2007 TVP5147M1PFP
55
Page 64
Functional Description
2.11.53 AGC White Peak Processing Register
Subaddress 74h Default 00h
7 6 5 4 3 2 1 0
Luma peak A Reserved Color burst A Sync height A Luma peak B Composite peak Color burst B Sync height B
Luma peak A: Use of the luma peak as a video amplitude reference for the back-end feed-forward type AGC algorithm.
0 = Enabled (default) 1 = Disabled
Color burst A: Use of the color burst amplitude as a video amplitude reference for the back end.
NOTE: Not available for SECAM, component, and B/W video sources.
0 = Enabled (default) 1 = Disabled
Sync height A: Use of the sync height as a video amplitude reference for the back-end feed-forward type AGC algorithm.
0 = Enabled (default) 1 = Disabled
Luma peak B: Use of the luma peak as a video amplitude reference for the front-end feedback type AGC algorithm.
0 = Enabled (default) 1 = Disabled
Composite peak: Use of the composite peak as a video amplitude reference for the front-end feedback type AGC algorithm.
NOTE: Required for CVBS video sources.
0 = Enabled (default) 1 = Disabled
Color burst B: Use of the color burst amplitude as a video amplitude reference for the front-end feedback type AGC algorithm.
NOTE: Not available for SECAM, component, and B/W video sources.
0 = Enabled (default) 1 = Disabled
Sync height B: Use of the sync height as a video amplitude reference for the front-end feedback type AGC algorithm.
0 = Enabled (default) 1 = Disabled
NOTE: If all 4 bits of the lower nibble are set to logic 1 (that is, no amplitude reference selected), then the front-end analog and digital gains are automatically set to nominal values of 2 and 2304, respectively.
56
If all 4 bits of the upper nibble are set to logic 1 (that is, no amplitude reference selected), then the back-end gain is set automatically to unity.
If the input sync height is greater than 100% and the AGC-adjusted output video amplitude becomes less than 100%, then the back-end scale factor attempts to increase the contrast in the back end to restore the video amplitude to 100%.
SLES140A—March 2007TVP5147M1PFP
Page 65
Functional Description
00 = (default)
01 =
10 =
2.11.54 F and V Bit Control Register
Subaddress 75h Default 12h
7 6 5 4 3 2 1 0
Rabbit Reserved Fast lock F and V [1:0] Phase Det. HPLL
Rabbit: Enable rabbit ear
0 = Disabled (default) 1 = Enabled
Fast lock: Enable fast lock where vertical PLL is reset and a 2-second timer is initialized when vertical lock is lost; during time-out the detected input VSYNC is output.
0 = Disabled 1 = Enabled (default)
F and V [1:0]
F and V Lines per frame F bit V bit
00 = (default)
01 =
10 =
11 = Reserved
Standard ITU−R BT 656 ITU−R BT 656
Nonstandard−even Forced to 1 Switch at field boundary
Nonstandard−odd Toggles Switch at field boundary
Standard ITU−R BT 656 ITU−R BT 656
Nonstandard Toggles Switch at field boundary
Standard ITU−R BT 656 ITU−R BT 656
Nonstandard Pulsed mode Switch at field boundary
Phase detector: Enable integral window phase detector
0 = Disabled 1 = Enabled (default)
HPLL: Enable horizontal PLL to free run
0 = Disabled (default) 1 = Enabled
SLES140A—March 2007 TVP5147M1PFP
57
Page 66
Functional Description
2.11.55 VCR Trick Mode Control Register
Subaddress 76h Default 8Ah
7 6 5 4 3 2 1 0
Switch header Horizontal shake threshold [6:0]
Switch header: When in VCR trick mode, the header noisy area around the head switch is skipped.
0 = Disabled 1 = Enabled (default)
Horizontal shake threshold [6:0]:
000 0000 = Zero threshold 000 1010 = 0Ah (default) 111 1111 = Largest threshold
2.11.56 Horizontal Shake Increment Register
Subaddress 77h Default 64h
7 6 5 4 3 2 1 0
Horizontal shake increment [7:0]
Horizontal shake increment [7:0]:
000 0000 =0 000 1010 = 64h (default) 111 1111 = FFh
2.11.57 AGC Increment Speed Register
Subaddress 78h Default 06h
7 6 5 4 3 2 1 0
Reserved AGC increment speed [3:0]
AGC increment speed: Adjusts gain increment speed.
111 = 7 (slowest) 110 = 6 (default)
L
000 = 0 (fastest)
2.11.58 AGC Increment Delay Register
Subaddress 79h Default 1Eh
7 6 5 4 3 2 1 0
AGC increment delay [7:0]
58
AGC increment delay: Number of frames to delay gain increments
1111 1111 = 255
L
0001 1110 = 30 (default)
L
0000 0000 = 0
SLES140A—March 2007TVP5147M1PFP
Page 67
2.11.59 Analog Output Control 1 Register
Subaddress 7Fh Default 00h
7 6 5 4 3 2 1 0
Reserved AGC enable Input select Analog Output enable
AGC enable:
0 = Enabled (default) 1 = Disabled, manual gain mode (see Section 2.12.10)
Input select:
00 = Input selected by TVP5147M1 decoder, (see Section 2.11.1) (default) 01 = Input selected manually (see Section 2.12.10)
Analog output enable:
0 = VI_1_A is input (default). 1 = VI_1_A is analog video output.
2.11.60 Chip ID MSB Register
Subaddress 80h
Functional Description
Read only
7 6 5 4 3 2 1 0
Chip ID MSB [7:0]
Chip ID MSB [7:0]: This register identifies the MSB of the device ID. Value = 51h
2.11.61 Chip ID LSB Register
Subaddress 81h
Read only
7 6 5 4 3 2 1 0
Chip ID LSB [7:0]
Chip ID LSB [7:0]: This register identifies the LSB of the device ID. Value = 47h
2.11.62 CPLL Speed Control Register
Subaddress 83h Default 09h
7 6 5 4 3 2 1 0
Reserved Speed [3:0]
Speed [3:0]: Color PLL speed control
1001 = Faster (default) 1010 = 1011 = Slower Other = Reserved
SLES140A—March 2007 TVP5147M1PFP
59
Page 68
Functional Description
2.11.63 Status Request Register
Subaddress 97h Default 00h
7 6 5 4 3 2 1 0
Reserved Capture
Capture: Setting a 1b in this register causes the internal processor to capture the current settings of the AGC status and the vertical line count registers. Since this capture is not immediate, it is necessary to check for completion of the capture by reading the capture bit repeatedly after setting it and waiting for it to be cleared by the internal processor. Once the capture bit is 0b, the AGC status and vertical line counters (3Ch/3Dh and 9Ah/9Bh) have been updated and can be safely read in any order.
2.11.64 Vertical Line Count Register
Subaddress 9Ah 9Bh
Read only
Subaddress 7 6 5 4 3 2 1 0
9Ah Vertical line [7:0] 9Bh Reserved Vertical line [9:8]
Vertical line [9:0] represents the detected a total number of lines from the previous frame. This can be used with nonstandard video signals such as a VCR in trick mode to synchronize downstream video circuitry.
Since this register is a double-byte register, it is necessary to capture the setting into the register to ensure that the value is not updated between reading the lower and upper bytes. In order to cause this register to capture the current settings, bit 0 of the status request register (subaddress 97h) must be set to a 1b. Once the internal processor has updated and can be read. Either byte may be read first since no further update will occur until bit 0 of 97h is set to 1b again.
2.11.65 AGC Decrement Delay Register
Subaddress 9Eh Default 00h
7 6 5 4 3 2 1 0
AGC decrement delay [7:0]
AGC decrement delay [7:0]: Number of frames to delay gain decrements
1111 1111 = 255 0001 1110 = 30 (default) 0000 0000 = 0
60
SLES140A—March 2007TVP5147M1PFP
Page 69
Functional Description
2.11.66 VDP TTX Filter And Mask Registers
Subaddress B1h B2h B3h B4h B5h B6h B7h B8h B9h BAh Default 00h 00h 00h 00h 00h 00h 00h 00h 00h 00h
Subaddress 7 6 5 4 3 2 1 0
B1h Filter 1 mask 1 Filter 1 pattern 1 B2h Filter 1 mask 2 Filter 1 pattern 2 B3h Filter 1 mask 3 Filter 1 pattern 3 B4h Filter 1 mask 4 Filter 1 pattern 4 B5h Filter 1 mask 5 Filter 1 pattern 5 B6h Filter 2 mask 1 Filter 2 pattern 1 B7h Filter 2 mask 2 Filter 2 pattern 2 B8h Filter 2 mask 3 Filter 2 pattern 3 B9h Filter 2 mask 4 Filter 2 pattern 4 BAh Filter 2 mask 5 Filter 2 pattern 5
For an NABTS system, the packet prefix consists of five bytes. Each byte contains 4 data bits (D[3:0]) interlaced with 4 Hamming protection bits (H[3:0]):
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
D[3] H[3] D[2] H[2] D[1] H[1] D[0] H[0]
Only data portion D[3:0] from each byte is applied to a teletext filter function with corresponding pattern bits P[3:0] and mask bits M[3:0]. The filter ignores the Hamming protection bits.
For WST system (P AL or NTSC), the packet prefix consists of two bytes. The two bytes contain three bits of magazine number (M[2:0]) and five bits of row address (R[4:0]), interlaced with eight Hamming protection bits H[7:0]:
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
R[0] H[3] M[2] H[2] M[1] H[1] M[0] H[0] R[4] H[7] R[3] H[6] R[2] H[5] R[1] H[4]
The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1 in the LSB of mask 1 means that the filter module must compare the LSB of nibble 1 in the pattern register to the first data bit on the transaction. If these match, then a true result is returned. A 0 in a bit of mask means that the filter module must ignore that data bit of the transaction. If all 0s are programmed in the mask bits, then the filter matches all patterns returning a true result (default 00h).
SLES140A—March 2007 TVP5147M1PFP
61
Page 70
Functional Description
2.11.67 VDP TTX Filter Control Register
Subaddress BBh Default 00h
7 6 5 4 3 2 1 0
Reserved Filter logic [1:0] Mode TTX filter 2 enable TTX filter 1 enable
Filter logic [1:0]: Allow different logic to be applied when combining the decision of filter 1 and filter 2 as follows:
00 = NOR (default) 01 = NAND 10 = OR 11 = AND
Mode: indicates which teletext mode is in use.
0 = Teletext filter applies to 2 header bytes (default) 1 = Teletext filter applies to 5 header bytes
TTX filter 2 enable: provides for enabling the teletext filter function within the VDP.
0 = Disabled (default) 1 = Enabled
TTX filter 1 enable: provides for enabling the teletext filter function within the VDP.
0 = Disabled (default) 1 = Enabled
If the filter matches or if the filter mask is all 0s, then a true result is returned.
62
SLES140A—March 2007TVP5147M1PFP
Page 71
1P1[3]
D1[3]
1P1[2]
D1[2]
1P1[1]
D1[1]
1P1[0]
D1[0]
D2[3:0]
1P2[3:0]
1M2[3:0]
D3[3:0]
1P3[3:0]
1M3[3:0]
1M1[3]
1M1[2]
1M1[1]
1M1[0]
NIBBLE 1
NIBBLE 2
NIBBLE 3
PASS 1
Filter 1 Enable
Functional Description
00
D4[3:0]
1P4[3:0]
1M4[3:0]
D5[3:0]
1P5[3:0]
1M5[3:0]
D1..D5
2P1..2P5
2M1..2M5
NIBBLE 4
NIBBLE 5
FILTER 1
FILTER 2
Figure 2−19. Teletext Filter Function
2.11.68 VDP FIFO Word Count Register
Subaddress BCh
01
PASS
10
11
2
Filter Logic
PASS 2
Filter 2 Enable
Read only
7 6 5 4 3 2 1 0
FIFO word count [7:0]
FIFO word count [7:0]: This register provides the number of words in the FIFO.
NOTE: 1 word equals 2 bytes.
SLES140A—March 2007 TVP5147M1PFP
63
Page 72
Functional Description
2.11.69 VDP FIFO Interrupt Threshold Register
Subaddress BDh Default 80h
7 6 5 4 3 2 1 0
Threshold [7:0]
Threshold [7:0]: This register is programmed to trigger an interrupt when the number of words in the FIFO exceeds this value.
NOTE: 1 word equals 2 bytes.
2.11.70 VDP FIFO Reset Register
Subaddress BFh Default 00h
7 6 5 4 3 2 1 0
Reserved FIFO reset
FIFO reset: Writing any data to this register clears the FIFO and VDP data register (CC, WSS, VITC and VPS). After clearing, this register is automatically cleared.
2.11.71 VDP FIFO Output Control Register
Subaddress C0h Default 00h
7 6 5 4 3 2 1 0
Reserved Host access enable
Host access enable: This register is programmed to allow the host port access to the FIFO or to allow all VDP data to go out the video output.
0 = Output FIFO data to the video output Y[9:2] (default) 1 = Allow host port access to the FIFO data
2.11.72 VDP Line Number Interrupt Register
Subaddress C1h Default 00h
7 6 5 4 3 2 1 0
Field 1 enable Field 2 enable Line number [5:0]
Field 1 interrupt enable:
0 = Disabled (default) 1 = Enabled
Field 2 interrupt enable:
0 = Disabled (default) 1 = Enabled
Line number [5:0]: Interrupt line number (default 00h)
64
This register is programmed to trigger an interrupt when the video line number exceeds this value in bits [5:0]. This interrupt must be enabled at address F4h.
NOTE: The line number value of 0 or 1 is invalid and does not generate an interrupt.
SLES140A—March 2007TVP5147M1PFP
Page 73
Functional Description
2.11.73 VDP Pixel Alignment Register
Subaddress C2h−C3h Default 01Eh
Subaddress 7 6 5 4 3 2 1 0
C2h Pixel alignment [7:0] C3h Reserved Pixel alignment [9:8]
Pixel alignment [9:8]: These registers form a 10-bit horizontal pixel position from the falling edge of horizontal sync, where the VDP controller initiates the program from one line standard to the next line standard, for example, the previous line of teletext to the next line of closed caption. This value must be set so that the switch occurs after the previous transaction has cleared the delay in the VDP, but early enough to allow the new values to be programmed before the current settings are required.
The default value is 0x1E and has been tested with every standard supported here. A new value is needed only if a custom standard is in use.
2.11.74 VDP Line Start Register
Subaddress D6h Default 06h
7 6 5 4 3 2 1 0
VDP line start [7:0]
VDP line start [7:0]: Set the VDP line starting address This register must be set properly before enabling the line mode registers. The VDP processor works only the VBI region set by this register and the VDP line stop register.
2.11.75 VDP Line Stop Register
Subaddress D7h Default 1Bh
7 6 5 4 3 2 1 0
VDP line stop [7:0]
VDP line stop [7:0]: Set the VDP stop line address
2.11.76 VDP Global Line Mode Register
Subaddress D8h Default FFh
7 6 5 4 3 2 1 0
Global line mode [7:0]
Global line mode [7:0]: VDP processing for multiple lines set by the VDP start line register at subaddress D6h and the VDP stop line register at subaddress D7h. Global line mode register has the same bit definition as the general line mode registers. General line mode has priority over the global line mode.
SLES140A—March 2007 TVP5147M1PFP
65
Page 74
Functional Description
2.11.77 VDP Full Field Enable Register
Subaddress D9h Default 00h
7 6 5 4 3 2 1 0
Reserved Full field enable
Full field enable:
0 = Disabled full field mode (default) 1 = Enabled full field mode
This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in the line mode register programmed with FFh are sliced with the definition of the VDP full field mode register at subaddress DAh. Values other than FFh in the line mode registers allow a different slice mode for that particular line.
2.11.78 VDP Full Field Mode Register
Subaddress DAh Default FFh
7 6 5 4 3 2 1 0
Full field mode [7:0]
Full field mode [7:0]: This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual line
settings take priority over the full field register . This allows each VBI line to be programmed independently but have the remaining lines in full field mode. The full field mode register has the same bit definition as line mode registers (default FFh). Global line mode has priority over the full field mode.
2.11.79 VBUS Data Access With No VBUS Address Increment Register
Subaddress E0h Default 00h
7 6 5 4 3 2 1 0
VBUS data [7:0]
VBUS data [7:0]: VBUS data register for VBUS single-byte read/write transaction.
2.11.80 VBUS Data Access With VBUS Address Increment Register
Subaddress E1h Default 00h
7 6 5 4 3 2 1 0
VBUS data [7:0]
VBUS data [7:0]: VBUS data register for VBUS multibyte read/write transaction. VBUS address is autoincremented after each data byte read/write.
66
SLES140A—March 2007TVP5147M1PFP
Page 75
Functional Description
2.11.81 FIFO Read Data Register
Subaddress E2h
Read only
7 6 5 4 3 2 1 0
FIFO read data [7:0]
FIFO read data [7:0]: This register is provided to access VBI FIFO data through the I2C interface. All forms of teletext data come directly from the FIFO, while all other forms of VBI data can be programmed to come from registers or from the FIFO. If the host port is to be used to read data from the FIFO, then bit 0 (host access enable) in the VDP FIFO output control register at subaddress C0h must be set to 1 (see Section 2.11.71).
2.11.82 VBUS Address Access Register
Subaddress E8h E9h EAh Default 00h 00h 00h
Subaddress 7 6 5 4 3 2 1 0
E8h VBUS address [7:0] E9h VBUS address [15:8] EAh VBUS address [23:16]
VBUS address [23:0]: VBUS is a 24-bit wide internal bus. The user needs to program in these registers the 24-bit address of the internal register to be accessed via host port indirect access mode.
2.11.83 Interrupt Raw Status 0 Register
Subaddress F0h
Read only
7 6 5 4 3 2 1 0
FIFO THRS TTX WSS VPS VITC CC F2 CC F1 Line
FIFO THRS: FIFO threshold passed, unmasked
0 = Not passed 1 = Passed
TTX: Teletext data available unmasked
0 = Not available 1 = Available
WSS: WSS data available unmasked
0 = Not available 1 = Available
VPS: VPS data available unmasked
0 = Not available 1 = Available
VITC: VITC data available unmasked
0 = Not available 1 = Available
CC F2: CC field 2 data available unmasked
0 = Not available 1 = Available
SLES140A—March 2007 TVP5147M1PFP
67
Page 76
Functional Description
CC F1: CC field 1 data available unmasked
0 = Not available 1 = Available
Line: Line number interrupt unmasked
0 = Not available 1 = Available
The host interrupt raw status 0 and 1 registers represent the interrupt status without applying mask bits.
2.11.84 Interrupt Raw Status 1 Register
Subaddress F1h
Read only
7 6 5 4 3 2 1 0
Reserved H/V lock Macrovision status changed Standard changed FIFO full
H/V lock: unmasked
0 = H/V lock status unchanged 1 = H/V lock status changed
Macrovision status changed: unmasked
0 = Macrovision status unchanged 1 = Macrovision status changed
Standard changed: unmasked
0 = Video standard unchanged 1 = Video standard changed
FIFO full: unmasked
0 = FIFO not full 1 = FIFO was full during write to FIFO
The FIFO full error flag is set when the current line of VBI data cannot enter the FIFO. For example, if the FIFO has only 10 bytes left and teletext is the current VBI line, then the FIFO full error flag is set, but no data is written because the entire teletext line does not fit. However, if the next VBI line is closed caption requiring only 2 bytes of data plus the header, then this goes into the FIFO even if the full error flag is set.
2.11.85 Interrupt Status 0 Register
Subaddress F2h
Read only
7 6 5 4 3 2 1 0
FIFO THRS TTX WSS VPS VITC CC F2 CC F1 Line
FIFO THRS: FIFO threshold passed, masked
0 = Not passed 1 = Passed
TTX: Teletext data available masked
0 = Not available 1 = Available
68
WSS: WSS data available masked
0 = Not available 1 = Available
SLES140A—March 2007TVP5147M1PFP
Page 77
Functional Description
VPS: VPS data available masked
0 = Not available 1 = Available
VITC: VITC data available masked
0 = Not available 1 = Available
CC F2: CC field 2 data available masked
0 = Not available 1 = Available
CC F1: CC field 1 data available masked
0 = Not available 1 = Available
Line: Line number interrupt masked
0 = Not available 1 = Available
The interrupt status 0 and 1 registers represent the interrupt status after applying mask bits. Therefore, the status bits are the result of a logical AND between the raw status and mask bits. The external interrupt terminal is derived from this register as an OR function of all nonmasked interrupts in this register.
Reading data from the corresponding register does not clear the status flags automatically. These flags are reset using the corresponding bits in interrupt clear 0 and 1 registers.
2.11.86 Interrupt Status 1 Register
Subaddress F3h
Read only
7 6 5 4 3 2 1 0
Reserved H/V lock Macrovision status changed Standard changed FIFO full
H/V lock: H/V lock status changed mask
0 = H/V lock status unchanged 1 = H/V lock status changed
Macrovision status changed: Macrovision status changed masked
0 = Macrovision status not changed 1 = Macrovision status changed
Standard changed: Standard changed masked
0 = Video standard not changed 1 = Video standard changed
FIFO full: full status of FIFO masked
0 = FIFO not full 1 = FIFO was full during write to FIFO, see the interrupt mask 1 register at subaddress F5h for details (see
Section 2.11.88)
SLES140A—March 2007 TVP5147M1PFP
69
Page 78
Functional Description
2.11.87 Interrupt Mask 0 Register
Subaddress F4h Default 00h
7 6 5 4 3 2 1 0
FIFO THRS TTX WSS VPS VITC CC F2 CC F1 Line
FIFO THRS: FIFO threshold passed mask
0 = Disabled (default) 1 = Enabled FIFO_THRES interrupt
TTX: Teletext data available mask
0 = Disabled (default) 1 = Enabled TTX available interrupt
WSS: WSS data available mask
0 = Disabled (default) 1 = Enabled WSS available interrupt
VPS: VPS data available mask
0 = Disabled (default) 1 = Enabled VPS available interrupt
VITC: VITC data available mask
0 = Disabled (default) 1 = Enabled VITC available interrupt
CC F2: CC field 2 data available mask
0 = Disabled (default) 1 = Enabled CC_field 2 available interrupt
CC F1: CC field 1 data available mask
0 = Disabled (default) 1 = Enabled CC_field 1 available interrupt
Line: Line number interrupt mask
0 = Disabled (default) 1 = Enabled Line_INT interrupt
The host interrupt mask 0 and 1 registers can be used by the external processor to mask unnecessary interrupt sources for the interrupt status 0 and 1 register bits, and for the external interrupt terminal. The external interrupt is generated from all nonmasked interrupt flags.
70
SLES140A—March 2007TVP5147M1PFP
Page 79
Functional Description
2.11.88 Interrupt Mask 1 Register
Subaddress F5h Default 00h
7 6 5 4 3 2 1 0
Reserved H/V lock Macrovision status changed Standard changed FIFO full
H/V lock: H/V lock status changed masked
0 = H/V lock status unchanged (default) 1 = H/V lock status changed
Macrovision status changed: Macrovision status changed mask
0 = Macrovision status unchanged 1 = Macrovision status changed
Standard changed: Standard changed mask
0 = Disabled (default) 1 = Enabled video standard changed
FIFO full: FIFO full mask
0 = Disabled (default) 1 = Enabled FIFO full interrupt
2.11.89 Interrupt Clear 0 Register
Subaddress F6h Default 00h
7 6 5 4 3 2 1 0
FIFO THRS TTX WSS VPS VITC CC F2 CC F1 Line
FIFO THRS: FIFO threshold passed clear
0 = No effect (default) 1 = Clear bit 7 (FIFO_THRS) in the interrupt status 0 register at subaddress F2h
TTX: Teletext data available clear
0 = No effect (default) 1 = Clear bit 6 (TTX available) in the interrupt status 0 register at subaddress F2h
WSS: WSS data available clear
0 = No effect (default) 1 = Clear bit 5 (WSS available) in the interrupt status 0 register at subaddress F2h
VPS: VPS data available clear
0 = No effect (default) 1 = Clear bit 4 (VPS available) in the interrupt status 0 register at subaddress F2h
VITC: VITC data available clear
0 = Disabled (default) 1 = Clear bit 3 (VITC available) in the interrupt status 0 register at subaddress F2h
CC F2: CC field 2 data available clear
0 = Disabled (default) 1 = Clear bit 2 (CC field 2 available) in the interrupt status 0 register at subaddress F2h
CC F1: CC field 1 data available clear
0 = Disabled (default) 1 = Clear bit 1 (CC field 1 available) in the interrupt status 0 register at subaddress F2h
SLES140A—March 2007 TVP5147M1PFP
71
Page 80
Functional Description
Line: Line number interrupt clear
0 = Disabled (default) 1 = Clear bit 0 (line interrupt available) in the interrupt status 0 register at subaddress F2h
The host interrupt clear 0 and 1 registers are used by the external processor to clear the interrupt status bits in the host interrupt status 0 and 1 registers. When no nonmasked interrupts remain set in the registers, the external interrupt terminal also becomes inactive.
2.11.90 Interrupt Clear 1 Register
Subaddress F7h Default 00h
7 6 5 4 3 2 1 0
Reserved H/V lock Macrovision status changed Standard changed FIFO full
H/V lock: Clear H/V lock status changed flag
0 = H/V lock status unchanged 1 = H/V lock status changed
Macrovision status changed: Clear Macrovision status changed flag
0 = No effect (default) 1 = Clear bit 2 (Macrovision status changed) in the interrupt status 1 register at subaddress F3h and the
interrupt raw status 1 register at subaddress F1h
Standard changed: Clear standard changed flag
0 = No effect (default) 1 = Clear bit 1 (video standard changed) in the interrupt status 1 register at subaddress F3h and the interrupt raw status 1 register at subaddress F1h
FIFO full: Clear FIFO full flag
0 = No effect (default) 1 = Clear bit 0 (FIFO full flag) in the interrupt status 1 register at subaddress F3h and the interrupt raw status 1 register at subaddress F1h
72
SLES140A—March 2007TVP5147M1PFP
Page 81
Functional Description
2.12 VBUS Register Definitions
2.12.1 VDP Closed Caption Data Register
Subaddress 80 051Ch−80 051Fh
Read only
Subaddress 7 6 5 4 3 2 1 0
80 051Ch Closed caption field 1 byte 1 80 051Dh Closed caption field 1 byte 2 80 051Eh Closed caption field 2 byte 1 80 051Fh Closed caption field 2 byte 2
These registers contain the closed caption data arranged in bytes per field.
2.12.2 VDP WSS Data Register
Subaddress 80 0520h−80 0526h
WSS NTSC (CGMS): Read only
Subaddress 7 6 5 4 3 2 1 0 Byte
80 0520h b5 b4 b3 b2 b1 b0 WSS field 1 byte 1 80 0521h b13 b12 b11 b10 b9 b8 b7 b6 WSS field 1 byte 2 80 0522h b19 b18 b17 b16 b15 b14 WSS field 1 byte 3 80 0523h Reserved 80 0524h b5 b4 b3 b2 b1 b0 WSS field 2 byte 1 80 0525h b13 b12 b11 b10 b9 b8 b7 b6 WSS field 2 byte 2 80 0526h b19 b18 b17 b16 b15 b14 WSS field 2 byte 3
These registers contain the wide screen signaling data for NTSC.
Bits 0−1 represent word 0, aspect ratio Bits 2−5 represent word 1, header code for word 2 Bits 6−13 represent word 2, copy control
Bits 14−19 represent word 3, CRC PAL/SECAM: Read only
Subaddress 7 6 5 4 3 2 1 0 Byte
80 0520h b7 b6 b5 b4 b3 b2 b1 b0 WSS field 1 byte 1 80 0521h b13 b12 b11 b10 b9 b8 WSS field 1 byte 2 80 0522h Reserved 80 0523h Reserved 80 0524h b7 b6 b5 b4 b3 b2 b1 b0 WSS field 2 byte 1 80 0525h b13 b12 b11 b10 b9 b8 WSS field 2 byte 2 80 0526h Reserved
PAL/SECAM:
Bits 0−3 represent group 1, aspect ratio
Bits 4−7 represent group 2, enhanced services
Bits 8−10 represent group 3, subtitles
Bits 11−13 represent group 4, others
SLES140A—March 2007 TVP5147M1PFP
73
Page 82
Functional Description
2.12.3 VDP VITC Data Register
Subaddress 80 052Ch−80 0534h
Read only
Subaddress 7 6 5 4 3 2 1 0
80 052Ch VITC frame byte 1 80 052Dh VITC frame byte 2 80 052Eh VITC seconds byte 1 80 052Fh VITC seconds byte 2
80 0530h VITC minutes byte 1 80 0531h VITC minutes byte 2 80 0532h VITC hours byte 1 80 0533h VITC hours byte 2 80 0534h VITC CRC byte
These registers contain the VITC data.
2.12.4 VDP V-Chip TV Rating Block 1 Register
Subaddress 80 0540h
Read only
7 6 5 4 3 2 1 0
Reserved 14-D PG-D Reserved MA-L 14-L PG-L Reserved
TV parental guidelines rating block 1:
14-D: When incoming video program is TV-14-D rated then this bit is set high PG-D: When incoming video program is TV-PG-D rated then this bit is set high MA-L: When incoming video program is TV-MA-L rated then this bit is set high 14-L: When incoming video program is TV-14-L rated then this bit is set high PG-L: When incoming video program is TV-PG-L rated then this bit is set high
2.12.5 VDP V-Chip TV Rating Block 2 Register
Subaddress 80 0541h
Read only
7 6 5 4 3 2 1 0
MA-S 14-S PG-S Reserved MA-V 14-V PG-V Y7-FV
TV parental guidelines rating block 2:
MA-S: When incoming video program is TV-MA-S rated then this bit is set high 14-S: When incoming video program is TV-14-S rated then this bit is set high
74
PG-S: When incoming video program is TV-PG-S rated then this bit is set high MA-V: When incoming video program is TV-MA-V rated then this bit is set high 14-V: When incoming video program is TV-14-V rated then this bit is set high PG-V: When incoming video program is TV-PG-S rated then this bit is set high Y7-FV: When incoming video program is TV-Y7-FV rated then this bit is set high
SLES140A—March 2007TVP5147M1PFP
Page 83
Functional Description
2.12.6 VDP V-Chip TV Rating Block 3 Register
Subaddress 80 0542h
Read only
7 6 5 4 3 2 1 0
None TV-MA TV-14 TV-PG TV-G TV-Y7 TV-Y None
TV parental guidelines rating block 3:
None: no block intended
TV-MA: When incoming video program is TV-MA rated in TV parental guidelines rating then this bit is set
high
TV-14: When incoming video program is TV-14 rated in TV parental guidelines rating then this bit is set
high
TV-PG: When incoming video program is TV-PG rated in TV parental guidelines rating then this bit is set
high
TV-G: When incoming video program is TV-G rated in TV parental guidelines rating then this bit is set high
TV-Y7: When incoming video program is TV-Y7 rated in TV parental guidelines rating then this bit is set
high
TV-Y: When incoming video program is TV-G rated in TV parental guidelines rating then this bit is set high
None: no block intended
2.12.7 VDP V-CHIP MPAA Rating Data Register
Subaddress 80 0543h
Read only
7 6 5 4 3 2 1 0
Not Rated X NC-17 R PG-13 PG G N/A
MPAA rating block (E5h):
Not rated: When incoming video program is not rated in MPAA rating then this bit is set high
X: When incoming video program is X rated in MPAA rating then this bit is set high
NC-17: When incoming video program is NC-17 rated in MPAA rating then this bit is set high
R: When incoming video program is R rated in MPAA rating then this bit is set high
PG-13: When incoming video program is PG-13 rated in MPAA rating then this bit is set high
PG: When incoming video program is PG rated in MPAA rating then this bit is set high
G: When incoming video program is G rated in MPAA rating then this bit is set high
N/A: When incoming video program is N/A rated in MPAA rating then this bit is set high
SLES140A—March 2007 TVP5147M1PFP
75
Page 84
Functional Description
2.12.8 VDP General Line Mode and Line Address Register
Subaddress 80 0600h−80 0611h
(default line mode = FFh, address = 00h)
Subaddress 7 6 5 4 3 2 1 0
80 0600h Line address 1 80 0601h Line mode 1 80 0602h Line address 2 80 0603h Line mode 2 80 0604h Line address 3 80 0605h Line mode 3 80 0606h Line address 4 80 0607h Line mode 4 80 0608h Line address 5
80 0609h Line mode 5 80 060Ah Line address 6 80 060Bh Line mode 6 80 060Ch Line address 7 80 060Dh Line mode 7 80 060Eh Line address 8 80 060Fh Line mode 8
80 0610h Line address 9
80 0611h Line mode 9
Line address [7:0]: Line number to be processed by a VDP set by a line mode register (default 00h) Line mode register [7:0]:
Bit 7: 0 = Disabled filters
1 = Enabled filters for teletext and CC (null byte filter) (default)
Bit 6: 0 = Send sliced VBI data to registers only (default)
1 = Send sliced VBI data to FIFO and registers, teletext data only goes to FIFO (default)
Bit 5: 0 = Allow VBI data with errors in the FIFO
1 = Do not allow VBI data with errors in the FIFO (default)
Bit 4: 0 = Disabled error detection and correction
1 = Enabled error detection and correction (teletext only) (default)
Bit 3: 0 = Field 1
1 = Field 2 (default)
Bits [2:0]: 000 = Teletext (WST625, Chinese teletext, NABTS 525)
001 = CC (US, Europe, Japan, China) 010 = WSS (525, 625) 011 = VITC 100 = VPS/PDC (PAL only), Gemstar (NTSC only) 101 = USER 1 110 = USER 2 111 = Reserved (active video) (default)
76
SLES140A—March 2007TVP5147M1PFP
Page 85
Functional Description
2.12.9 VDP VPS/Gemstar Data Register
Subaddress 80 0700h−80 070Ch
VPS: Read only
Subaddress 7 6 5 4 3 2 1 0
80 0700h VPS byte 1 80 0701h VPS byte 2 80 0702h VPS byte 3 80 0703h VPS byte 4 80 0704h VPS byte 5 80 0705h VPS byte 6 80 0706h VPS byte 7 80 0707h VPS byte 8 80 0708h VPS byte 9
80 0709h VPS byte 10 80 070Ah VPS byte 11 80 070Bh VPS byte 12 80 070Ch VPS byte 13
These registers contain the entire VPS data line except the clock run-in code or the start code. Gemstar: Read only
Subaddress 7 6 5 4 3 2 1 0
80 0700h Gemstar frame code
80 0701h Gemstar byte 1
80 0702h Gemstar byte 2
80 0703h Gemstar byte 3
80 0704h Gemstar byte 4
80 0705h Reserved
80 0706h Reserved
80 0707h Reserved
80 0708h Reserved
80 0709h Reserved 80 070Ah Reserved 80 070Bh Reserved 80 070Ch Reserved
SLES140A—March 2007 TVP5147M1PFP
77
Page 86
Functional Description
2.12.10 Analog Output Control 2 Register
Subaddress A0 005Eh Default B2h
7 6 5 4 3 2 1 0
Reserved Reserved Input Select [1:0] Gain [3:0]
Analog input select [1:0]: These bits are effective when manual input select bit is set to 1 at subaddress 7Fh, bit 1.
00 = CH1 selected 01 = CH2 selected 10 = CH3 selected 11= CH4 selected (default)
Analog output PGA gain [3:0]: These bits are effective when analog output AGC is set to 1 at subaddress 7Fh, bit 2.
Gain [3:0] Mode 1 0000 = 1.30 0001 = 1.56 0010 = (default) 1.82 0011 = 2.08 0100 = 2.34 0101 = 2.60 0110 = 2.86 0111 = 3.12 0000 = 3.38 0001 = 3.64 0010 = 3.90 0011 = 4.16 0100 = 4.42 0101 = 4.68 0110 = 4.94 0111 = 5.20
2.12.11 Interrupt Configuration Register
Subaddress B0 0060h Default 00h
7 6 5 4 3 2 1 0
Reserved Polarity Reserved
Polarity: Interrupt terminal polarity
0 = Active high (default) 1 = Active low
78
SLES140A—March 2007TVP5147M1PFP
Page 87
3 Electrical Specifications
Electrical Specifications
3.1 Absolute Maximum Ratings
Supply voltage range: IOVDD to I/O GND 0.5 V to 4 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DV
to DGND −0.2 V to 2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DD
A33VDD (see Note 1) to A33GND (see Note 2) −0.3 V to 3.6 V. . . . . . . . . . . . . . . .
A18VDD (see Note 3) to A18GND (see Note 4) −0.2 V to 2 V. . . . . . . . . . . . . . . . . .
Digital input voltage, V Digital output voltage, V
to DGND −0.5 V to 4.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I
to DGND −0.5 V to 4.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
O
Analog input voltage range AIN to AGND −0.2 V to 2 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature, T Storage temperature, T
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. CH1_A33VDD, CH2_A33VDD
2. CH1_A33GND, CH2_A33GND
3. CH1_A18VDD, CH2_A18VDD, A18VDD_REF, PLL_A18VDD
4. CH1_A18GND, CH2_A18GND, A18GND
−65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
stg
0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A
3.2 Recommended Operating Conditions
IOV
DD
DV
DD
AV
DD33
AV
DD18
V
I(P-P)
V
IH
V
IL
I
OH
I
OL
T
A
NOTES: 1. Exception: 0.7 AV
Digital supply voltage 3 3.3 3.6 V Digital supply voltage 1.65 1.8 1.95 V Analog supply voltage 3 3.3 3.6 V Analog supply voltage 1.65 1.8 1.95 V Analog input voltage (ac-coupling necessary) 0.5 1 2 V Digital input voltage, high (Note 1) 0.7 IOV Digital input voltage, low (Note 2) 0.3 IOV Output current, V Output current, V Operating free-air temperature 0 70 °C
2. Exception: 0.3 AV
MIN NOM MAX
DD
= 2.4 V −4 mA
out
= 0.4 V 4 mA
out
for XTAL1 terminal
DD18
for XTAL1 terminal
DD18
DD
UNIT
V V
3.2.1 Crystal Specifications
CRYSTAL SPECIFICATIONS MIN NOM MAX UNIT
Frequency 14.31818 MHz Frequency tolerance ±50 ppm
SLES140A—March 2007 TVP5147M1PFP
79
Page 88
Electrical Specifications
)
)
)
3.3 Electrical Characteristics
For minimum/maximum values: IOVDD = 3 V to 3.6 V, DVDD = 1.65 V to 1.95 V, AV AV
For typical values: IOV
= 1.65 V to 1.95 V, TA = 0°C to 70°C
DD18
= 3.3 V, DVDD = 1.8 V, AV
DD
3.3.1 DC Electrical Characteristics (see Note 1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
I
DDIO(D
I
DD(D)
I
DD33(A
I
DD18(A
P
TOT
P
SAVE
P
DOWN
I
lkg
C
i
V
OH
V
OL
NOTE 1: Measured with a load of 10 k in parallel to 15 pF.
3.3-V IO digital supply current
1.8-V digital supply current
3.3-V analog supply current
1.8-V analog supply current Total power dissipation (normal operation) S-video 490 mW
Total power dissipation (power save) 100 mW Total power dissipation (power down) 10 mW Input leakage current 10 µA Input capacitance By design 8 pF Output voltage high 0.8IOV Output voltage low 0.2 IOV
= 3.3 V, AV
DD33
CVBS 6 S-video CVBS 55 S-video CVBS 24 S-video CVBS 79 S-video
= 1.8 V, TA = 25°C
DD18
DD
55
39
135
= 3 V to 3.6 V,
DD33
6
DD
mA
mA
mA
mA
V V
3.3.2 Analog Processing and A/D Converters
3.3.2.1 Fs = 30 MSPS for CH1, CH2
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Z
i
C
i
Vi(pp) Input voltage range C G Gain control range −6 6 dB DNL Differential nonlinearity AFE only 0.75 1 LSB INL Integral nonlinearity AFE only 1 2.5 LSB Fr Frequency response Multiburst (60 IRE) −0.9 dB XTALK Crosstalk 1 MHz −50 dB SNR Signal-to-noise ratio, all channels 1 MHz, 1 V GM Gain match (Note 1) Full scale, 1 MHz 1.5% NS Noise spectrum Luma ramp (100 kHz to full, tilt-null) −58 dB DP Differential phase Modulated ramp 0.5 ° DG Differential gain Modulated ramp ±1.5%
V
O
NOTE 1: Component inputs only
Input impedance, analog video inputs By design 200 k Input capacitance, analog video inputs By design 10 pF
coupling
Output voltage CL = 10 pF 2 2.4 V
= 0.1 µF 0.5 1 2 V
P-P
54 dB
80
SLES140A—March 2007TVP5147M1PFP
Page 89
3.3.3 Timing
3.3.3.1 Clocks, Video Data, Sync Timing
PARAMETER
Duty cycle DATACLK 45% 50% 55%
t
1
t
2
t
3
t
4
t
5
NOTE 1: CL = 15 pF
High time, DATACLK 18.5 ns Low time, DATACLK 18.5 ns Fall time, DATACLK 90% to 10% 4 ns Rise time, DATACLK 10% to 90% 4 ns Output delay time 10 ns
t
1
DATACLK
Y, C, AVID, VS, HS, FID
Valid Data Valid Data
TEST CONDITIONS
(see NOTE 1)
t
2
t
3
t
5
Electrical Specifications
MIN TYP MAX UNIT
V
OH
V
OL
t
4
V
OH
V
OL
Figure 3−1. Clocks, Video Data, and Sync Timing
3.3.3.2 I2C Host Port Timing
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t t t t t t t t C f
1 2 3 4 5 6 7 8
b
I2C
Bus free time between STOP and START 1.3 µs Data hold time 0 0.9 µs Data setup time 100 ns Setup time for a (repeated) START condition 0.6 µs Setup time for a STOP condition 0.6 ns Hold time for a (repeated) START condition 0.6 µs Rise time VC1(SDA) and VC0(SCL) signal 250 ns Fall time VC1(SDA) and VC0(SCL) signal 250 ns Capacitive load for each bus line 400 pF I2C clock frequency 400 kHz
Stop Start
VC1 (SDA)
t
1
VC0 (SCL)
Stop
Data
t
t
t
6
t
7
t
2
Change
t
8
3
6
t
4
t
5
Data
Figure 3−2. I2C Host Port Timing
SLES140A—March 2007 TVP5147M1PFP
81
Page 90
Electrical Specifications
82
SLES140A—March 2007TVP5147M1PFP
Page 91
4 Example Register Settings
The following example register settings are provided only as a reference. These settings, given the assumed input connector, video format, and output format, set up the TVP5147M1 decoder and provide video output. Example register settings for other features and the VBI data processor are not provided here.
4.1 Example 1
4.1.1 Assumptions
Input connector: Composite (VI_1_A) (default) Video format: NTSC (J, M), PAL (B, G, H, I, N) or SECAM (default)
NOTE: NTSC-443, PAL-Nc, PAL-M, and PAL-60 are masked from the autoswitch process by default. See the autoswitch mask register at address 04h.
Output format: 10-bit ITU-R BT.656 with embedded syncs (default)
4.1.2 Recommended Settings
Recommended I2C writes: For the given assumptions, only one write is required. All other registers are set up by default.
2
I
C register address 08h = Luminance processing control 3 register
2
I
C data 00h = Optimizes the trap filter selection for NTSC and PAL
Example Register Settings
2
I
C register address 0Eh = Chrominance processing control 2 register
2
I
C data 04h = Optimizes the chrominance filter selection for NTSC and PAL
2
I
C register address 34h = Output formatter 2 register
2
I
C data 11h = Enables YCbCr output and the clock output
NOTE: HS/CS, VS/VBLK, AVID, FID, and GLCO are logic inputs by default. See output
formatter 3 and 4 registers at addresses 35h and 36h, respectively.
4.2 Example 2
4.2.1 Assumptions
Input connector: S-video [VI_2_C (luma), VI_1_C (chroma)] Video format: NTSC (J, M, 443), PAL (B, D, G, H, I, N, Nc, 60) or SECAM (default) Output format: 10-bit ITU-R BT.656 with discrete sync outputs
4.2.2 Recommended Settings
Recommended I2C writes: This setup requires additional writes to output the discrete sync 10-bit 4:2:2 data, HS, and VS, and to autoswitch between all video formats mentioned above.
SLES140A—March 2007 TVP5147M1PFP
83
Page 92
Example Register Settings
I2C register address 00h = Input select register
I
2
I
C register address 04h = Autoswitch mask register
I
2
I
C register address 08h = Luminance processing control 3 register
I
2
I
C register address 0Eh = Chrominance processing control 2 register
I
2
I
C register address 33h = Output formatter 1 register
I
2
I
C register address 34h = Output formatter 2 register
I
2
C register address 36h = Output formatter 4 register
I
I
2
C data 46h = Sets luma to VI_2_C and chroma to VI_1_C
2
C data 3Fh = Includes NTSC 443 and PAL (M, Nc, 60) in the autoswitch
2
C data 00h = Optimizes the trap filter selection for NTSC and PAL
2
C data 04h = Optimizes the chrominance filter selection for NTSC and PAL
2
C data 41h = Selects the 10-bit 4:2:2 output format
2
C data 11h = Enables YCbCr output and the clock output
2
C data 11h = Enables HS and VS sync outputs
4.3 Example 3
4.3.1 Assumptions
Input connector: Component [VI_1_B (Pb), VI_2_B (Y), VI_3_B (Pr)] Video format: 480I, 576I Output format: 20-bit ITU-R BT.656 with discrete sync outputs
4.3.2 Recommended Settings
Recommended I2C writes: This setup requires additional writes to output the discrete sync 20-bit 4:2:2 data, HS, and VS, and to autoswitch between all video formats mentioned above.
84
SLES140A—March 2007TVP5147M1PFP
Page 93
I2C register address 00h = Input select register
2
I
C data 95h = Sets Pb to VI_1_B, Y to VI_2_B, and Pr to VI_3_B
2
I
C register address 04h = Autoswitch mask register
2
I
C data 3Fh = Includes NTSC 443 and PAL (M, Nc, 60) in the autoswitch
2
I
C register address 08h = Luminance processing control 3 register
2
I
C data 00h = Optimizes the trap filter selection for NTSC and PAL
2
I
C register address 0Eh = Chrominance processing control 2 register
2
I
C data 04h = Optimizes the chrominance filter selection for NTSC and PAL
2
I
C register address 33h = Output formatter 1 register
2
I
C data 41h = Selects the 20-bit 4:2:2 output format
2
I
C register address 34h = Output formatter 2 register
2
I
C data 11h = Enables YCbCr output and the clock output
2
C register address 36h = Output formatter 4 register
I
2
I
C data AFh = Enables HS and VS sync outputs
Example Register Settings
SLES140A—March 2007 TVP5147M1PFP
85
Page 94
Example Register Settings
86
SLES140A—March 2007TVP5147M1PFP
Page 95
5 Application Information
V V
V V
V V
V
V
V
C0
V
F
F
5.1 Application Example
Application Information
FID
2.2 k
A3.3VDD
22
VOUT
75 1 k
I_1A I_1B I_1C
75 (3)
I_2A I_2B
I_2C
75 (3)
I_3A I_3B I_3C
75 (3)
12 k
0.1 µF (2) 22 µF
22 k
0.1 µF (3)
0.1 µF (2)
0.1 µF (3)
0.1 µF (3)
0.1 µF (3)
0.1 µF
A1.8VDD
10 11 12 13 14 15 16 17 18 19 20
1
VI_1_B
2
VI_1_C
3
CH1_A33GND
4
CH1_A33VDD
5
CH2_A33VDD
6
CH2_A33GND
7
VI_2_A
8
VI_2_B
9
VI_2_C CH2_A18GND
CH2_A18VDD A18VDD_REF A18GND_REF NC NC VI_3_A VI_3_B VI_3_C NC NC
VS/VBLK
HS/CS
XTAL1 XTAL2
80797877767574737271706968676665646362
FID
C_0
C_1
DVDD
DGND
VI_1_A
CH1_A18VDD
CH1_A18GND
XTAL2
XTAL1
PLL_A18VDD
PLL_A18GND
HS/CS
VS/VBLK
TVP5147M1
C_2
C_3
C_4
C_5
61
IOVDD
IOGND
C1 C2
C3 C4 C5
C_6 C_7 C_8 C_9
DGND
DVDD
Y_0 Y_1 Y_2 Y_3 Y_4
IOGND IOVDD
Y_5 Y_6 Y_7 Y_8 Y_9
DGND
DVDD
IOVDD3.3V
60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
DVDD1.8V
0.1 µF
0.1 µF (2)
C6 C7 C8
C9
Y_0 Y_1 Y_2 Y_3 Y_4
Y_5 Y_6 Y_7 Y_8
Y_9
0.1 µ
0.1 µ
NCNCVI_4A
A18GND
A18VDD
AGND
DGND
SCL
SDA
INTREQ
DVDD
DGND
PWDN
RESETB
FSS
AVID
GLCO/I2CA
IOVDD
IOGND
DATACLK
40
39
38
37
36
35
34
33
32
31
30
22
I_4A
CL1
0.1 µF
75
XTAL1 XTAL2
14.31818 MHz
CL2
GND
GLCO/I2CA
IOVDD
10 k
2
10 k
21
I2C Address selection
1
1−2 Base Addr. 0xBA 2−3 Base Addr. 0xB8
3
25
24
23
26
0.1 µF
29
28
27
2.2 kΩ (2)
0.1 µF
0.1 µF
DATACLK GLCO/I2CA
AVID FSS RESETB PWDN INTREQ SDA SCL
NOTE: If XTAL1 is connected to clock source, input voltage high must be 1.8 V.
TVP5147 can be a drop-in replacement for TVP5146. Terminals 69 and 71 must be connected to ground through pulldown resistors.
Figure 5−1. Example Application Circuit
SLES140A—March 2007 TVP5147M1PFP
87
Page 96
Application Information
5.2 Designing With PowerPADt Devices
The TVP5147 device is housed in a high-performance, thermally enhanced, 80-terminal PowerPAD package (TI package designator: 80PFP). Use of the PowerP AD package does not require any special considerations except to note that the thermal pad, which is an exposed die pad on the bottom of the device, is a metallic thermal and electrical conductor . Therefore, if not implementing the PowerPAD masks (or other assembly techniques) can be required to prevent any inadvertent shorting by the exposed thermal pad any etches or signal vias under the device, but to have only a grounded thermal land as in the following explanation. Although the actual size of the exposed die pad may vary, the minimum size required for the keep-out area for the 80-terminal PFP PowerPAD package is 8 mm × 8 mm.
It is recommended that there be a thermal land, which is an area of solder-tinned-copper, underneath the PowerPAD package. The thermal land varies in size, depending on the PowerPAD PCB construction, and the amount of heat that needs to be removed. In addition, the thermal land may or may not contain numerous thermal vias depending on PCB construction.
Other requirements for using thermal lands and thermal vias are detailed in the TI application note PowerPADt Thermally Enhanced Package Application Report, (SLMA002), available via the TI Web pages beginning at URL: http://www.ti.com
For the TVP5147 device, this thermal land must be grounded to the low-impedance ground plane of the device. This improves not only thermal performance but also the electrical grounding of the device. It is also recommended that the device ground terminal landing pads be connected directly to the grounded thermal land. The land size must be as large as possible without shorting device signal terminals. The thermal land can be soldered to the exposed thermal pad using standard reflow soldering techniques.
of connection etches or vias under the package. The recommended option, however, is not to run
PCB features, the use of solder
package being used, the
While the thermal land can be electrically floated and configured to remove heat to an external heat sink, it is recommended that the thermal land be connected to the low-impedance ground plane for the device. More information can be obtained from the TI application note PHY Layout (SLLA020).
PowerPAD is a trademark of Texas Instruments.
88
SLES140A—March 2007TVP5147M1PFP
Page 97
PACKAGE OPTION ADDENDUM
www.ti.com
26-Feb-2007
PACKAGING INFORMATION
Orderable Device Status
(1)
Package
Type
Package
Drawing
Pins Package
Qty
Eco Plan
TVP5147M1PFP ACTIVE HTQFP PFP 80 96 Green (RoHS &
no Sb/Br)
TVP5147M1PFPG4 ACTIVE HTQFP PFP 80 96 Green (RoHS &
no Sb/Br)
TVP5147M1PFPR ACTIVE HTQFP PFP 80 1000 Green (RoHS &
no Sb/Br)
TVP5147M1PFPRG4 ACTIVE HTQFP PFP 80 1000 Green (RoHS &
no Sb/Br)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(2)
Lead/Ball Finish MSL Peak Temp
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-3-260C-168 HR
CU NIPDAU Level-3-260C-168 HR
(3)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 1
Page 98
Page 99
Page 100
Loading...